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Incompressibility and symmetry energy of a neutron star
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We trace a systematic and consistent method to precisely numerate the magnitude range for various structural
and isospin compositional properties of the neutron star. Incompressibility, symmetry energy, slope parameter,
and curvature of a neutron star are investigated using the relativistic energy density functional within the
framework of coherent density fluctuation model. The analytical expression for the energy density functional of
the neutron star matter is motivated from the Brückner functional and acquired by the polynomial fitting of the
saturation curves for three different relativistic mean-field parameter sets (NL3, G3, and IU-FSU). The modified
functional is folded with the neutron star’s density-dependent weight function to calculate the numerical values
for incompressibility and symmetry energy using the coherent density fluctuation model. The NL3 parameter
set, being the stiffest equation of state, has a higher magnitude of all the properties compared to the other two
parameter sets.
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Neutron stars, being surprisingly dense objects in the
universe, are impressive to both astrophysicists and nuclear
physicists. Astronuclear physicists perceive the neutron star
as having an enormously large nucleus bound by the gravity
and are amazed by its short-range strong nuclear interactions
and enormous gravitational and electromagnetic interactions.
An understanding of the properties of neutron stars demands
thorough knowledge of both astrophysics and nuclear physics,
which are mostly incoherent. A conformability exits between
the astral properties (i.e., gravitational potential, central tem-
perature, angular velocity, magnetic poles) and the nuclear
properties (i.e., baryon density, neutrino emissivity, isospin
asymmetry, superconductivity) of neutron stars [1]. However,
there are some properties of the neutron stars like pressure,
incompressibility, and symmetry energy which are significant
for experimental and theoretical explanations of its nontrivial
behavior.

The consequences of “symmetry” are essential to many im-
portant aspects of the modern physics. Theoretical modeling
of the analytical and structural behavior of highly asymmetric
dense nuclear matter (NM) depends significantly on the sym-
metry energy [2]. Also, the parameters derived by expanding
the symmetry energy around saturation density (slope and
curvature parameter) control the core-crust transition density,
transition pressure, and the cooling rate of the neutron stars
[3,4]. The quantitative information on the slope and curvature
parameter of the neutron stars can be applied to constrain
the equation of state (EoS) obtained using different parameter
sets of the vast relativistic framework. The particle fraction
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in the core of the neutron stars, which is a critical quantity
to the cooling of neutron stars, is also controlled by the
domain of symmetry energy and slope parameter [5]. Since
symmetry energy cannot be measured directly, the elucidation
of experimentally available data requires a substantial and
consistent theoretical model for nuclear matter at very high
densities [6–8]. The precise range of the symmetry energy for
the isospin asymmetric nuclear matter and the neutron stars
has been a debatable issue among researchers. Along with
the theoretical calculations, laboratory nuclear experiments
(i.e., giant dipole resonance, heavy-ion collisions, neutron
skin) and abridged results of astrophysical observations (i.e.,
mass-radius profile, dimensional tidal deformability) have
also constrained the domain of symmetry energy and its
derivatives [9–12]. Another important quantity which controls
the equation of state (EoS) of any dense matter system is
incompressibility.

