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Symmetry energy dilemma within a relativistic quark model
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We develop the equation of state of dense neutron star matter with nucleons, nucleons and hyperons, nucleons
and delta, as well as including strange interactions through strange meson-hyperon couplings to assess the effect
of both the soft and stiff symmetry energy, determined in the recent PREX-II experiment, on the properties
of neutron stars. The macroscopic properties of neutron stars such as the mass, radius and tidal deformability
are a direct consequence of the underlying equation of state of dense neutron star matter. Given the recent
advances in constraining the above macroscopic observations from gravitational wave analysis, NICER and radio
observations, we study here the effect of a variation in the symmetry energy on such observational properties
of neutron stars with different possible compositions in a relativistic quark model. We observe that the stiff
symmetry energy satisfies the current constraints on maximum mass and radius, but creates tension with tidal
deformability values.
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I. INTRODUCTION

Recent developments in the field of nuclear astrophysics
and gravitational wave astronomy have provided novel data
on neutron star masses, radii, and tidal deformabilities. Con-
current developments in terrestrial nuclear experiments such
as the measurement of neutron skin of 108Pb by the PREX-II
collaboration [1] with a precision of nearly 1% have also
contributed exciting data on the possible values of nuclear
symmetry energy (J) around the nuclear saturation density.
These results have no doubt significantly enhanced our under-
standing of dense matter physics and structure of neutron stars
and yet at the same time have provided new challenges [2] to
our current understanding of density dependence of nuclear
symmetry energy.

The accepted values of the symmetry energy currently used
in the literature have been determined from various [3–9] the-
oretical as well as experimental analyses. The fiducial value
of J from a survey of 29 analyses [10] was determined to
J = 31.6 ± 2.7 MeV with the corresponding slope parameter
L = 58.9 ± 16 MeV. It was then revised to J = 31.7 ± 3.2
and L = 58.7 ± 28.1 MeV from a study of 53 analyses [11].
A recent study based on the Bayesian analysis of chiral ef-
fective field theory predictions [5] suggested the values of
J = 31.7 ± 1.1 MeV and L = 59.8 ± 4.1 MeV.

While the fiducial values of the symmetry energy from
the above studies is more or less the same as those obtained
from the analyses of neutron star observational data post-
GW170817 [12], the values for L and the curvature parameter
K0

sym have been newly extracted [12]. The mean value of L
at a 68% confidence level from 24 new analyses has been
determined to L ≈ 57.7 ± 19 MeV and the mean value of
K0

sym at a 68% confidence level from 16 new analyses has been
determined to K0

sym ≈ −107 ± 88.

Recent terrestrial nuclear experiments are however signal-
ing higher ranges for the above. The recent measurement [13]
of spectra of charged pions produced by colliding rare isotope
tin (Sn) beams with isotopically enriched tin targets suggests
the slope of the symmetry energy to be 42 < L < 117 MeV.
Even more intriguing is the result from the updated Lead
Radius EXperiment (PREX-II) [1] which has determined the
neutron skin thickness of 108Pb to Rskin = (0.283 ± 0.071)
fm, suggesting the limits [2] of Esym = (38.1 ± 4.7) MeV and
L = (106 ± 37) MeV. These limits are considerably greater
than those obtained from the modeling of astrophysical data
and predict a stiff symmetry energy around saturation density,
which is contrary to accepted norms.

Since the symmetry energy plays a significant role in
constraining neutron star properties like the stellar radii, we
attempt here to analyze the impact of the above-discussed
contrasting values of J (termed a “dilemma” by Piekarewicz
[14]) on the structure and properties of neutron stars. Several
attempts have been made to analyze the above properties using
relativistic mean-field (RMF) models. It is worth mentioning
here that RMF models consider nucleons as structureless point
objects. These models realize the nucleon-nucleon interac-
tions through the coupling of nucleons with σ , ω, and ρ

