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We investigate the applicability of machine learning techniques in studying the finite-size effects associated
with many-body physics. These techniques have an emerging presence in many-body theory as they have been
used for interpolations, extrapolations, and in modeling wave functions. We will resolve several issues associated
with machine learning and many-body calculations such as small datasets, outliers, and discontinuities, for the
purpose of extrapolating finite calculations to macroscopic scales. We carry out a systematic investigation of
two related systems by developing metrics that aim to avoid spurious effects and capture desired features. This
work uses neural networks to extrapolate the unitary gas to the thermodynamic limit at zero range, which is
otherwise difficult to reach. The effective mass of strongly interacting neutron matter is also studied and makes
use of the noninteracting problem to resolve discontinuous predictions. For this investigation, we also carried out
new auxiliary field diffusion Monte Carlo (AFDMC) calculations for a variety of densities and particle numbers.
Ultimately, we demonstrate an effective utility for neural networks in this context.
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I. INTRODUCTION

In recent years machine learning (ML) techniques have
established themselves in quantum many-body theory as a
set of essential and promising tools for solving a diverse
range of novel and existing problems. In the study of nu-
clei, extrapolations from the no-core shell model along with
coupled-cluster calculations have been carried out to deter-
mine nuclear masses and radii [1,2]. Machine learning has
also been applied to improve computational efficiency [3–8]
and to develop computationally feasible models, like those
for wave functions [9–11]. In general, the utility provided
by these machine learning models arises from their ability
to capture underlying dependencies, allowing for data to be
interpolated and extrapolated. Despite the ability of the net-
works to generalize, special attention must often be paid to
the representation of the data through, for example, feature
engineering, to avoid misleading extrapolations [12].

The ab initio study of strongly interacting systems is often
limited by prohibitive computational costs, which constrain
calculations to finite domains, typically in terms of particle
number. In the study of the unitary gas (UG) and of neu-
tron matter (NM), these limitations arise when solving the
quantum many-body problem and prevent certain calculations
from significantly exceeding ≈100 particles. A large focus is
appropriately placed on investigating the difference between
these finite calculations and the infinite system, which are
known as the finite-size effects (FSE) [1,13–17]. For sys-
tems with a fixed density, the infinite system is referred to
as the thermodynamic limit (TL) and best describes macro-
scopic matter. In general, these deviations tend to diminish
as the number of particles rises, although the behavior is of-
ten neither smooth nor monotonic. Typically, careful analysis

is required to determine which finite particle number best
matches the TL. The ability to interpolate these dependencies
can provide great insight into the limiting behavior. Naturally,
this type of problem falls in the domain of machine learning,
and so we aim to apply those techniques to study these finite-
size effects.

The neural network (NN) has become a ubiquitous ma-
chine learning model due to its effectiveness in a variety of
problems. Such an approach takes in a set of inputs and,
through some scheme, propagates it through the layers of the
network until an output is achieved. The particular scheme
used to derive an output depends on the organization and
structure of the network, which is known as its architecture.
The internal weights used in the model are typically orga-
nized into so-called hidden layers, which vary depending on
the type of network. Feed-forward neural networks (FFNN)
have been used extensively in nuclear physics [1,2,9,12,18].
Other effective neural networks are the Boltzmann machine
(BM) [3,10,11,19] and recursive neural networks (RNN) [20].
Sometimes tailored architectures are required or are beneficial
for solving particular problems [21].

As noted, an FFNN is organized into a set of layers, where
the first layer receives input values that are propagated through
the hidden layers until an output is produced [1,22]. Each
layer is comprised of nodes that are connected to each node in
the subsequent layer. These connections are viewed as weights
since the value of a node, y, depends on the previous layer x
through a weighted sum:

y = f (w · x + b), (1)

where w and b are free parameters that can be tuned, and
f is an activation function that can be used to introduce
nonlinearities to the model. The process is iterated until the
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final output(s) are generated. Multiple hidden layers provide
a hierarchical structure to the network that can capture more
complex features; however, training these networks can re-
quire more time and care to avoid problems such as gradient
vanishing. However, one of the key properties of the neural
network is the universal approximation theorem, which states
that a single hidden layer is sufficient to approximate any
continuous function, provided the layer has a large enough
number of neurons [1,12]. Of course, it does not suggest the
ideal number of nodes in a layer or what the values of the
internal weights should be, and these must instead be found
during an optimization procedure known as training. During
this optimization procedure, the small datasets often encoun-
tered in nuclear physics can pose challenging issues.