Dependence of incompressibility on the isospin asymme-
try parameter of the nuclear system restricts the stiffness of
the EoS, which indirectly influences the maximum mass and
radius of the neutron star, e.g., maximally compressible dense
matter handles the upper limit on the maximum mass of the
neutron star [13]. The quantitative dimension of the incom-
pressibility coefficient also helps in the determination of an-
gular velocity and the evolution of cooling stage of the rapidly
rotating neutron stars [14]. The collective motion of the nucle-
ons inside a nucleus produces nuclear giant resonances, which
are a global feature of the finite nuclei [15,16]. The isoscalar
giant monopole resonance (ISGMR) is the most common
collective oscillation with both protons and neutrons in same
phase. This ISGMR is the breathing mode oscillation related
to the incompressibility KA of the finite nucleus of mass A.
Thus, the nuclear incompressibility KA is a vital quantity for
understanding the various modes of oscillations of the finite
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nucleus [17,18]. Similarly, the other modes of collective oscil-
lations, such as isovector giant dipole resonance (IVGDR) and
isoscalar [isovector] giant quadrupole resonances (ISGQR
[IVGQR]) are also governed by nuclear incompressibility and
the other symmetry-related parameters of the finite nucleus.
The various collective resonances decide the internal struc-
tures of the finite nucleus; for example, the IVGDR tells the
shape of the nucleus and the ISGMR gives information about
the compression or expansion capacity of the nucleus. The
calculations of the monopole and quadrupole excitation en-
ergies and their relations with incompressibility using various
sum rule approaches are demonstrated in Refs. [19,20]. For
a particular model, either a relativistic or a nonrelativistic,
to be consistent with the constraints set by the terrestrial
or astrophysical experiments, the nuclear incompressibility,
symmetry energy, and other related quantities are essential.
Neutron stars (NS), which have huge nuclei with mass number
A ≈ 1057, must possess all the natural properties of practi-
cal finite nuclei, such as all types of collective oscillations.
The incompressibility K star, symmetry energy Sstar, and higher
derivatives such as Lstar

sym and K star
sym are informative and neces-

sary to explore the structure of the neutron star. In the present
paper, our aim is to discuss another approach, coherent density
fluctuation model (CDFM), for the evaluation of these quan-
tities of neutron stars. This model is applicable for a neutron
star, as it has a finite surface like that of a standard nucleus.
Here, we provide an approach to calculate both of these pa-
rameters (symmetry energy and incompressibility) for a neu-
tron star matter system in a consistent and accurate manner.

In the past few decades, the theoretical models destined to
explore the behavior of a dense nuclear medium have been
useful to unravel the properties of compact astrophysical ob-
jects, i.e., neutron stars or white dwarfs. The structural and
compositional resemblance of finite nuclei and neutron stars
indicate that the physics of compact objects can be explored
by extrapolating the data of terrestrial experiments and the-
oretical formulation of dense matter systems [21]. From the
states of highly dense matter in the inner core to the pasta
phases of nuclei at ordinary densities in the outer crust, a
neutron star manifests the thorough distribution of matter
[22]. Neutron star cores are 103 times or more dense than at
“neutron drip” line, so, we can utilize a consistent, congruous,
and ultrahigh-density equation of state of nuclear matter for
an understanding of neutron star properties [23]. Compre-
hensive knowledge of the EoS of nuclear matter and pure
neutron matter indicates a bridge between the finite nuclei
and dense interstellar bodies. The EoS of strongly interacting
dense matter is the key component for the determination of
general properties of neutron star (maximum mass, radius,
tidal deformability) and it also controls the cooling rate and
dynamics of core-collapse supernovae remnants [4,24]. Im-
mobilizing the correct EoS for the compact stellar objects
had been a complex task in nuclear and astroparticle physics
over the past few decades. Several constraints had been
enforced on the EoS at high density with the help of observa-
tional gravitational wave data (GW170817) [25], the Einstein
Observatory (HEAO-2) [26], and various generations of x-
ray radio telescopes [27,28]. There are many nonrelativistic
(Skyrme [29], Gogny forces [30]) and relativistic (relativistic

mean-field model [31,32]) theoretical approaches which pro-
vide a consistent formalism to construct the EoS and calculate
the empirical properties of strongly interacting dense matter
systems, which we can adopt as a manifestation of com-
pact stars. The relativistic class of models are an alternative
and more factual approach for low-energy quantum chro-
modynamics with all the built-in nonperturbative properties
(i.e., current conservation, local or global symmetry breaking,
etc.), where baryons and nuclei are stabilized as solitons in a
mesonic fluid [33,34]. With the advancement in the cumber-
some algebra of quantum field theory, the effective interaction
between the nucleons and mesons can be expressed in the
form of energy density functionals., which can be approached
with the help of self-consistent relativistic mean-field (RMF)
model.