mesons and their self- and crossed interactions besides pho-
tons and explain well the observed bulk properties of nuclear
matter including the nuclear equation of state (EoS) and also
various properties of finite nuclei. However, incorporation of
structure of nucleon with meson couplings at the basic quark
level in the study of saturation properties of nuclear matter
can provide new insight [15,16]. It gave birth to quark-meson-
coupling (QMC) models. In the QMC model, nuclear matter
is described as a system of nonoverlapping MIT bags which
interact through the effective scalar and vector mean fields,
very much in the same way as in the Walecka model. Saito,
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Thomas, and their collaborators [17,18] and others [19,20]
have very successfully studied various properties of nuclear
matter on the basis of QMC models. Significant studies
[21–24] on the structure and composition of neutron stars have
also been made using the QMC model. There have also been
several attempts to study neutron star matter by describing
the structure of nucleons through a relativistic quark model
(RQM) in conjunction with the RMF model.

We therefore applied a relativistic quark model alter-
natively called the modified quark meson coupling model
(MQMC) [25–29] to develop the EoS of dense neutron star
matter. Unlike the QMC model [15], it uses an equal mixture
of scalar and vector harmonic potential to confine the rela-
tivistic independent quarks to realize the structure of hadron
in vacuum. Here we study the effect of variation in J on the
observational properties of neutron stars with nonstrange as
well as strange hadronic composition. The results so obtained
are compared with the recent multimessenger observations
post GW170817 event [30–33] as well as the results from the
simultaneous mass-radius measurement of PSR J0030+0451
[34,35] and radius measurement of PSR J0740+6620 by the
NICER collaboration [36,37]. We also study the variation of
the speed of sound and the adiabatic index with different
compositions of matter.

The paper is organized as follows: In Sec. II, a brief formal-
ism of the model describing the baryon structure in vacuum is
discussed and the EoS is developed. In Sec. III the EoS for the
symmetric as well as neutron star matter is developed while
we discuss the results in Sec. IV.

II. MODIFIED QUARK MESON COUPLING MODEL

The modified quark-meson-coupling model has been
widely applied for the study of the bulk properties of symmet-
ric and asymmetric nuclear matter [25–29,38–40] including
hyperons, delta isobars, as well as strange interactions. In such
a model the baryons are described as being composed of three
constituent quarks in a phenomenological flavor-independent
confining potential, U (r) in an equally mixed scalar and vec-
tor harmonic form inside the baryon [25], where

U (r) = 1
2 (1 + γ 0)V (r),

with

V (r) = (ar2 + V0), a > 0. (1)

Here (a, V0) are the potential parameters. The confining in-
teraction provides the zeroth-order quark dynamics of the
hadron. In the medium, the quark field ψq(r) satisfies the
Dirac equation[

γ 0
(
εq − Vω − 1

2τ3qVρ − Vφ

) − �γ . �p
−(mq − Vσ − Vσ ∗ ) − U (r)

]
ψq(�r) = 0, (2)

where Vσ = gq
σ σ0, Vω = gq

ωω0, Vρ = gq
ρb03, Vφ = gq

φφ0, and
Vσ ∗ = gq

σ ∗σ ∗
0 . Here σ0, ω0, b03, σ ∗

0 , and φ0 are the classical
meson fields; gq

σ , gq
ω, gq

ρ , gq
σ∗ , and gq

φ are the quark couplings
to the σ , ω, ρ, σ ∗, and φ mesons, respectively; mq is the quark
mass; and τ3q is the third component of the Pauli matrices. We

can now define

ε′
q = (ε∗

q − V0/2) and m′
q = (m∗

q + V0/2), (3)

where the effective quark energy ε∗
q = εq − Vω − 1

2τ3qVρ − Vφ

and effective quark mass m∗
q = mq − Vσ − Vσ ∗ . We now intro-

duce λq and r0q as

(ε′
q + m′

q) = λq and r0q = (aλq)−
1
4 . (4)

The ground-state quark energy can be obtained from the
eigenvalue condition

(ε′
q − m′

q)

√
λq

a
= 3. (5)

The solution of Eq. (5) for the quark energy ε∗
q immediately

leads to the mass of baryon in the medium in zeroth order as

E∗0
B =

∑
q

ε∗
q . (6)

Corrections due to spurious center-of-mass motion, εc.m.,
as well as those due to other residual interactions, such as
the one-gluon exchange at short distances (�EB)g, and quark-
pion coupling arising out of chiral symmetry restoration δMπ

B ,
have been considered in a perturbative manner, described ex-
plicitly in Refs. [25,27], to obtain the effective baryon mass.