To identify and resolve difficulties that may arise in this
context, we will be applying machine learning techniques
to two related systems. In the case of the unitary gas, we
encounter outliers and determine their impact by studying
how network predictions vary based on how much emphasis
is placed on them during training. To mitigate the negative ef-
fects of a small dataset, the technique of data augmentation is
used to increase the dataset size without significant additional
cost [1]. Other issues arise during the study of the effective
mass of strongly interacting neutron matter. We performed ad-
ditional energy evaluations using the auxiliary field diffusion
Monte Carlo (AFDMC) algorithm to generate a dataset, which
is provided as Supplemental Material in Ref. [23]. Due to
discontinuities in the dataset, the networks initially provided
spurious predictions, which could be corrected by using the
noninteracting problem. After systematically studying these
effects, TL predictions were arrived at for both problems.

II. METHODS

A. Potentials

Neutron matter plays an important role in understanding
neutron-rich nuclei and neutron stars (NS) [24,25] and it can
be described by the following Hamiltonian:

Ĥ = − h̄2

2m

∑
i

∇2
i +

∑
i< j

vi j +
∑

i< j<k

vi jk, (2)

which considers the kinetic energy, a two-body interaction,
and a three-body interaction. Higher-order considerations,
like four-body interactions, have an effect on the total energy
of the many-body system that is an order of magnitude smaller
than that arising from three-nucleon interactions [26]; thus, we
may safely ignore them. Many forms of potential exist that
capture varying aspects and levels of detail from the under-
lying nuclear interaction; typically either phenomenological
[16,27–30] or effective-field theory potentials [17,17,31–40]
are used.

In this work, high-precision calculations are carried out
for the phenomenological two-body Argonne v8′ (AV8′) and
three-body Urbana IX (UIX) potentials. The Argonne poten-
tial comprises spin, tensor, spin-orbit, and isospin operators
with radial dependencies that are tuned to a large body of
neutron-proton scattering data resulting in high-quality fits

[16,24,30,41,42]. The Urbana potential is similarly fit to light
nuclei and nuclear matter [16,43].

In the low-density regime of neutron star crusts, the poten-
tial can be effectively parametrized by the scattering length
and effective range, which greatly simplifies many consid-
erations [44,45]. Given the scale independence of the UG,
the fine details of the interatomic potential have little impact
on observables [46,47]. This universal behavior allows us to
group energy calculations from multiple potentials. Here we
employ the diffusion Monte Carlo (DMC) results reported on
in Ref. [46] as the input; these include calculations from both
the modified-Pöschl-Teller potential and the double Gaussian
potential, which are given by

vPT (r) = 4μ2
PT sech2(μPT r) (3)

and

v2G(r) = 3.144μ2
2G

(
e−μ2

2Gr2/4 − 4e−μ2
2Gr2)

, (4)

respectively, where μPT = 2/re, μ2G = 3.952/re, re is the
effective range, and r is the distance between two particles.
These potentials are essentially zero-range two-body s-wave
interactions; there is no three-body interaction [46,48].

B. Quantum Monte Carlo

Energy calculations are carried out by using Eq. (2) for
the ground-state energy through the use of quantum Monte
Carlo (QMC) algorithms [17,29,30,36,49]. Auxiliary Diffu-
sion Monte Carlo (AFDMC) is a specialization of QMC
that allows for high-precision calculations for up to about
100 particles [50–52]. The computational complexity of this
algorithm (with respect to particle number) is largely domi-
nated by wave function evaluations and limits us to studying
finite systems [25,41]. A periodic boundary condition is ap-
plied which acts to approximate the macroscopic scale. This
boundary condition is applied on a cubic box of length L
and results in the discretization of the available momentum
states such that the allowed wave vectors are given by k =
(2π/L)(nx, ny, nz ), and the n’s are restricted to integers. It
is easy to see that there exist many combinations of n’s that
lead to the same wave number/energy. At finite N , these
calculations deviate from the (otherwise unknown) TL val-
ues. These deviations are referred to as the finite-size effects
(FSE) and a systematic study is required to make claims
about macroscopic neutron matter [13–16]. As in most QMC
works, we here employ periodic boundary conditions; a more
general scheme, twisted boundary conditions, leads to distinct
behavior which would have to be separately modeled [53,54].