In this work, we apply the RMF formalism to obtain the
EoS for a dense matter system, where along with the neutrons
and protons, electrons are also present to maintain the charge
neutrality. We denote this kind of infinite dense matter (con-
sisting of neutron, proton, and electron) as neutron star matter
(NSM). Since our aim here is to calculate the properties for a
neutron star, it is necessary to add electrons and muons in our
system to maintain the compositional and neutrality properties
of the star. Now, the Lagrangian for such a dense matter within
RMF formalism can be written as [9]

L =
∑
i=p,n
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where the last term stands for the added electrons and muons
in the nuclear matter and ψ , ψ̄ , φl are the wave functions of
the nucleons (proton and neutron), antinucleons, and leptons
respectively. It includes σ , ω, ρ, and δ mesons to represent the
interaction of nucleons, self- and cross-coupled interactions.
M stands for the mass of the nucleons; mσ , mω, mρ , mδ , gσ , gω,
gρ , and gδ are the masses and the self-coupling constants for
σ , ω, ρ, and δ mesons respectively; κ3, κ4, ζ0, η1, η2, ηρ , and
�ω are the coupling constants; F να and �Rνα are field strengths;
and τ3 is the isospin operator. A more detailed explanation of
the Lagrangian is discussed in Refs. [9,35–37]. We obtain the
EoS for the defined neutron star matter by applying the Euler-
Lagrange’s equation of motion and the relativistic mean-field
approximation on the above Lagrangian [Eq. (1)] [35,38].
To get a comprehensive idea of the EoS, we derive the EoS
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FIG. 1. The neutron star matter saturation curves as a function of
baryon number density for different asymmetry α = nn−np

nn+np
parame-

ter. The solid curve represents the RMF numerical data and the dotted
black curve stands for the fitted expression.

for the complete range of asymmetry factor. The asymmetry
parameter (α) is defined as α = nn−np

nn+np
, with nn and np being

the neutron and proton densities, and α = 1 stands for purely
neutron matter. The number density of electrons and muons
in the neutron star matter is kept equal to the proton number
density to maintain the charge neutrality, i.e.,

np = ne + nμ. (2)

The binding energy per nucleon (E/n − M, where E is the
energy density and n is the total nucleon density) curve as a
function of nucleonic number density is depicted in Fig. 1.

In the present work, we used three different RMF param-
eter sets (NL3 [39], G3 [36], and IU-FSU [40]), with NL3
being the stiffest and the recently developed G3 being the soft-
est, which compose the whole range of equation of state. The
values of nuclear matter properties (i.e., saturation density,
binding energy, incompressibility, etc.) for symmetric nuclear
matter predicted by the chosen RMF parameter sets satisfy
all the empirical and experimental constraints. The numerical
magnitudes of incompressibility of symmetric nuclear matter
(K) at saturation density for G3 and IU-FSU forces are 244
and 231 MeV, and those of symmetry energy (S) are 31 and
32 MeV, respectively [9,41], which are appropriate for the
range stated by various theoretical and experimental mod-
els [42,43]. The three considered parameter sets are widely
used in literature and our aim is to show the variation of
the results with different forces. It is to be noted here that
NL3 is one of the most successful parameter sets for finite
nuclei. This set is also used to explain the GW190814 data
with a mixture of dark matter inside the neutron star [44].
The coupling constants and the nuclear matter properties at
saturation density along with the empirical and experimental
values are presented in Table I.

To achieve an expressional form of energy functional for
the effective interactions in the neutron star matter explained
by RMF formalism, we have fitted the numerically obtained
data. The assumptive form of the fitted energy functional is

TABLE I. The coupling constants and the nuclear matter prop-
erties at saturation for the EoS of NL3 [39], G3 [36], and IU-FSU
[40] parameter sets. The nucleon mass (M) is 939.0 MeV. All of the
coupling parameters are dimensionless and the NM parameters are
in MeV, except n0 which is in fm−3. The NM parameters are given
at saturation density for NL3, G3, and IU-FSU parameter sets in the
lower panel.

