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Quarkyonic stars with isospin-flavor asymmetry
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We suggest an extension to isospin asymmetric matter of the quarkyonic model from McLerran and Reddy
[Phys. Rev. Lett. 122, 122701 (2019)]. This extension allows us to construct the β equilibrium between quarks,
nucleons, and leptons. The concept of quarkyonic matter originates from the large number of color limit for
which nucleons have the correct degrees of freedom near the Fermi surface—reflecting the confining forces—
while deep inside the Fermi sea quarks appear naturally. In isospin-asymmetric matter, we suggest to implement
this concept within a global isoscalar relation between the shell gaps differentiating the nucleon and the quark
sectors. In addition, we impose the conservation of the isospin-flavor asymmetry for the nucleon and the quark
components. Within this model, several quarkyonic stars are constructed on top of the SLy4 model for the
nucleon sector, producing a bump in the sound speed. As a consequence, quarkyonic stars are systematically
bigger and have a larger maximum mass than the associated neutron stars. This model also predicts a lower
proton fraction at β equilibrium, which potentially quenches fast cooling in massive compact stars.
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I. INTRODUCTION

Recent observations of neutron stars (NSs) based on radio
and x-ray astronomy, or on gravitational wave (GW) detection
have provided the tightest constraints on the dense matter
equation of state (EoS) to date [1–3]. These constraints can
be classified into different groups: the first one refers to the
highest NS masses ever observed [4–9], estimated to be about
2M�, with some indications that the maximum mass could
eventually be larger [8,9]. The second group assembles con-
straints from binary NS (BNS) GW detection in the in-spiral
phase, from which the tidal deformability can be estimated
[10,11]. This latest group includes GW170817 [3] and further
detections. The third group still refers to NS mergers, or,
more specifically, to the analysis of the electromagnetic (EM)
counterpart, see, e.g., Ref. [12] and references therein. The
fourth group matters with x-ray observations, such as thermal
emission from qLMXB [13–15], x-ray burst, and photospheric
expansion [5,16], as well as x-ray emission from hot-spots at
the surface of some NS (NICER) [17].

The analysis of these new data requires setting up generic
models for the EoS, with various levels of agnosticity about
the model assumptions, such as the isospin asymmetry for
instance, or the interaction prerequisites, inducing possible
spurious constraints among observables. As an illustration, the
nuclear meta-model [18] can be used to explore predictions
in agreement with a purely nucleonic NS model (of course
with leptons as well). It can also be employed to describe of
hybrid stars (e.g., with quarks). The purpose of this paper is to
explore the interplay between nucleons and quarks in compact
stars within the quarkyonic model [19].

The quarkyonic model for dense matter proposed in
Ref. [20] (and recently applied to neutron stars in Ref. [19])

is one of them. It is an interesting candidate to bridge the gap
in the description of the transformation from nuclear to quark
matter [21]. The quarkyonic model is not properly a micro-
scopic model since it is not based on the QCD Lagrangian
or an effective version of it but implements some features
from the large number of color (Nc) limit of QCD [20] with
only two parameters. New configurations at the high- and low-
temperature limits of the holographic Witten-Sakai-Sugimoto
model have recently been interpreted as holographic realiza-
tions of quarkyonic matter in isospin-symmetric matter based
on a quark Fermi sea enclosed by a baryonic layer on momen-
tum space [22]. In the real world where Nc = 3, it possibly
approximates the actual ground state of dense matter and the
confrontation of its predictions to the data can be used to
determine the model parameters. These parameters happen
to be physical and thus meaningful: these are the quarkyonic
scale �Qyc ≈ 250–300 MeV, which is comparable to the QCD
scale �QCD, and κQyc, which controls the saturation of the
nucleonic shell [20].

The interesting feature of the quarkyonic model is that it
suggests a crossover between hadron and quark matter that
is at variance with other approaches which suggest a phase
transition and require Maxwell or Gibbs construction. Note
that a crossover is also suggested by Cooper pairing in the
many-body context. The quarkyonic crossover is thus another
example of such a feature. The present quarkyonic model
however disregards one of the essential predictions of QCD,
namely the restoration—as the density increases—of chiral
symmetry, which is spontaneously broken in the QCD vac-
uum. Note that, in the holographic approach from Ref. [22],
chirally restored and chirally broken quarkyonic matter are
constructed, and it was found that only chirally restored mat-
ter is energetically preferred. In widely used quark models
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implementing the chiral symmetry breaking, e.g., the Nambu–
Jona-Lasinio approach, the transition between the broken
phase assimilated to the hadronic phase and the restored one
assimilated to the free quark phase is, however, generally
first order (for most parameter sets). In the future, it would
be interesting to combine together—in isospin-asymmetric
matter—the phenomenology of the color gauge symmetry
realized at large Nc and the chiral symmetry dynamics, both
rooted in the QCD Lagrangian.