C. Machine learning

In a task known as supervised learning, machine learning
algorithms learn to make predictions from datasets that con-
tain labeled data [55]. This training process aims to minimize
the deviations from the predictions of a model and the dataset.
The goal here is that, in addition to reproducing the dataset,
the machine learning model is also capable of extrapolations
or interpolations. This property of generalization is essen-
tial to avoid overfitting, whereby the model fails to capture
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underlying features and is only capable of reproducing the
given examples [1,5,56].

For this work, the feed-forward neural network [1,2,55]
will be used to perform various regressions. Incidentally,
when we employ below the term “neural network” we typ-
ically refer to an ensemble of networks, generated by using
random initial conditions. The internal weights of the network
are tuned to minimize the distance between the predictions
and the dataset. This tuning occurs during a training process
that typically uses the back-propagation and gradient-descent
algorithms (and its variants) [1,22]. Our machine-learning cal-
culations will be carried out using the KERAS Python library
with a TENSORFLOW back end and using densely connected
layers.

A dataset consists of examples. Each example contains
an input and an output, which may each consist of multiple
values. Networks trained on a given dataset are susceptible
to overfitting, which describes the tendency for networks to
generate poor predictions for examples that are not included in
the training dataset (despite having a low error on the training
examples). To avoid this issue, datasets are typically divided
into a training portion and testing portion. The training por-
tion is used to optimize the internal weights, while the testing
portion is used to measure the ability of the network to gen-
eralize since the testing dataset contains novel examples. A
sophisticated version of this, known as k-fold cross-validation
[57], can be used to improve data usage during training as
is done in the UG investigation. This technique divides the
dataset into k subsets; k − 1 subsets are used during training,
while 1 subset is left out as the test set to evaluate model
performance. Since this test set can be any of the k subsets,
the results are averaged across all permutations. Meanwhile,
the effective mass will require additional considerations.

The optimization procedure attempts to determine optimal
values for the internal weights of a model that allows it to
generalize well. In addition to the internal weights of the
neural network, there are a set of hyperparameters that also
impact the predictions of the trained network. These may
include factors such as the size of the network, the number
of training iterations (epochs), and the use of a regularizer,
among others. The performance of networks with different
hyperparameters can be measured according to a prescribed
metric, like the cross-validation error. Networks that perform
well here are typically selected as those that have captured the
underlying features.

III. LEARNING THE UNITARY GAS

A. Dataset

The UG inputs we are faced with are parametrized by two
parameters: the effective range re and a finite particle number
N [46]. The effective range is typically expressed as a di-
mensionless quantity, kF re, where kF is the Fermi momentum.
Similarly, the energy E is also represented as a dimensionless
quantity ξ = E/EFG, where EFG is the energy of the free
Fermi gas.

The dataset shown in Fig. 1 demonstrates that the effective-
range dependence is strongly linear while the N dependence

FIG. 1. The unitary gas dataset plotted along with three types of
linear fits given by Eq. (5), (6), and (7), which correspond to the “in-
dividual,” “all,” and “average” fits, respectively. The effective-range
dependence is strongly linear while the particle-number dependence
is more complex. At N = 70 and N = 80, the slopes of the different
fits notably disagree almost exclusively at these points, which sug-
gests that they may be spurious.

is more complex, as noted in Ref. [46]. This is useful since
linear fits can be used to augment the dataset [1], by providing
additional points of data without much cost. Although higher-
order fits (e.g., quadratic) may have some benefit, many of the
N only correspond to two data points, and so for consistency
we will employ linear fits. The slopes and intercepts can be
determined in multiple ways:

ξindividual(kF re; N ) = S(N )kF re + b(N ), (5)

ξoverall(kF re; N ) = 〈S(N )〉kF re + b(N ), (6)

ξaverage(kF re; N ) = S(N ) + 〈S(N )〉
2

kF re + b(N ), (7)

where S(N ) and b(N ) refer to the slope and intercept of the
line that best fits through the points at a given N . The angle
bracket notation denotes the average slope across all N . Study-
ing these different fits will provide insight into the dataset. The
individual fit captures only local effects, the overall captures
only global effects, and the average attempts to capture both.
These linear fits are shown in Fig. 1. Upon comparing these,
outliers at N = 70 and N = 80 are identified. Since we are
aiming to capture large N , removing these outliers prema-
turely may be counterproductive, so determining their impact
is important.