Parameter NL3 G3 IU-FSU Empirical/Expt. value

mσ /M 0.541 0.559 0.523 0.426–0.745a

mω/M 0.833 0.832 0.833 0.833–0.834b

mρ/M 0.812 0.820 0.812 0.825–0.826c

mδ/M 0.0 1.043 0.0 1.022–1.064d

gσ /4π 0.813 0.782 0.793
gω/4π 1.024 0.923 1.037
gρ/4π 0.712 0.962 1.081
gδ/4π 0.0 0.160 0.0
k3 1.465 2.606 1.1593
k4 −5.688 1.694 0.0966
ζ0 0.0 1.010 0.03
η1 0.0 0.424 0.0
η2 0.0 0.114 0.0
ηρ 0.0 0.645 0.0
�ω 0.0 0.038 0.046
n0 0.148 0.148 0.154 0.148–0.185e

B.E . −16.29 −16.02 −16.39 −15.00–17.00f

K 271.38 243.96 231.31 220–260g

S 37.43 31.84 32.71 30.20–33.70h

Lsym 120.65 49.31 49.26 35.00–70.00i

Ksym 101.34 −106.07 23.28 −174–−31j

Qsym 177.90 915.47 536.46

aReference [45].
bReference [45].
cReference [45].
dReference [45].
eReference [46].
fReference [46].
gReference [42].
hReference [43].
iReference [43].
jReference [47].

motivated by the work of Brückner et al. [48,49]. There are
several issues with Brückner’s energy functional; for instance,
it cannot rectify the Coester-band problem [50] and it is de-
fined purely for the nonrelativistic nuclear matter formalism.
We ameliorate the Brückner energy functional in the local
density approximation, so that it can satisfy the RMF data [51]
and also added some series of potential function and an extra
term for the lepton’s kinetic energy inclusion. The modified
energy density functional can be stated as

E = Ckn2/3 + Cen4/9 +
14∑

i=3

(bi + aiα
2)ni/3, (3)

where Ck = 0.3(h̄2/2M )(3π2)2/3[(1 + α)5/3 + (1 − α)5/3]
[49] is the kinetic energy coefficient for nucleons and
Ce = be(1 − α)5/9, with be as a variable obtained during
fitting procedure, is the kinetic term coefficient for
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leptons. The last term stands for the potential interaction
of the nucleons and the coefficients bi and ai have
to be obtained by fitting procedure for different RMF
parameter sets. We observed that the accuracy of the
fitting mechanism decreases if we reduce the number of
coefficients (ai and bi) in the expansion of potential term
of Eq. (3) [51]. The mean deviation δ, which is defined as
δ = [

∑N
j=1(E/A) j,Fitted − (E/A) j,RMF]/N , with N being the

total number of points, is 18%, 6%, and 0.5% for 8 [i.e., i
runs from 3 to 10 in Eq. (3)], 10, and 12 terms respectively.
The fitted curves of the neutron star matter with the above
expression [Eq. (3)] are shown in the Fig. 1 through the black
dotted lines. We have used this energy density functional as an
input in the coherent density fluctuation method to achieve the
range of certain properties of neutron star (incompressibility,
symmetry energy, and slope parameter). Coherent density
fluctuation model (CDFM) was first introduced three decades
ago by Antonov et al. and is now a well-established formalism
to decipher the properties of finite nuclei [52–54]. The
backbone of the CDFM model is that a coordinate generator
x can be used to write the one-body density matrix n(r, r′)
of a nucleus as a sequential superposition of infinite number
of one-body density matrices nx(r, r′), which are termed
“fluctons” [55,56]. The density of fluctons has the form

nx(r) = n0(x) �(x − |r|), (4)

where n0(x) is defined as n0(x) = 3A/4πx3, with A being
the total number of nucleons in the finite matter. Within the
CDFM approach, the density distribution of the spherical fi-
nite nuclear matter of radius r can be expressed as [57,58]

n(r) =
∫ ∞

0
dx |F (x)|2 n0(x) �(x − |r|), (5)

|F (x)|2 is defined as the weight function and it can be obtained
theoretically for a monotonically decreasing local density in
the generator coordinate x as [57]

|F (x)|2 = − 1

n0(x)

dn(r)

dr

∣∣∣∣∣
r=x

. (6)