In the crossover region, the quarkyonic model suggests that
the pressure first increases at the onset of the first quarks,
while first-order phase-transition models usually suggest a
softening of the pressure due to the increase of the degrees
of freedom [23,24]. The consequence is the large increase of
the energy density, as well as a peaked sound speed located at
a density of about two to three times the saturation density of
nuclear matter, nsat ≈ 0.16 fm−3, as expected by some authors
[25,26].

These features are characteristic of the quarkyonic
model—however not specific, see, for instance, Ref. [27]—
and have motivated further investigations and applications to
neutron-star physics. In the original paper by McLerran and
Reddy [19], the quarkyonic matter was studied in the case
of isospin symmetry (symmetric matter, SM) as well as in
the case of neutron matter (NM). The application to neutron
stars has been performed assuming it is only composed of
neutrons, and u and d quarks within the ratio satisfying local
charge neutrality, kFd = 21/3kFu where kFd (kFu) is the d (u)
quark Fermi momentum. A version of the quarkyonic model
for isospin asymmetric matter, where the isospin asymmetry
is controlled by the chemical equilibrium, was then suggested
by Zhao and Lattimer [28]. In their model, Zhao and Lattimer
have treated nucleons and quarks as independent particles
for which the energy minimization imposes the equilibrium
between their respective chemical potential. Their quarkyonic
stellar model is able to satisfy observed mass and radius con-
straints with a wide range of model parameters. In their model,
they predicted that quarkyonic matter also tends to reduce
the proton fraction, compared with the nucleonic case. This
reduces the domain of parameters allowing the direct URCA
process [29]. According to Jeong, McLerran, and Sen [30] the
hard core in the nucleon interaction could be represented by
an excluded volume, which in turn can be related to the shell
gap controlling the crossover properties. In such a model, the
shell gap is directly controlled by the size of the hard core.
Similarly to the original paper by McLerran and Reddy [19],
this model also predicts the presence of a peak in the sound
speed at 2nsat–3nsat. It was also extended to describe three-
flavor baryon-quark mixtures, allowing the onset of strange
particles [31,32].

In this paper, we suggest another version of the quarky-
onic model for isospin asymmetric matter (AM) where we
investigate the analogy between the quarkyonic model and
the Cooper pair formation around the Fermi energy [19].
While this analogy may appear as rather simplistic, nucleons
and quarks—as suggested by the quarkyonic model—may be
viewed as two representations of the same quasiparticle exci-
tation, in a similar way as Cooper pairs and single particles
coexist in superfluids or superconductors, but in different re-

gions of the nuclear spectrum [33]. In AM, the neutron/proton
ratio in the nucleon sector and the flavor asymmetry in the
quark sector are fixed by the compound nature of the nucleons,
since n : udd and p : uud . In this regard, quarks and nucleons
are not distinguished as two independent particles for which
the energy minimization imposes an equilibrium relation, as
suggested in the quarkyonic model of Zhao and Lattimer [28].
In addition, the β equilibrium does not involve quark chemical
potentials since only nucleons are occupying the Fermi levels.
Our picture requires a new approach for the thermodynamical
construction of the phase equilibrium. The crossover, as de-
scribed in the original quarkyonic model [19], is depicted by
an isoscalar condition connecting the momenta of the quarks
and of the nucleons, while the isospin-flavor asymmetry is
fixed in the quark and the nucleon sectors. Under these two
assumptions, the model we propose describes any isospin-
asymmetric matter, from symmetric to neutron matter, as well
as matter at β equilibrium.

In our picture, there is no direct contribution of the quarks
to the β equilibrium since they do not occupy Fermi levels.
The presence of quarks, however, influences the β equilibrium
through their contribution to the nucleon chemical potentials.
This picture breaks down in the pure quark phase, which
does not occur in the quarkyonic model since there is always
a small but finite contribution of nucleons at high density.
In addition the chiral symmetry-breaking phenomenon that
generates the constituent quark mass is assumed to remain at
all density, even in the dense phases where quarks become the
dominant species. This is also an interesting suggestion from
the quarkyonic model which goes against the usual picture of
the hadron-quark phase transition based on chiral symmetry
restoration. As we stated earlier, on the one hand the quarky-
onic crossover is driven by features of QCD relying on its
gauge theory nature at large Nc, where only planar graphs
survive, whereas, on the other hand, the transition follows
the chiral symmetry restoration (property of the quark sector
only) which induces a large change of the constituent masses
and also of the baryon properties. In the future, a model unify-
ing both mechanisms in isospin-asymmetric matter would be
an interesting theoretical development.

In this paper, we suggest an extension of the original
quarkyonic model [19] for AM in Sec. II. The cold catalyzed
NS EoS—at β equilibrium—is derived in Sec. III and we
calculate NS properties in Sec. IV. We finally conclude and
suggest an outlook in Sec. V.