Treating these energy corrections independently, the effec-
tive mass of the baryon in the medium becomes

M∗
B(σ, σ ∗) = E∗0

B − εc.m. + δMπ
B + (�EB)E

g + (�EB)M
g . (7)

Once the effective mass of the baryon is realized, it is used
within a relativistic mean-field formalism [25–29] to deter-
mine the EoS for asymmetric nuclear matter as well as neutron
star matter under different compositions and interactions. This
is briefly reviewed in the following sections.

III. THE EQUATION OF STATE

A. The EoS for nuclear matter and the symmetry energy

At a specific baryon density, the total energy density and
pressure of nuclear matter is given by

E = 1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb2
03 (8)

+ γ

(2π )3

∑
N=p,n

∫ k f ,N

d3k
√

k2 + M∗
N

2, (9)

P = − 1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb2
03 (10)

+ γ

3(2π )3

∑
N=p,n

∫ k f ,N k2 d3k√
k2 + M∗

N
2
, (11)

where γ = 2 is the spin degeneracy factor for nuclear matter.
The nucleon density becomes

ρN = γ

(2π )3

∫ k f ,N

0
d3k = γ k3

f ,N

6π2
where N = p, n. (12)

Therefore, the total baryon density becomes ρB = ρp + ρn

and the (third component of) isospin density ρ3 = ρp − ρn.
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The vector mean fields ω0 and b03 are determined through

ω0 = gω

m2
ω

ρB b03 = gρ

2m2
ρ

ρ3, (13)

where gω = 3gq
ω and gρ = gq

ρ . Fixing the scalar mean field σ0

as
∂E
∂σ0

= 0. (14)

The isoscalar scalar and isoscalar vector couplings gq
σ and

gω are fit to the saturation density and binding energy for
nuclear matter while the isovector vector coupling gρ is fixed
using symmetry energy; ω0, b03, and σ0 are determined from
Eqs. (13) and (14), respectively.

The nuclear symmetry energy describes the increase in the
energy of nuclear matter with the increase in isospin asym-
metry. It can be defined as the difference between the total
energy per baryon E/ρB of pure neutron matter and that of
isopspin-symmetric matter at baryon density ρB. It can be
expressed as [26]

Esym(ρB) = k2
f ,N

6E∗
f ,N

+ g2
ρ

8m2
ρ

ρB, (15)

where E∗
f ,N = (k2

f ,N + M∗2
N )1/2.

For nuclear matter at densities in excess of the saturation
density ρ0, we may define the symmetry energy parameters as

J = Esym(ρ0)

L = 3ρ0
∂Esym(ρB)

∂ρB

∣∣∣∣∣
ρB=ρ0

(slope of Esym )

K0
sym = 9ρ2

0

∂2Esym(ρB)

∂ρ2
B

∣∣∣∣∣
ρB=ρ0

(curvature of Esym ) . (16)

B. The EoS of neutron star matter

In the present work, we have considered four different
compositions of neutron star matter, namely matter consist-
ing only of nucleons (N = neutrons and protons), matter

TABLE I. The slope and curvature parameter of symmetry energy.

J L K0
sym J (2ρ0)

(MeV) gρ (MeV) (MeV) (MeV)

28.5 7.86543 76.2 −23.8 53.2
31.7 8.66225 86.0 −23.8 59.7
34.9 9.39170 95.8 −23.8 66.2
38.1 10.06845 105.6 −23.8 72.8

composed of the baryon octet (B = N, �, �±, �0, �−, �0)
[27], matter composed of nucleons and the delta isobars (�−,
�0, �+, �++) [28], and matter involving both nonstrange as
well as strange interactions [29] where a pair of hidden strange
mesons σ ∗ and φ couple only to the strange quark and hyper-
ons of nuclear matter. We give here a general formalism for
obtaining the EoS, while the specific parameters are described
under Results and Discussions.