B. Outliers

These outliers occur particularly at large N . To understand
their effect, we train networks on datasets that emphasize
different N through the means of upsampling. Let us denote
the number of data points at a given particle number in the
original dataset as Coriginal

N . We can tune the balance by linearly
interpolating according to

Cbalanced
N (t ) = tCoriginal

N + (1 − t ) max
({

Coriginal
i

})
. (8)
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FIG. 2. The dependence of the UG predictions on the dataset
weightings is shown for three different datasets. These datasets
consider all points included (left panel), an arbitrary pair removed
(central panel), and the outliers removed (right panel). The TL energy
estimates at 0 range are shown as a function of the dataset weighting
t . In general, the estimates agree within a smaller margin when t
corresponds to the original dataset (emphasis on low N), but diverge
when t corresponds to the reflected dataset (emphasis on larger N
and consequently the skewed slopes associated with the outliers).

where the second term picks the maximum number of data
points across particle numbers. There are a few key values:
t = 1 describes the original dataset, t = 0 describes a uniform
distribution, and t = −1 describes a reflected distribution. The
total counts here depend on t , which is undesired, and so the
counts are normalized according to

Cfixed
N (t ) =

⌈
F∑

N Cbalanced
N (t )

⌉
Cbalanced

N (t ), (9)

where the ceiling function is used to provide an integer count
at least as large as F ; this F is the hyperparameter controlling
the number of data points.

To isolate the effect of the outliers, we compare three
datasets that consider all N , removing the outliers at N = 70,
and N = 80, and removing an arbitrary pair (as a control).
When the distribution favors low N (near t = 1), Fig. 2 shows
that the predictions agree regardless of the fit used. However,
as the distribution shifts more emphasis towards the outliers
(near t = −1), there is a significant deviation between differ-
ent fits. This occurs very strongly in the all-in and arbitrarily
removed datasets, but not when the outliers are removed. The
rightmost panel removes the suspected outliers resulting in a
significantly reduced variance in the estimates. By contrast,
removing a similar but arbitrary pair (50, 90) does not have
this effect. This suggests that this reduced variance is due to
removing the outliers, and not just removing arbitrary points.
This suggests two things: the inclusion of the outliers does
skew the predictions when emphasis is placed on them, and
the original distribution (t = 1) does not provide a sufficient
emphasis on the high N to capture the associated effects. It is
therefore appropriate to remove the outliers and use a uniform
distribution for training.

C. Removing pairs

So far, we have only validated this effect against a single
arbitrary pair being removed. To solidify this, we will gen-
eralize this procedure to multiple other pairs. For a fixed F ,
the datasets have three parameters: the linear fit form, the
removed pair, and the balance parameter t . To measure the
variation in predictions due to the different fits s, we take the
difference between the maximum and minimum predictions
for a network trained with a given pair N removed,

s(N ) = max
t, f

[ξ f (N , t )] − min
t, f

[ξ f (N , t )], (10)

where ξ f (N , t ) is an energy prediction, t ∈ [−1, 1], and f ∈
{individual, overall, average} is the fit form used.

Unfortunately, this would require a large number of net-
works to be trained. To simplify this, we turn to Fig. 2 to
construct a surrogate function which is easier to evaluate, but
still captures the spread. Since the energy predictions tend to
increase steadily from t = 1 to t = −1 we evaluate only at
these anchor points, which loosely captures half of the total
spread, now defined as

s(N ) ≡ max
f

[ξ f (N ,−1)] − min
f

[ξ f (N ,+1)]. (11)

This only requires six networks to be trained per removed pair
and is shown in Fig. 2.

To estimate the spread associated with a given particle
number (instead of a pair), one of the particle numbers in the
pair is fixed to N . Then, the spread is averaged over a set of
values for the other particle numbers N∗,

Z (N ) ∝
∑
N∗

s({N, N∗}). (12)

The influence on the spread for each particle number is shown
in Fig. 3. At N = 70 and N = 80 the spread is significantly
reduced. Thus we can claim that specifically removing the
outliers has a unique effect and so they are removed.

D. Hyperparameter optimization and predictions

Having isolated and controlled small sample effects, we are
now capable of carrying out a hyperparameter optimization.
The individual fit will be used to augment the dataset since the
other linear fits have served their purpose of identifying the
outliers. The hyperparameters under consideration are train-
ing dataset size, number of epochs, and hidden layer size.
(A single “epoch” is when the whole dataset has been used
once; it is standard to randomly select individual samples from
the entire dataset many times over, i.e., for multiple epochs.)
The training dataset size corresponds to F , noting that the
actual count CF

N (t ) gets rounded up according to the ceiling
in Eq. (9), and is then further split into a training and testing
dataset.