II. QUARKYONIC MODEL IN ASYMMETRIC MATTER

The concept of quarkyonic matter has emerged in the large
number of color, Nc, limit of QCD [20]. In this limit and when
the nucleon density nN is much larger than the QCD scale,
nN � �3

QCD, the confining potential of QCD is dominant even
though the nucleonic Fermi momentum is large, kFN � �QCD.
The concept of quarkyonic matter has been introduced in
order to resolve this apparent paradox: the ground state of
dense matter is composed of dressed quarks (with masses
�MN/3) which are freely moving deep inside the Fermi sea,
and of a shell of baryons generated by the strong confining
force, which lies close to the Fermi level [20]. Baryons occupy
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FIG. 1. Schematic views of the different Fermi seas at stake in
quarkyonic matter for SM (left) and AM (right). Quarks occupy deep
states inside their Fermi spheres while nucleons occupy the shells
close to their Fermi levels.

a momentum shell whose width is taken to be �Qyc ≈ �Qyc

[with �Qyc ∼ o(�QCD)], while deepest states are occupied by
quarks.

Even if matter is composed of nucleons and quarks,
low-energy excitations around the Fermi level involve only
quasiparticles of nucleonic type. The excitation of quarks
require the expense of a momentum of the order of the shell
width �Qyc. In this respect, nucleons and quarks are not inde-
pendent particles but are the realization of matter excitations
in well-separated energy regions. This picture is clearly illus-
trated in the left panel of Fig. 1 for SM.

In SM, this picture is simple since it is sufficient to fix
a condition between the nucleon and quark single-particle
energies EN (k) and EQ(k) to separate the deep quark states
from the nucleon states located around the Fermi level. This
condition imposes that the last quark-occupied state coincides
with the first nucleon-occupied state [19],

ENI
N

(
kFN − �Qyc

) = NcEQ
(
kFQ

)
, (1)

where kFN and kFQ are isoscalar nucleon and quark Fermi
momenta and NI means it is assumed that we use the non-
interacting self-energy. The factor Nc in Eq. (1) stands for
the number of quarks inside each nucleon in its ground state.
With this condition, the nucleon and quark degrees of free-
dom are reduced to only one free variable, which we fix
to be kFN , the nucleon Fermi momentum for convenience.
Note the absence of the potential contribution in the nucleon
single-particle energy, see Eq. (1), where NI stand for non-
interacting: ENI

N (k) = (M2
N + k2)1/2. This choice is performed

in order to avoid unnecessary complication of the model. We
further assume that chiral symmetry remains broken to set the
quark masses (Mu = Md = MQ) to MQ ≈ MN/Nc, as in the
constituent quark model.

Finally, a prescription for the thickness of the Fermi layer
where nucleons reside has to be taken. We adopt the same
relation as in the original paper [19],

�Qyc = �3
Qyc

h̄c3k2
FN

+ κQyc
�Qyc

h̄cN2
c

, (2)

with �Qyc ≈ 250–300 MeV and κQyc ≈ 0.3. �Qyc defines the
energy scale below which nucleons reside.

The concept of quarkyonic matter, however, leads to a
fundamentally new way to represent the nucleon and quark

densities nN and nQ and their associated Fermi seas. As in a
superfluid, there is only one chemical potential entering into
the thermodynamic equilibrium and which is associated with
the last nucleonic occupied state: μN = E (NB) − E (NB − 1),
where E is the total baryon energy in the ground state and
NB stands for the baryonic number which is a partition of
nucleons and quarks states. By adding or removing a baryon,
the entire Fermi sea is reorganized leading to a new partition
between quark and nucleon states, with the condition on the
number densities nB = nN + nQ. This new concept was first
applied to symmetric and neutron matter [19] and we now
suggest an extension for AM.

A. Global isoscalar relation between nucleon
and quark Fermi seas

By breaking the isospin symmetry in AM, the nucleon and
quark states are replaced by four other states: neutrons, pro-
tons, as well as u and d quarks are the natural components in
AM, where they are represented by their associated densities,
nn, np, nu, and nd . The four Fermi seas are schematically
represented in the right panel of Fig. 1. The baryon charge
density controlling SM is completed in AM by the isospin
asymmetry δN . Since there are only two conserved charges
and four particles, the concept of quarkyonic matter in asym-
metric matter requires two additional relations.

At variance with SM where nucleons and quark Fermi seas
could be defined by imposing a relation between their single-
particle energies, see Eq. (1), nothing similar can be done in
AM between the four particles. The concept of quarkyonic
matter suggests, however, the relation between nucleons and
quarks in SM, see Eq. (1), remaining globally valid in AM.
The nucleon and quark Fermi momenta in AM, kFN and kFQ ,
are represented in Fig. 1 by the red dashed circles.

Expanding the single-particle energies in Eq. (1), e.g.,
EQ(k) = (M2

Q + k2)1/2, one gets the following relation be-
tween the nucleon and quark isoscalar Fermi momenta,

kFQ = kFN − �Qyc

Nc
�

(
kFN − �Qyc

)
. (3)

Note that, in Eq. (3), we assumed that the nucleon shell
gap �Qyc is also an isoscalar quantity. Equation (3) allows
quarks to appear as soon as kFN − �Qyc > 0 independently
of the isospin asymmetry. This is supported, as we explained
previously, by the idea that exciting quarks in AM requires
an energy of the order of �Qyc irrespectively of the partition
of matter between neutrons and protons. Without an actual
solution of QCD, this assumption is the simplest one which
can be done.