To describe the properties of the core of a neutron star, we
extend the usual Lagrangian density in relativistic mean-field
approximation to include not only the σ , ω, and ρ mesons but
also the strange mesons, namely the isoscalar, scalar (σ ∗), and
vector (φ) mesons. The Lagrangian density is defined as

L =
∑

B

ψ̄B[iγ μ∂μ − M∗
B(σ, σ ∗) − gωBγ μωμ

− gφBγ μφμ − gρBγ μ�ρμ · �IB]ψB

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2) + 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2)

+ 1

2
m2

ωωμωμ − 1

4
�μν�

μν + 1

2
m2

φφμφμ − 1

4
�μν�

μν

+ 1

2
m2

ρ
�bμ · �bμ − 1

4
�Bμν · �Bμν

+
∑

l

ψ̄l [iγ
μ∂μ − ml ]ψl , (17)
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FIG. 1. (a) Symmetry energy as a function of density for four different J values and (b) the corresponding slope L. The shaded region
shows the range of L = 106 ± 37 suggested in Ref. [2].
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TABLE II. Mass, radius, and dimensionless tidal deformability
�D for nucleonic composition of stellar matter. Also shown is the
radius R1.4 corresponding to the canonical mass 1.4 M�.

J (MeV) M (M�) R (km) R1.4 (km) �D1.4

28.5 2.10 11.6 13.6 536
31.7 2.11 11.7 13.7 603
34.9 2.12 11.8 13.9 619
38.1 2.12 11.9 14.1 641

where

�μν = ∂μων − ∂νωμ, �μν = ∂μφν − ∂νφμ,

�Bμν = ∂μ�bν − ∂ν �bμ (18)

with ψB(l ) the baryon (lepton) field and �IB the isospin matrix
for baryon and ml the lepton mass. The hadronic matter is
described using a mean-field approach in which the meson
fields are treated as classical fields and the field operators are
replaced by their expectation values. A detailed description
can be found in Ref. [29].

The total energy density (E) and pressure (P) at a partic-
ular baryon density for the nuclear matter in β equilibrium,
consisting of the baryon octet and the leptons l = e, μ can be
found as

E = 1

2
m2

σ σ 2
0 + 1

2
m2

σ ∗σ
∗2
0 + 1

2
m2

ωω2
0 + 1

2
m2

φφ2
0

+ 1

2
m2

ρb2
03 + γ

2π2

∑
B

∫ kB

0
k2dk

√
k2 + M∗

B
2

+
∑

l

1

π2

∫ kl

0
k2dk

√
k2 + m2

l , (19)

P = − 1

2
m2

σ σ 2
0 − 1

2
m2

σ ∗σ
∗2
0 + 1

2
m2

ωω2
0 + 1

2
m2

φφ2
0

+ 1

2
m2

ρb2
03 + γ

6π2

∑
B

∫ kB

0

k4 dk√
k2 + M∗

B
2

+ 1

3

∑
l

1

π2

∫ kl

0

k4dk[
k2 + m2

l

]1/2 . (20)

The composition of neutron star matter with strongly in-
teracting baryons is determined by the requirements of charge
neutrality and β-equilibrium conditions under the weak pro-
cesses. The charge neutrality condition after deleptonization

TABLE III. Mass, radius, and dimensionless tidal deformability
�D for stellar matter including nucleons and hyperons.

J (MeV) M (M�) R (km) R1.4 (km) �D1.4

28.5 1.93 12.4 13.6 529
31.7 1.93 12.5 13.7 598
34.9 1.93 12.7 13.9 621
38.1 1.93 12.8 14.1 654

TABLE IV. Mass, radius, and dimensionless tidal deformability
�D for stellar matter including nucleons and Delta isobars.