Performing the grid search depicted in Fig. 4, we find that
epochs between 5000 and 10 000, and hidden units around 50
have saturated performance.

The training size requires further investigation since it has
confounding effects. Ultimately, as the number of interpolated
points increases arbitrarily, the training and testing set end up
being strongly correlated. This means that increasing the value
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FIG. 3. To verify that the pair of outliers identified in Fig. 2
has a unique effect we study the removal of different pairs from
the dataset. Networks are trained on different datasets, each with an
arbitrary pair removed. The spread is averaged over predictions for
pairs containing N , which produces the values shown in the figure,
according to Eq. (12). There is a significant reduction at both N = 70
and N = 80, which suggests that the outliers do uniquely skew the
predictions.

of F beyond a certain point no longer provides an independent
test. With the other hyperparameters fixed, we can perform
TL, 0-range predictions while varying the dataset size to iden-
tify signs of overfitting. This is done in Fig. 5 which identifies
overfitting for F � 5000 and underfitting for F � 1000. This
leaves the optimal network to have F ≈ 2000.

The final step is to extract the TL, 0 range prediction from
our optimal networks, which works out to be ξ = 0.389(1).
There have been many calculations for the UG due to its great
importance to many-body physics. Calculations are generally
carried out as upper-bound estimates which have steadily de-
creased over time [58–60]. Reference [46], whose raw data we
employed as input for the present study, used simpler extrapo-
lation techniques to arrive at the value 0.3897(4). The current
leading theoretical value made use of a very large lattice
calculation to arrive at 0.372(5) [15,58]. Earlier experiments

1k 5k 10k
10

50

100

1k 5k 10k 1k 5k 10k 1k 5k 10k 1k 5k 10k

F=200 F=500 F=1000 F=2000 F=5000

FIG. 4. The relative fivefold cross-validation error for various
hyperparameters is shown, where darker color indicates poorer per-
formance. There are three parameters under consideration: each
subplot contains a different dataset size F , with the number of
training epochs along the bottom, and the number of hidden units
along the vertical. In all cases, the performance stops improving after
about 50 hidden units. For dataset sizes that are sufficiently large,
the performance plateaus after about 5000 epochs. The consistent
improvements resulting from increasing the dataset size has a con-
founding effect, which is discussed in the main text.

0 50 100 150 200 250 300
N

0.37

0.38

0.39

0.4

0.41

0.42

ξ

F=5000
F=2000
F=1000
PT
2Gauss

FIG. 5. A set of predictions from optimized neural networks
(solid bands) trained on different dataset sizes, F , ordered in the
caption the same way as in the plot itself at N = 100. These are
plotted alongside the original dataset (dotted) which is linearly ex-
trapolated to 0 range. The outliers at N = 70 and N = 80 are hollow
to denote that they were removed, as discussed in Sec. III D. The
kink at N ≈ 140 in the black curve (solid) is evidence of overfitting;
meanwhile the inability of the F = 1000 curve (forward slash) to
capture the peak at low N is evidence of underfitting. The prediction
from F = 2000 (backward slash) is thus selected as the optimal
network.

predicted values above 0.39 [61,62], but have recently been
improved to 0.376(4) [63]. Through additional considerations
for the uncertainty involved, this estimate was lowered even
further to 0.370(5)(8) [64], in close agreement with the theo-
retical value. These calculations tend to predict lower energies
than these network predictions, but this is not unexpected,
given that DMC obeys a variational (i.e., upper bound) prop-
erty. The networks do well to interpolate the provided dataset,
which provides upper bound estimates on the true energy.

IV. LEARNING THE EFFECTIVE MASS

A. Dataset

The effective mass arises in Landau Fermi liquid theory
(LFLT) [65] and can be directly related to observables like
the specific heat of neutron matter [66]. It can be extracted by
studying the dispersion relation for an excited particle in NM,
as done in Ref. [67] and Ref. [25]. The quasiparticle energy
�E (kT L )

T L is related to the momentum k2
TL through the dispersion

relation

�E (kT L )
T L = h̄2k2

T L

2m∗ , (13)

where m∗ is the effective mass. The subscripts “TL” refer to
the notion that these quantities make use of an extrapolation
prescription derived in Ref. [67], which aims to reduce FSE.
Despite this reduction, Eq. (13) still depends on the number
of particles in our simulation, N , and so the FSE must still be
studied.