The limit of NM was also explored in the original paper
by McLerran and Reddy [19]. The prescription taken there
imposes that we choose which among u and d quarks are
connected to the neutron states. In addition, the value for
�Qyc = 300 MeV considered in SM was changed to 380 MeV
in NM. In our model, �Qyc is taken constant, but the change
in the Fermi momentum between SM and NM, see Eq. (3)
[and Eq. (17) later], induces an effective modification of �Qyc

between SM and NM with the ratio 21/3, which is exactly
the same ratio considered by McLerran and Reddy [19]. In
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practice, the two approaches lead to similar results in NM.
The isoscalar relation (3) presents, however, the advantage
to describe AM and to recover the limit of SM, where the
concept of the quarkyonic matter is simple.

In summary, we remark that the isoscalar Fermi momen-
tum kFN controls both the isoscalar quark Fermi momentum
kFQ , see Eq. (3), as well as the nucleon gap from the pre-
scription (2). Hence the isoscalar nucleon density can be
determined by

nN = 2

3π2

[
k3

FN
− (

kFN − �Qyc
)3

�
(
kFN − �Qyc

)]
(4)

and the quark density by

nQ = 2

3π2
k3

FQ
�

(
kFQ

)
. (5)

The total baryon density is built upon the nucleon and quark
contributions as

nB = nN + nQ. (6)

While the isoscalar densities nN and nQ can now be cal-
culated from kFN , the connection to the densities of the four
particles n, p, u, and d are yet unknown. They are related to
the isoscalar densities from the following relation:

nN = nn + np, (7)

nQ = (nd + nu)/Nc. (8)

In the following, we suggest that the densities nn, np, nu,
and nd can be obtained in AM by imposing the isospin-flavor
asymmetry in the nucleon and quark sectors.

B. Isospin-flavor asymmetry

We now determine the particle densities. In the quarkyonic
model, there is a partition between nucleons and quarks which
evolves with respect to the density. It reveals the dynami-
cal process converting quarks into nucleons or breaking the
nucleons into their constituents, as it shall be for compound
systems. A simple way to translate this symmetry into the
nucleon and quark components is to impose the conservation
of the isospin-flavor asymmetry for both components. Since
n : (udd ) and p : (uud ), we obtain the following relations
for the quark density in nucleon matter, nnuc

u = nn + 2np and
nnuc

d = 2nn + np, which leads to the following simple connec-
tion between the isospin asymmetry parameter δN = (nn −
np)/nN in nucleon matter and the flavor asymmetry parameter
δQ = (nd − nu)/(nd + nu) in quark matter:

δN = NcδQ. (9)

This prescription can be interpreted as follows: if one creates
a pure quark matter at a given density (in an excited state)
and lets it relax towards the equilibrium state composed of
quarks and nucleons as described by the quarkyonic model,
the nucleons will be built out of the up and down quarks
initially in the quark phase. Only the weak processes involved
in the β equilibrium can modify the flavor/isospin ratio in
a global way. From SM to NM, δN goes from 0 to 1, while
δQ goes from 0 to 1/Nc. The dynamics of the crossover thus

imposes the conservation of the u and d flavor ratio in quark
and nucleon sectors.

As a side note, we are aware that the isospin-flavor
asymmetry relation (9) can possibly be violated by the two
components if the energy minimization is used. Such a refine-
ment of the quarkyonic model is indeed very interesting but
it complicates the quarkyonic approach, whose nice feature
resides in its simplicity. Further extensions of the present
model will be explored in the future, especially to analyze
their role in the predictions presented here.

Knowing δN and kFN —which fixes nN and nQ—one can
deduce all particle densities as

nn = 1 + δN

2
nN ≡ xnnN , (10)

np = 1 − δN

2
nN ≡ xpnN , (11)

nd = 1 + δQ

2
NcnQ ≡ xd NcnQ, (12)

nu = 1 − δQ

2
NcnQ ≡ xuNcnQ. (13)

The u and d quark Fermi momenta are simply related to
their densities as

k3
Fu

= 3π2

Nc
nu = (1 − δQ)k3

FQ
, (14)

k3
Fd

= 3π2

Nc
nd = (1 + δQ)k3

FQ
, (15)

since d and u quarks occupy their Fermi sphere, see Fig. 1.
The neutron and proton Fermi layers can be calculated

from the difference of two Fermi spheres with distinct radii
defined by

nn = 1

3π2

(
k3

Fn
− k3

F min
n

)
, np = 1

3π2

(
k3

Fp
− k3

F min
p

)
, (16)

where kF min
n

and kF min
p

are the lower bounds of the nucleon
shells, see Fig. 1. Injecting Eq. (4) into ni = xinN (i = n, p)
and identifying with Eqs. (16) gives

k3
Fn

= (1 + δN )k3
FN

, k3
Fp

= (1 − δN )k3
FN

, (17)

as well as

k3
F min

n
= (1 + δN )

(
NckFQ

)3
, (18)

k3
F min

p
= (1 − δN )

(
NckFQ

)3
. (19)

As a remark kF min
n

and kF min
p

can be reexpressed as kF min
i

=
(2xi )1/3NckFQ = Nc(3π2xinQ)1/3, for i = n, p.