Now, the nuclear and structural properties of the neutron star,
i.e., incompressibility (K star), symmetry energy (Sstar), slope
parameter (Lstar

sym), and curvature (K star
sym), can be expressed in

terms of weight function and the expression of the parame-
ters evaluated from the energy density functional [Eq. (3)] of
infinite star matter system as [55,58,59]

K star =
∫ ∞

0
dx |F (x)|2 KNSM(n(x)), (7)

Sstar =
∫ ∞

0
dx |F (x)|2 SNSM(n(x)), (8)

Lstar
sym =

∫ ∞

0
dx |F (x)|2 LNSM

sym (n(x)), (9)

K star
sym =

∫ ∞

0
dx |F (x)|2 KNSM

sym (n(x)), (10)

The profile of the weight function with density holds key
information about the dependence of the calculated properties
on the structure and composition of the defined matter system.

The magnitude of the weight function at a value of x will
decide the share of that particular region of density in the
overall magnitude of calculated property. The energy density
functional for the neutron star matter can be converted from
momentum space to the coordinate space x in a local density
approximation technique using the Brückner method. The ex-
pressions for KNSM, SNSM, LNSM

sym , and KNSM
sym can be obtained

from Eq. (3) by applying their common derivative definitions
[60–62]; i.e., the NM parameters KNM, SNM, LNM

sym, and KNM
sym

are obtained from the following standard relations:

KNM = 9ρ2
0

∂2

∂ρ2

(E
ρ

)∣∣∣
ρ=ρ0

, (11)

SNM = 1

2

∂2(E/ρ)

∂α2

∣∣∣
α=0

, (12)

LNM
sym = 3ρ0

∂S(ρ)

∂ρ

∣∣∣
ρ=ρ0

= 3P

ρ0
, (13)

KNM
sym = 9ρ2

0
∂2S(ρ)

∂ρ2

∣∣∣
ρ=ρ0

. (14)

which are given as follows using Eq. (3):

KNSM = −150.12 n2/3
0 (x) − 2.22 be n4/9

0 (x)

+
14∑

i=4

i (i − 3) bi ni/3
0 (x), (15)

SNSM = 41.7 n2/3
0 (x) − 0.12 be n4/9

0 (x)

+
14∑

i=3

ai ni/3
0 (x), (16)

LNSM
sym = 83.4 n2/3

0 (x) − 0.16 be n4/9
0 (x)

+
14∑

i=3

i ai ni/3
0 (x), (17)

KNSM
sym = −83.4 n2/3

0 (x) + 0.266 be n4/9
0 (x)

+
14∑

i=4

i (i − 3) ai ni/3
0 (x), (18)

The above expressions are derived for the symmetric (α = 0)
case. Now, we can easily calculate the nuclear properties of
the neutron star with the help of the weight function and
using the above expressions. The weight function computa-
tion demand the slope of density curve with respect to the
radius of the neutron star. We compute the mass-radius pro-
file and the density curve of the neutron star for the three
considered RMF parameter sets. The density curve and the
mass-radius profile of the neutron star can be acquired by
imposing the β equilibrium conditions [9,63] in the neutron
star matter and using the obtained EoS as an input for the
Tolman-Oppenheimer-Volkoff (TOV) equations [64,65]. The
β- equilibrium conditions and the TOV equations for the static
isotropic protoneutron star can be written as

μn = μp + μe,

μe = μμ, (19)
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FIG. 2. Mass-radius profile of a neutron star for NL3 (red), G3
(green), and IU-FSU (blue) parameter sets. The old NICER data
is given in two boxes from the two different analyses [67,68]. The
horizontal line in violet color represents the new NICER constraint
on the radius of the canonical star [69].

and

dP(r)

dr
= − [E (r) + P(r)]

r2
(
1 − 2M(r)

r

) [M(r) + 4πr3P(r)],

dM(r)

dr
= 4πr2E (r). (20)