J (MeV) M (M�) R (km) R1.4 (km) �D1.4

28.5 1.95 11.9 13.6 534
31.7 1.98 12.1 13.7 590
34.9 2.00 12.2 13.9 618
38.1 2.02 12.4 14.1 632

is given by

qtot =
∑

B

qB
γ k3

B

6π2
+

∑
l=e,μ

ql
k3

l

3π2
= 0, (21)

where qB corresponds to the electric charge of baryon species
B and ql corresponds to the electric charge of lepton species l .
The net strangeness is determined by the condition of β equi-
librium which for baryon B is given by μB = bBμn − qBμe,
where μB is the chemical potential of baryon B and bB its
baryon number and qB is the charge of the baryon under con-
sideration. Thus the chemical potential of any baryon can be
obtained [41] from the two independent chemical potentials
μn and μe of neutron and electron, respectively.

The relation between the mass and radius of a star with its
central density can be determined by integrating the Tolman-
Oppenheimer-Volkoff (TOV) equations [42–44] given by

dP

dr
= −G(mc2 + 4πr3 p)(E + P)

rc4(r − 2Gm/c2)
(22)

dm

dr
= 4πr2 E

c2
, (23)

where G is the gravitational constant, c is the speed of light,
and m represents the mass interior to the radius r. It may be
noted here that to describe the crust of the star where the
density is significantly smaller than nuclear matter saturation
density, we add the standard Baym-Pethick-Sutherland (BPS)
EoS [45] to the EoS of the MQMC model.

IV. RESULTS AND DISCUSSION

A. Symmetric nuclear matter

The two potential parameters in the MQMC model are
obtained by fitting the nucleon mass MN = 939 MeV and
charge radius [46] of the proton 〈rN 〉 = 0.84 fm in free
space. Taking the u and d quark mass at mq = 200 MeV

TABLE V. Mass, radius, and dimensionless tidal deformability
�D for stellar matter including nucleons and hyperons with strange
interactions.

J (MeV) M (M�) R (km) R1.4 (km) �D1.4

28.5 2.03 12.2 13.9 584
31.7 2.04 12.3 14.1 638
34.9 2.04 12.4 14.3 730
38.1 2.05 12.5 14.5 699
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FIG. 2. Neutron star masses as a function of the radius computed for different compositions. Each figure shows the effect of the variation
in the J and the shaded region shows the mass range 2.08 ± 0.07 M� of the pulsar PSR J0740+6620 determined from NICER observations.

along with the standard values for the meson masses (namely
mσ = 550 MeV, mω = 783 MeV, and mρ = 763 MeV) and
fitting the quark-meson coupling constants self-consistently,
we obtain the saturation properties of nuclear matter binding
energy by setting EB.E. ≡ B0 = E/ρB − MN = −15.7 MeV,
pressure, P = 0 at ρB = ρ0 = 0.15 fm−3, with the values of
gq

σ = 4.36839 and gω = 7.40592. The coupling constant gρ is
fixed for four different values of the symmetry energy. These
values are chosen to cover the limits of the current accepted
[11] range J = 31.7 ± 3.2 MeV as well as the significantly
stiffer range of J = 38.1 ± 4.7 MeV. The values of gρ , slope
of the symmetry energy L, and the curvature parameter K0

sym
at saturation density are given in Table I.

The slope of the symmetry energy L at saturation density
increases with increasing J . For J values within the limits
of 31.7 ± 3.2 MeV, we obtain 76.2 � L � 95.8 MeV and
for a stiffer J = 38.1 MeV we get L = 105.6 MeV. Recent
studies based on the PREX-II results [2] and the strong cor-
relation between the L and neutron skin thickness of 208Pb
suggest L = (106 ± 37) MeV. More recently, a study [47]
based on Bayesian analysis of PREX-II data and GW170817
and NICER observations suggests a range of L = 69+21

−19 MeV.

Our results for L at different J are consistent within these
limits, as can be seen in Fig. 1. Furthermore, the curvature
of symmetry energy, K0

sym comes out to −23.8 MeV, which
lies within the limits K0

sym ≈ −107 ± 88 MeV obtained from
the 16 new analyses [12] of neutron star observables after
GW170817.