At low densities, in the absence of quarks, kFQ = 0, neu-
trons and protons occupy entirely their Fermi spheres with
radii given by Eqs. (17). It is interesting to note the invariance
of Eqs. (17) in the presence or absence of quarks.

From here, the Fermi spheres and the Fermi shells for n, p,
u, and d particles are well defined and all thermodynamical
quantities can thus be determined, e.g., the energy of the
ground state, the pressure, the chemical potentials, and the
sound speed.
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TABLE I. Parameters of the SLy4 meta-model used in the nonrelativistic (NR) case for the description of nuclear matter and in the
relativistic case (RL), where only relativistic kinematics is considered, for quarkyonic matter.

Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym

Model MeV MeV fm−3 MeV MeV MeV MeV MeV MeV MeV m∗/m �m∗/m bsat

SLy4NR
MM −15.97 32.01 0.1595 46 230 −120 −225 400 −443 −690 0.69 −0.19 6.90

SLy4RL
MM −15.97 32.01 0.1595 46 230 −120 −225 400 −443 −690 1.0 0.0 6.90

C. Energy density and derivatives

The energy density of quarkyonic matter is given by

ρB = ρN + ρQ, (20)

where the nucleon and quark terms are given by

ρN = 2
∑
i=n,p

∫ kFi

kmin
Fi

d3k

(2π )3

[√
k2 + M2

N + VN (nn, np)
]
, (21)

ρQ = 2
∑

q=u,d

Nc

∫ kFq

0

d3k

(2π )3

√
k2 + M2

Q, (22)

with the nuclear residual interaction given by the meta-model
[18],

VN (nn, np) =
∑

α

1

α!
cα (δN )xαuα (x), (23)

where x = (nN − nsat )/(3nsat ), cα (δN ) = csat,α + csym,αδ2
N ,

and uα (x) = 1 − (−3x)N+1−α exp(−bnN/nsat ). The
coefficients csat,α and csym,α are related to the empirical
parameters, e.g., Esat ≈ −16 MeV, nsat ≈ 0.16 fm−3, and
Ksat ≈ 230 MeV in nuclear matter, considering the relativistic
extension of the meta-model (for the kinetic term only) [34].
The present calculation is based on the nucleon Skyrme
interaction SLy4, on which the meta-model is adjusted. We
consider the parameters given in Table I.

The binding energy density εB is defined by

εB(kFN , δN ) = ρB(kFN , δN ) − MN nB, (24)

and the binding energy per baryon number is

eB(kFN , δN ) = εB(kFN , δN )/nB. (25)

The other quantities, such as the chemical potentials, pres-
sure, and sound velocities are computed using the usual
definitions, see Refs. [18,35] for more details.

D. Results

In this section we compare a pure nucleonic model against
quarkyonic models with different parametrization constructed
on top of the same nucleon model. The choice of SLy4 is
influenced by the good agreement of this purely nucleonic
parametrization with most of the recent observational data,
such as the tidal deformability from GW170817 or the NICER
x-ray observation of PSR J0030 + 0451. The latest NICER
observation of PSR J0740 + 6620 may, however, contradict
the predictions of this model for massive NS [36]. We then
explore the influence of the quarkyonic model parameters
�Qyc and κQyc.

The neutron chemical potential μn, the energy per parti-
cle EB/A, the baryon pressure PB and baryon sound speed
(vs,B/c)2 are shown in Fig. 2 for SM (solid lines, δN = 0),
AM (dashed lines, δN = 0.5), and NM (dotted lines, δN = 1).
The quarkyonic model parameters are fixed to be �Qyc =
250 MeV and κQyc = 0.3. The predictions for the quarkyonic
matter (green lines) are confronted with those for the pure
nucleon matter (magenta lines). The model predictions are
stopped when causality is violated. The sound velocity in
quarkyonic matter has a peak at around nB ≈ 0.4 fm−3, as
shown in Ref. [19] for SM and NM and confirmed here for
AM. The position of the peak is almost independent of the
isospin asymmetry, but the peak is a bit more pronounced
in NM compared with SM. For the chosen parameters, the
sound speed predicted by the quarkyonic model at high den-
sity reaches a value close to the conformal limit, i.e., 1/3. The
bump in the sound speed density profile occurring in quarky-
onic matter impacts the pressure, the chemical potential, and
the binding energy. These thermodynamical quantities are
strongly increased for densities where the sound speed is
maximal, and they are softer at higher densities. The softening
is such that the pressure of quarkyonic matter crosses the
pure nucleon one at high density, see Fig. 2. The softening
of the EoS is also predicted by the usual construction of first-
order phase transitions from nucleon to quark matter, and the
interesting feature of the quarkyonic model is the stiffening
of the EoS at low densities, where it really matters for NSs,
before the softening at high density. The region of importance
for NS properties coincides mostly with the densities where
the pressure is stiff. This is the reason why this model is
particularly interesting for the phenomenology of compact
stars.