Here μn, μp, μe, and μμ describe the chemical potentials of
the neutrons, protons, electrons, and muons respectively; E
and P are the energy density and pressure of the neutron star.
The self-consistent numerical solutions of Eqs. (2) and (15)
will set the fraction of neutron, proton, electron, and muon
number densities for a given baryon density in a neutron star.
M(r) is defined as the mass of the neutron star at radius
r and the boundary conditions to solve these equations are
P(R) = 0, for a particular choice of central density nc = n(0).
Finally, we also added the crust part in the above computed
EoS to get a detailed and complete analysis of the neutron
star properties. We extended the surface part of the NS math-
ematically by adding the crust energy and pressure calculated
by Baym, Pethick, and Sutherland (BPS), in the tail part of
all the three RMF parameter’s main equation of state [66]. A
more detailed formalism to calculate the mass-radius profile
of the neutron star using RMF equation of state can be found
in Refs. [9,35,41]. The mass-radius profile for all the three
assumed parameter sets is shown in Fig. 2.

The maximum masses of the neutron star calculated with
the help of G3 and IU-FSU parameter sets are 2.004M� and
1.940M� respectively [9,70], which fit well in the range of
the observational pulsar data PSR J1614-2230 (M = 1.908 ±
0.04M�) [71], PSR J0348 + 0432 (M = 2.01 ± 0.04 M�)
[72], and PSR J0740 + 6620 (M = 2.15+0.10

−0.09M�) [73]. Recent
evaluation of the pulsar data PSR J0740 + 6620 done by Fon-
seca et al. enumerate the mass of the star in the range 2.08 ±
0.07M� with 68% confidence limit [74]. The old NICER
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FIG. 3. The neutron star densities (ρ) for NL3 (red), G3 (green),
and IU-FSU (blue) parameter sets as a function of radius of the max-
imum mass star (R). The mass numbers (A) of the maximum mass
neutron star for NL3, G3, and IU-FSU are 3.35 × 1054, 2.32 × 1054,
and 2.23 × 1054 respectively.

[67,68] data are satisfied by both G3 and IU-FSU sets. Also,
recently the new equatorial circumferential radius measure-
ments are reported by Miller et al. [69] on the basis of NICER
and XMM-Newton x-ray observation of PSR J0740 + 6620
within 68% confidence limit. However, the mass predicted by
the NL3 parameter set is quite larger than the defined limit.
The radius constraint put recently by the Miller et al. using
NICER simulations for the canonical star (1.4M�) is also well
satisfied by the G3 and IU-FSU parameter sets [69]. Also, the
constraint set by the observational data of GW170817 event
for the tidal deformability of canonical star is satisfied by the
G3 parameter set (� = 582.26) [25,35,75]. So, we can claim
that the assumed RMF parameter sets are consistent with the
astrophysical observational data and well suited to calculate
the various properties of neutron star.

The density-radius curve of the neutron star for NL3, G3,
and IU-FSU parameter sets is depicted in Fig. 3. The density-
radius curve is computed for the maximum mass predicted
by the corresponding parameter set, i.e., 2.850M� for NL3,
2.004M� for G3 and 1.940M� for IU-FSU. We observe that
the central density of the neutron star is maximum for the
G3 parameter set, while NL3 being the stiffest EoS, have the
lowest central density.

However, with the help of the density-radius curve, we can
calculate the weight function (|F (x)|2) of the neutron star.
The total number of nucleons for the neutron star with the
maximum mass predicted by NL3, G3, and IU-FSU parameter
sets with mass number A are 3.35 × 1054, 2.32 × 1054, and
2.23 × 1054 respectively [76]. The total number of nucleons
computed for a canonical star are 1.53297 × 1054, 1.53281 ×
1054, and 1.53286 ×1054 respectively for NL3, G3, and IU-
FSU sets. Although the number difference appears after the
third decimal for all three forces, actually these numbers are
quite different from each other due to the order of magnitude.
It is worth mentioning that the neutron star is a big nucleus
with nucleons, electrons, and muons, which has variation
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TABLE II. The numerical values of incompressibility, symmetric energy, slope, and curvature parameter for maximum mass and the
canonical mass star of the corresponding RMF parameter sets. The maximum mass for NL3, G3, and IU-FSU parameter sets are 2.850M�,
2.004M�, and 1.940M� respectively. All the values are in MeV unit.