Of particular importance is the value of symmetry energy
at suprasaturation densities at around 2ρ0, since the pressure
around this density determines the radii of canonical neutron
stars [48]. Recent studies [12] constrain the value of J (2ρ0) to
51 ± 13 MeV at 68% confidence level. In the present study,
the value lies within 53.2 to 72.8 MeV, in good agreement
with data extracted from heavy-ion reaction experiments.

B. Neutron star matter

For neutron star matter under β equilibrium and charge
neutrality conditions, we use the energy density (19) and
pressure (20) with relevant changes [27–29] for the different
compositions. For matter with only nucleons, the values of
the maximum mass Mmax, radius (R), radius corresponding to
the canonical star mass 1.4M� (R1.4) and the dimensionless
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FIG. 3. Love number as a function of mass of star.

tidal deformability �D for different J are given in Table II. We
obtain a massive star with maximum mass of 2.12 M� and the
corresponding radius varying between 11.6 � R � 11.9 km.
The R1.4 value comes between 13.6 � R1.4 � 14.1 km.

For matter including nucleons and hyperons, the meson-
hyperon coupling constants are fixed as follows. The hyperon
couplings to the ω meson are fixed by determining xωB which
is obtained [41,49,50] from the hyperon potentials in nuclear
matter, UB = −(MB − M∗

B) + xωBgωω0 for B = �, �, and �

with U� = −28 MeV, U� = 30 MeV, and at U� = −10 MeV.
With mu,d = 200 MeV and ms = 280 MeV, the values for
xω� = 0.82541, xω� = 1.45353, and xω� = 0.52541, while
we fix xρB = 1. The values of Mmax, R, R1.4, and �D with hy-
peronic configuration is shown in Table III. Since the presence
of hyperons significantly softens the EoS, we obtain a lower
maximum mass of 1.93 M� while the radius varies between
12.4 � R � 12.8 km. Several studies have been conducted on
the impact of presence of the hyperons on the mass of the
neutron stars. In particular, the quark-meson-coupling model
suggests [22] a mass range of 1.9–2.1 M� with the inclusion
of hyperons.

For matter with � isobars [28], we fix xω� = 0.7, while
the � coupling to the ρ meson is fixed at xρ� = 1. The
mass-radius results are shown in Table IV. Here also we

observe a steady increase in the radius with increase in the
stiffness of the symmetry energy. It may be noted here that
the formation of � isobars in neutron star matter has been
a subject of intense research. A seminal work by Glenden-
ning [51] had suggested the absence of � matter in neutron
stars. A recent study by Motta et al. [24] using the QMC
model also predicted the absence of � matter in neutron
stars. However, a large number of studies [28,52–58] indi-
cate the possibility of formation of � isobars in neutron
star matter.

We next introduce strange interactions [29] via strange
meson couplings to hyperons mediated through the hidden
strange mesons σ ∗ and φ [59] which couple only to the strange
quark and the hyperons of the nuclear matter. The nonstrange
and strange meson couplings to the hyperons are fixed using
the SU(3) flavor symmetry [29,60–64]. The results are given
in Table V.

Figure 2 shows the neutron star masses as a function of
their radii for four different compositions tabulated above.
The variation in symmetry energy and its slope L do not
have much impact on the maximum mass, with variations
lying within 0.03 M�. However, for the N + � compo-
sition the mass variation with J ranging from 28.5 MeV
to 38.1 MeV is up to 0.07 M�, which may be attributed
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FIG. 4. Tidal deformability as a function of neutron star mass for different compositions. The vertical line indicates the canonical mass
while the horizontal lines indicate earlier [30] and revised [31] upper limits of the �D.

[28] to the increase in the ρ-� coupling strength with
increase in J .

Over all the configurations, the maximum mass varies
within 1.93 � M � 2.12 M� for different compositions. The
mass of the pulsar PSR J0740+6620 from NICER observa-
tions has recently been updated [36,37,65] to 2.08 ± 0.07 M�
with the corresponding radius being 13.7+2.6

−1.5 km in one study
[36] and 12.39+1.30

−0.98 km in another [37]. Our radius values
corresponding to the maximum mass vary within 0.3–0.5 km
for the chosen J values, with 11.8 � R � 12.8 km. This lies
within the limits of the measured values of the pulsar PSR
J0740+6620.