The increase of the chemical potential in the crossover
region can also be explained by the behavior of the nucleon
Fermi momentum, which can be traced down from Eq. (4)
and rewritten as

k3
FN

= 3π2

2

[
nN + N3

c nQ
]
, (26)

showing that the quark contribution to the nucleon Fermi mo-
mentum is strongly enhanced by the factor N3

c . As the density
increases, however, the quark component of matter becomes
more and more dominant and the softening actually occurs.

To conclude this first set of results, the generic features of
the quarkyonic model predicted by McLerran and Reddy [19]
are preserved in our extension of the quarkyonic model for
AM, and we can additionally predict similar features in NM
with the same parameters as those fixed in SM. Our results
are also in qualitative agreement with those found by Zhao
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and Lattimer [28] as well as by Jeong, McLerran, and Sen
[30] where different nuclear potential were used.

III. QUARKYONIC MODEL AT β EQUILIBRIUM

We now construct the β-equilibrium solutions, which de-
scribe the ground state of dense matter existing in the core
of compact stars. In cold catalyzed NS, matter composition is
determined from the β-equilibrium equations,

μn − μp = μe, (27)

μe = μμ, (28)

and charge neutrality,

ne + nμ + 1
3 nd = np + 2

3 nu. (29)

At fixed total density, these three equations allow the deter-
mination of three variables: the isospin asymmetry δN and the
electron and muon densities, ne and nμ.

Note the charge neutrality condition (29) in NM, which
becomes nd = 2nu coinciding with the relation between u and
d quark Fermi momenta, kFd = 21/3kFu, imposed in NM in
Ref. [19].

The particle fractions in dense matter are shown in Fig. 3
for the SLy4 nucleon model (magenta) and the quarkyonic
model, taking �Qyc = 250 MeV and κQyc = 0.3 (green). In
the left panel of Fig. 3 are shown only the baryonic contribu-
tions, n, p, d , and u, while in the right panel, the contributions
of the nucleons, quarks, electrons and muons are represented.
In the crossover region, neutron and proton densities are re-
duced: compare with the original nucleon model while the
amount of quarks increases. In particular, we observe a reduc-

tion of the proton fraction in the quarkyonic model such that it
remains below the dURCA threshold (�1/9% in the presence
of muons [29]).

To investigate the role of the parameters of the quarkyonic
model on the proton fraction, we show in Fig. 4 a comparison
for different choices of parameters (�Qyc, κQyc): (250,0.3),
(270,0.3), and (250,0.2). Increasing �Qyc from 250 to
270 MeV induces an increase of the proton fraction at high
density, which passes through the dURCA threshold, but at
higher density. In terms of energy density ρBc2, see right panel
in Fig. 4, the dURCA threshold is pushed even higher, since
the quarkyonic model predicts larger energy densities than the
pure nucleon one.
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FIG. 3. Particle fractions at β equilibrium for the SLy4 nu-
cleon model and the quarkyonic model taking �Qyc = 250 MeV and
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Finally, the thermodynamical properties of quarkyonic
matter at β equilibrium are shown in Fig. 5: the neutron
chemical potential μn, the total energy per particle Etot/A, the
equation of state P(ρBc2), and the total sound speed. These
results are qualitatively compatible to those shown by McLer-
ran and Reddy [19] but we do not engage in a full comparison
as our results respect the expected features of the quarkyonic
model. Note, however, a difference in the parameters, as well
as in the model in NM. The effect of varying the parameters
of the quarkyonic matter is also shown. The largest impact is
observed when the parameter �Qyc is increased from 250 to
270 MeV. Increasing �Qyc raises the onset of the first quarks

at higher density, as can also be observed in Fig. 5. As a
consequence, increasing �Qyc makes quarkyonic matter more
and more repulsive, except at low density where the larger
�Qyc the softer the EoS, as discussed previously. The effect of
changing κQyc is smaller. It was tuned in the original paper by
McLerran and Reddy [19] to the conformal limit for the sound
speed.

IV. QUARKYONIC STARS

The structure of nonrotating neutron stars is provided by
the solution of the spherical hydrostatic equations in gen-
eral relativity, also named the Tolmann-Oppenheimer-Volkof
equations [37],

dm(r)

dr
= 4πr2ρ(r),

dP(r)

dr
= −ρ(r)c2

(
1 + P(r)

ρ(r)c2

)
d�(r)

dr
,

d�(r)

dr
= Gm(r)

c2r2

(
1 + 4πP(r)r3

m(r)c2

)(
1 − 2Gm(r)

rc2

)−1

,

(30)

where G is the gravitational constant, c is the speed of light,
P(r) is the total pressure, m(r) is the enclosed mass, ρ(r) =
ρB(r) is the total mass-energy density, and �(r) is the grav-
itational field. P and ρ take contributions from both baryons
(PB, ρB) and leptons (PL, ρL).