NL3 G3 IU-FSU

Parameter set Maximum mass Canonical mass Maximum mass Canonical mass Maximum mass Canonical mass

K star 44.956 3.934 29.480 3.590 29.827 3.389
Sstar 146.002 15.911 66.813 8.904 60.758 7.228
Lstar

sym 615.854 65.038 307.015 45.392 320.321 48.225
K star

sym −688.514 −70.534 −360.127 −44.315 −228.012 −26.282

of density with radius as shown in Fig. 3. It possesses all
properties of a finite nucleus with mass number A. The giant
monopole excitation energy controls by the incompressibility
of the nucleus [20,77,78]. Here also K star gives significant
information about the giant resonances of the neutron star.
With all the input ingredients acquired, we calculate the nu-
merical values of incompressibility, symmetry energy, and its
derivatives for maximum mass neutron star and canonical star
represented by all the three parameter sets using RMF density
functional and CDFM model. Until now, to the best of our
knowledge we did not find any work in the literature regarding
the availability of exact numerical values of nuclear matter
properties of neutron star or any theoretical model which
can endue us with such formalism. We here are explicating
the numerical values of incompressibility, symmetry energy,
slope, and curvature parameter (Table II) of a neutron star
for the chosen RMF forces, which is unaccustomed. We de-
ciphered some interesting results from the values of Table II.
We observed that the values of all the nuclear properties for
maximum mass star with NL3 is greater in comparison to
G3 and IU-FSU forces. The magnitude of incompressibility
coefficient for maximum mass star with NL3, G3, and IU-FSU
parameter sets are 44.956, 29.480, and 29.827 MeV respec-
tively. This tendency of NL3 predicting the higher values of
incompressibility and other properties for neutron star justify
its nature of stiff EoS, which has also been anticipated for
symmetric nuclear matter case [39].

Another important dimension of incompressibility is that
the incompressibility of the matter decreases with increase of
asymmetricity and density. For example, the incompressibility
of pure nuclear matter, i.e., with equal number of protons
and neutrons at saturation is 243.96 MeV for G3 set and it
is 29.827 MeV for neutron star matter, which has a large
asymmetry and density. This decreases in the incompressibil-
ity coefficient as we increase the density of the system has also
been reported in the literature [9]. The validity of a equation
of state can be solely checked by computing its incompress-
ibility coefficient. The numerical range for incompressibility
coefficient is indeed the most important quantity to calculate
as it restricts the stiffness of the equation of state of the
system by checking the compatibility of the equation of state
with causality, which require the adiabatic sound speed not
to exceed the speed of light [41]. The lowest central density
for NL3 parameter set despite being the prediction of highest
mass is the result of causality restriction, as the stiffness of
the equation of state which is related to the incompressibility
should be be compatible with causality at highest density

[13]. We realize that the maximally incompressible equation
of state can be softed by reducing the K , which in turn will re-
duce the maximum neutron star mass significantly. To inspect
the shift of incompressibility coefficient with the mass of the
neutron star, we extend the calculations for different masses
using G3 parameter set. We observe that the values of K star

with G3, as a representative parameter set, for 1.4M�, 1.6M�,
1.7M�, 1.8M�, and 2.004M� are 3.590, 5.203, 6.302, 9.163,
and 29.480 MeV respectively. However, on the other hand, the
incompressibility coefficient of the canonical star is almost
same for all the considered RMF parameter sets, given in
Table II. This particular observation of the incompressibility
coefficient seems to indicate that the value of K star is propor-
tional to the mass of the star, which sequentially depends on
the number of nucleons. A more detailed study regarding the
observance and conclusions of the correlations between the
incompressibility and mass of the neutron star is in progress
and will be published elsewhere [79].