The canonical radius R1.4 is also sensitive to variations in
the J value within 0.6 km for the different cases and lies
between 13.5 � R1.4 � 14.5 km overall. The recent mass-
radius estimates of the millisecond pulsar PSR J0030+0451
observed using the NICER facility [34,35] predicts a mass of
M = 1.44+0.15

−0.14 M� and radius R = 13.02+1.24
−1.06 km with a 68%

confidence level. Our results for R1.4 are consistent with the
predicted estimates PSR J0030+0451.

In Fig. 3 we plot the Love number k2, which is essential for
a description [66–68] of the dimensionless tidal deformability
parameter �D required to connect the gravitational wave data

with the EoS. Figure 4 shows the variation of �D with star
mass for different J with various compositions. Recently, the
LIGO and Virgo collaboration has revised the limits [31] of
�D for a 1.4 M� star, with �D = 190+390

−120, which is more
stringent than the earlier limit [30] of �D � 800. Our results
for �D are quite consistent for the symmetry energy range
of 31.7 ± 3.2 MeV. However, for the stiffer J = 38.1 MeV
obtained from the PREX-II data, we observe higher values of
�D, indicating the tension existing between the terrestrial and
astronomical observations.

The EoS developed above for both soft and stiff J satisfies
most of the contraints as regards to the maximum mass and
radius. However, we observe that for large J , the value of
�D is at odds with the observational data. Since the EoS
at densities relevant to neutron stars is poorly understood, it
would be interesting to study the behavior of two additional
quantities, i.e., the speed of sound and the adiabatic index,
with respect to our variation of symmetry energies.

The speed of sound, defined as c2
s = dP

dE , is an impor-
tant quantity that characterizes dense matter EoS. While the
accepted range of c2

s � 1/3 suggests agreement with the con-
formal limit, many studies [69–71] suggest that the speed
of sound squared lies around or exceeds the conformal limit
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FIG. 5. The square of the speed of sound as a function of density for various compositions at different J . The horizontal line indicates the
conformal limit c2

s = 1/3.

c2
s � 1/3. Recently, Annala et al. [72] applied a new ‘speed-

of-sound’ interpolation method to suggest that agreement with
the conformal limit in massive neutron stars can predict siz-
able quark-matter cores. In the present work, it is observed
that all four compositions have a speed of sound near or
below the conformal limit of c2

s � 1/3. Since the present
study involves hyperons [73] as well as �’s, the change in
the degrees of freedom results in dips and kinks in c2

s . Such
behavior is observed in Fig. 5 which shows the variation in c2

s
with density.

Another significant thermodynamic quantity [74–78] re-
lated to the EoS is the adiabatic index �, that is sensitive to
changes in the composition of matter. The adiabatic index can
be used [79] to impose constraints on realistic equations of
state so as to obtain stable configurations of neutron stars.
For most of the EoS’s of neutron star matter, � varies from
2 to 4. Since we have chosen four possible compositions at
different J , we observe that the variation of � for our EoS’s
at different J (including the stiffest 38.1 MeV) satisfies the
range of 2 to 4. Further, the dips and kinks in the variation
of � is due to the appearance of different baryon species at
different densities [78]. This is shown in Fig. 6 for different
cases of J .

V. CONCLUSION

In the present work we have studied the effect of varia-
tion of symmetry energy on the observational properties of
neutron stars such as the mass, radius and tidal deformability
using a relativistic quark model. The contrasting values of
J due to the astrophysical and terrestrial observations has
created new challenges to constrain the dense matter EoS.
We find that a stiff symmetry is able to satisfy the neutron
star mass and radius constraints from NICER observations but
unable to satisfy the stringent constraints on tidal deforma-
bility parameter. We also study the behavior of the speed
of sound and adiabatic index and find that all our EoS at
different J and different compositions satisfy the conformal
limits.
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