The four variables (m, ρ, P, �) are obtained from
the solution of the three TOV equations (30) and the
EoS for the quarkyonic matter. In the present calculation,
an EoS for the crust is smoothly connected to the core
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EoS as described in Ref. [35]. The tidal deformability
�GW induced by an external quadrupole field is expressed
in terms of the Love number k2 as �GW = 2k2/(3C5),

where the compactness is C = GM/(Rc2), and k2 is cal-
culated from the pulsation equation at the surface of a
NS [10,11],

k2 = 8C5

5
(1 − 2C)2[2 − yR + 2C(yR − 1)]{2C[6 − 3yR + 3C(5yR − 8)] + 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)] ln (1 − 2C)}−1, (31)

where yR is the value of the y function at radius R, yR = y(r = R), and y(r) is the solution of the following differential equation:

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0, (32)

with the boundary condition y(0) = 2 and the functions F (r) and Q(r) defined as

F (r) = 1 − 4πr2G[ρ(r) − P(r)]/c4

1 − 2M(r)G/(rc2)
, (33)

r2Q(r) = 4πr2G

c4

(
5ρ(r) + 9P(r) + ∂ρ(r)

∂P(r)
[ρ(r) + P(r)]

)
[1 − 2M(r)G/

(
rc2)]−1 − 6[1 − 2M(r)G/(rc2)]−1

− 4G2

r2c8
[M(r)c2 + 4πr3P(r)]2[1 − 2M(r)G/

(
rc2

)
]−2. (34)

The NS moment of inertia is obtained from the slow rota-
tion approximation [38,39] as

I = 8π

3

∫ R

0
drr4ρ(r)

(
1 + P

ρ(c)c2

)
ω̄

�
eλ−�, (35)

where ω̄ is the local spin frequency which represents the
general relativistic correction to the asymptotic angular mo-
mentum � and λ is defined as exp(−2λ) = 1 − Gm/(rc2).

As usual, for a given EoS the family of solutions is
parametrized by the central density, pressure or enthalpy. The
EoS are characterized by their evolution in the mass-radius
diagram (both masses and radii of compact stars could in
principle be measured), as discussed in our introduction (see
also Ref. [40]).

We show in Fig. 6 the predictions for the mass M, radius
R, tidal deformability �GW , central density nc, binding en-
ergy Ebind, and moment of inertia I associated with various
quarkyonic EoSs with (�Qyc, κQyc): (250,0.3), (270,0.3), and
(250,0.2) (green lines). These predictions are confronted with
those for a nucleon EoS (solid magenta line).

The impact of quarkyonic matter on the mass-radius rela-
tion is huge, as already noticed in Refs. [19,30]. While the
maximum mass for SLy4 has reached at 2.03M�, the quarky-
onic stars almost reach 3M�. There is also a large impact on
the radius: the 1.4M� radius R1.4 of the pure nucleon model
is about 11.5 km, while it is pushed up to 13-14 km in the
quarkyonic model. Quarkyonic stars can therefore be much
more massive than pure nucleonic ones, and are also bigger
in size. Quarkyonic stars have also noticeably different tidal
deformabilities �GW compared with the pure nucleon case.
For the same mass, if the quarkyonic stars have larger �GW ,
and at fixed �GW , they have larger radii. At a fixed central
density, quarkyonic stars are much more massive than the
pure nucleon model we considered. This is an effect of the
repulsion observed for the pressure in Fig. 5. For the same

mass, quarkyonic stars have a slightly lower Ebind compared
with the associated nucleonic star, they however have a larger
moment of inertia.

One can estimate the influence of the parameters �Qyc and
κQyc. As observed in previous figures, the parameter κQyc is
almost not influential at all, while �Qyc is much more critical.
By increasing �Qyc, the onset of quarkyonic matter is pushed
up in density and the EoS get closer to the pure nucleon case.
The quarkyonic star also gets a bit closer to the neutron star
as �Qyc increases. The journey in the mass-radius diagram
is therefore very much controlled by the parameter �Qyc. By
decreasing �Qyc the quarkyonic star gets bigger and bigger
compared with the NS, and it gets more and more massive. In
the future, the observation of several points in mass and ra-
dius, e.g., from NICER observations, will thus be very useful
to constraint the parameter �Qyc.

Finally we discuss the dURCA threshold, represented in
the curves by the solid circle. Only the pure nucleonic case
reaches the dURCA threshold, and it happens close to 2M�.
Even the quarkyonic model with (�Qyc, κQyc) = (270, 0.3),
which satisfies the dURCA condition at high density, see
Fig. 4, reaches the unstable branch before it gets to the
dURCA density. It is thus more difficult to reach the dURCA
condition with quarkyonic stars. The same conclusion was
also obtained by Zhao and Lattimer [28] with their version
of quarkyonic matter.