The magnitude of the symmetry energy for maximum mass
neutron star is also a bit higher in comparison to the magni-
tude of symmetric nuclear matter at saturation density for all
the RMF parameter sets. The numerical values of symmetry
energy at saturation density for a symmetric nuclear matter
with NL3, G3, and IU-FSU forces are 37.43, 31.84, and 32.71
MeV respectively, while those for the case of maximum mass
neutron star comes out to be 146.002, 66.813, and 60.758
MeV. The values of symmetry energy for canonical star is
quite smaller in magnitude as compare to maximum mass star
of the corresponding RMF parameter set. Also, contrary to the
case of incompressibility, in spite of being the same mass of
canonical star for all the three parameter sets, the magnitude of
the symmetry energy is not equal for different parameter set.
This kind of behavior reflects the dependence of symmetry
energy on the structure and composition of the neutron star.
The incompressibility K is obtained from the derivative of
energy density with respect to density, but the symmetry en-
ergy is derived from the derivative of the energy density with
respect to asymmetry. Thus, it shows a significant variation in
the symmetry energy as compared to incompressibility. As we
can see from Fig. 2, the radius of canonical star differ for the
NL3, G3, and IU-FSU parameters, which cause the change in
Sstar for the same mass of the star.

Although there are no empirical or experimental data avail-
able to support the magnitude of the neutron star’s symmetry
energy, we know that neutron star is a highly asymmetric
dense object, so a major change in the symmetry energy with
mass is expected due to its isospin-dependent characteristics
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and the structural behavior. The unexpectedly larger value of
Lstar

sym for NL3 parameter set is also supported by the inclination
of stiff EoS of the dense matter toward higher value of slope
parameter [21]. A precise knowledge of the range of sym-
metry energy and Lsym is enough to estimate the radius of a
neutron star quite perfectly. A well-defined information about
the range of symmetry energy and Lsym is relevant to trace
a more strong and constrained correlation between the sur-
face and volume symmetry energy terms in the mass formula
[80]. The static dipole polarizability, quadrupole polarizabil-
ity, and the neutron skin thickness are closely related to the
correlation between symmetry energy and slope parameter
[80,81]. Similar to the case of Sstar, the magnitude of slope
parameter for canonical star is also significantly smaller in
comparison to the maximum mass star for the considered
RMF parameter sets. K star

sym, being the second-order derivative
of symmetry energy, is the most sensitive and ambiguous
quantity to calculate precisely. The negative magnitude of the
curvature parameter corroborated by the 1-σ constraint and
90% confident bounds on its value at saturation density of
symmetric nuclear matter, derived by Zimmerman et al. using
the observational data of PSR J0030 + 0451 and GW170817
event [25,47,68]. Although these bounds are not well suited
to discuss the curvature parameter of a neutron star, it implies
the possibility of negative magnitude and alludes to the prox-
imity range around the 90% confidence limit of astrophysical

observation data. The separation of the contribution of isovec-
tor incompressibility or curvature parameter (Ksym) from the
total incompressibility of a matter can be useful for some
teresterrial experiments related to exotic nuclei and heavy-ion
collisions [82,83]. A more confident theoretical bound on the
value of Ksym estimated by the present study through RMF
parameter sets for neutron star is a better way to tune the
experimental techniques related to isoscalar giant resonances
toward the prediction of properties related to astrophysical
objects. A more detailed study about the importance and cor-
relations of the newly introduced parameters for the neutron
star (X star) will be published in a future work [79].

Despite the deprivation of direct experimental measure-
ment or empirically acquirable data for the nuclear properties,
i.e., incompressibility, symmetry energy, etc., of the neu-
tron star, the numerical values calculated here with the help
of consolidated RMF and CDFM formalism appear justi-
fiable. The present theoretical perspective can be validated
using various consistent energy density functionals and rel-
evant RMF parameter sets. This accessibility of neutron star
properties through a finite nuclei approach favors a stronger
correlation between the two unequally sized objects. The
theoretical approach employed in this work present new
opportunities for nuclear and astrophysicists to unearth in-
formation on dense astronautical objects and exotic finite
nuclei.
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