We show in Fig. 7 the NS compactness defined as
(M/M�)/(R/km), where R is expressed in km, function of the
mass (left panel) and of the radius (right panel). The compact-
ness of the isolated NS RX J0720.4-3135 has been extracted
from observations and estimated to be 0.105 ± 0.002 [41].
Reporting this value on Fig. 7, we observe on the left panel
that the nucleonic EoS SLy4 suggests the mass of the pulsar
to be 1.25M�, which is compatible with observed masses but
close to their lower limit [5], while the quarkyonic model
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solid circle represents the dURAC threshold.

suggests higher masses, up to 1.43M�, which is in better
agreement with the canonical NS mass. Note that a Bayesian
exploration of nucleonic models has predicted a centroid of
about 1.33 M� [35]. This value is slightly larger than the one
obtained with SLy4 EoS, but is still lower that the canonical
mass. On the right panel of Fig. 7 the radii associated with
the observed compactness are also reported. While the SLy4
EoS favors 11.9 km, the quarkyonic stars point towards larger
radii, up to 13.6 km in the upper case. As a consequence, for a
fixed value of the compactness, Fig. 7 shows that quarkyonic
stars have larger masses and radii than pure nucleonic NS.
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FIG. 7. Compactness (M/M�)/(R/km) as function of the mass
M/M� (left) and radius (right) for various sets of the parameters �Qyc

and κQyc, see caption of Fig. 4 for more details.

The gravitational redshift zsurf associated with the radial
emission of photons from the surface, which is detected by a
distant observer, is defined as zsurf = [1 − 2GM/(Rc2)]−1/2 −
1. In Fig. 8 we show zsurf versus the stellar mass (left panel)
and versus the stellar radius (right panel). The emission
line feature of the γ -ray burst GB790305, assumed to origi-
nate from the e−e+ annihilation (observed peak at 430 keV;
linewidth 150 ± 20 keV), assuming thermal nature of line
broadening and taking due account of the thermal blueshift,
leads to the observational constraint zGB790305

surf = 0.22 [42,43],
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FIG. 8. Gravitational redshift zsurf as function of the mass M/M�
(left) and radius (right) for various sets of the parameters �Qyc and
κQyc, see caption of Fig. 4 for more details.
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which is reported in Fig. 8. From this observational data,
typical masses of the order of 1.32M� (in the low-mass range)
seems to be favored by SLy4, while the quarkyonic star built
on the same nucleonic star would point towards 1.53M�,
closer to the canonical NS mass. The radius extracted from
SLy4 would be 11.9 km, while quarkyonic star would point
towards larger radii, up to about 13.8 km.

Finally, we construct a quarkyonic model on top of a nucle-
onic model which does not reach the observational constraint
of about 2M�. To do so, we reduce the value of Zsym from
the SLy4 nucleonic model by 300 MeV compared with the
value in Table I. The nucleonic model is shown in Fig. 9 under
the label SLy4-soft (solid magenta line) while the quarkyonic
models are shown for the same three cases as before. With this
example, the crossover transition to quark matter, as described
by the quarkyonic approach, can bring enough repulsion to
reach large maximum mass, even if the model for the nu-
cleonic part cannot satisfy the observed requirement that the
maximal mass of NS should be above about 2M�.

V. CONCLUSIONS

We have proposed an extension of the original quarkyonic
model from Ref. [19] to AM, where the original quarky-
onic model for SM is recovered as a limit. Our extension
assumes (i) a description of the quark Fermi see and nucleon
shell which is globally isoscalar and (ii) a fixed isospin-flavor
asymmetry of the quark and nucleon components. These as-
sumptions are the roots of the concept of the quarkyonic
model where nucleons result from the strong confining force,
whose strength is large close to the Fermi level. The assump-

tion (i) allows us to smoothly connect to the quarkyonic model
in SM and suggests a description of NM quite comparable—at
least qualitatively—to the original one suggested by McLer-
ran and Reddy [19]. By fixing the isospin-flavor asymmetry
of the nucleon and quark components [assumption (ii)], the
properties of isospin-asymmetric quarkyonic matter can be
entirely determined from the nucleon Fermi momentum kFN

and the isospin asymmetry δN .
NS matter at β equilibrium is then calculated and provides

qualitatively similar results to those obtained with the original
model [19]. It is also in agreement with other extensions in
asymmetric matter [28,30] while being based on different
assumptions. In our model, quarkyonic stars are larger and
heavier than the associated NS, and the parameter �Qyc plays
a dominant role in changing the radii and the masses of
quarkyonic stars. This result is valid even if the nucleonic
component is soft, e.g., too soft to reach 2M�. The proton
fraction at β equilibrium is found to be reduced in the quarky-
onic matter, compared with the related pure nucleonic matter,
which potentially quench fast cooling—based on the dURCA
process—in massive compact stars. The confrontation to a set
of masses and radii, potentially obtained in future observa-
tions like NICER or gravitational wave detections of in-spiral
binary NSs, will potentially constrain �Qyc, as well as cooling
scenarios.

In the future, we aim at incorporating the quarkyonic model
in systematic comparisons with observational data in order to
better understand the properties of dense matter. A extension
of the present model to finite temperature is also on our map
for the near future, as well as improving the isospin-flavor
asymmetry relation. Also, adding chiral symmetry consider-
ation in the quarkyonic model, taking into account another
striking feature of QCD, will certainly be an interesting ex-
tension to study.
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