At a given N , we consider a system in its ground state and
the associated energy, EN . To probe the dispersion relation,
we also consider adding a particle to this system in an excited
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FIG. 6. Interpolations predicted by the networks for the extrap-
olated quasiparticle energy �E (kTL )

TL (top panel) and extrapolated
momentum k2

TL (bottom panel) expressed in MeV, at a density of
0.05 fm−3. Both networks are trained on the same domain for con-
sistency, although we show more points for the momentum since it
is analytic. In both panels, the predictions (dashed) and calculated
values (dots, solid) for the first four excited states are shown, in-
creasing from bottom to top. Both extrapolated quantities have a
similar dependence, which is generally captured by the networks. As
expected, the discontinuities are not captured. However, since both
models experience this same bias, the discontinuous predictions are
resolved in the fit calculation for the effective mass.

state of momentum k and the associated energy of the system,
E (k)

N+1. To access the TL behavior of these systems, the extrap-
olation prescription can be applied to both the energy and the
momentum. The extrapolated momentum can be expressed in
terms of single-particle states:

k2
TL = k2 − k2

F,N + k2
F

=
(

2π 3

√
n

N

)2

n̄2 −
(

2π 3

√
n

N

)2

n̄2
◦ + (3π2n)2/3, (14)

where n̄◦ and n̄ are the integer momenta for the ground state
and excited state, respectively, not to be confused with the
particle number density, n. Certain momentum values are
inaccessible, due to the periodic boundary condition imposed
in QMC, resulting in the discontinuities found in Fig. 6. The
quasiparticle energy is given in Ref. [25] as

�E (k)
N = E (k)

N+1 − EN + 2
5ξEF , (15)

where ξ is the Bertsch parameter, and EF is the Fermi energy.
The extrapolated version of this, �E (kT L )

T L can be expressed in
terms of the extrapolated momentum, a constant offset, and a
potential energy term:

�E (kT L )
T L = �U (k)

N + 2

5
(ξ − 1)EF + h̄2k2

T L

2m
, (16)

where �U (k)
N is the difference in potential energy between

both systems. The FSE introduced by this energy term are
not large since, in neutron matter, the kinetic energy tends to
be the dominant FSE contribution due to the small effective
range of the interaction. In Fig. 6, this is evident since the

difference from the momentum is small. The discontinuities
common to both the energy and momentum are due to the
discretized nature of the available momentum states.

The effective mass is extracted from a linear fit between
these quantities, according to Eq. (13). At a given density
and particle number, the dispersion is studied by considering
different excited states. To probe near the Fermi surface, as
done in Ref. [25], four excited states are used in the fit. The
quasiparticle energy is an interacting quantity and is therefore
limited by QMC to finite N . By contrast, the momentum is
a noninteracting quantity and can be computed for arbitrarily
large systems.

In the ML task, the mapping to learn for the energy is

(N, n)
energy networks−−−−−−−−→ {

�Ee
T L

}4

e=1, (17)

where the superscript e labels the ordering of excited states,
and n again corresponds to the density.

The machine learning task is to interpolate these calcula-
tions to extract the underlying particle-number dependency.
This mapping naturally suggests a FFNN with two inputs
and four outputs. Alternate schemes may consider breaking
the mapping into individual excitations; however, this would
lose shared information between the different excited states.
This notion of feature engineering, whereby the structure of
the inputs/outputs is selected with the aim of simplifying the
model’s learning task, is important to consider when perform-
ing extrapolations [12].

Since the momentum is a noninteracting quantity, it
can be calculated to very large N . However, spurious ef-
fects are introduced in the fitting procedure if these are
used. Networks tend to smooth the predictions and strug-
gle with the discontinuities shown in Fig. 6. The training
dataset for the quasiparticle energy contained evaluations
for N ∈ [1, 2, 3, 4, 5, 6, 7, 19, 27, 33, 45, 57, 70] and n ∈
[0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2]. Dur-
ing the fitting procedure, the mismatch between the energy
and momentum continuities results in spurious predictions, as
shown in Fig. 7.

The solution here is to separately train networks to learn
the momentum and join those results with the energy during
the fit, as shown in Fig. 7. For the momentum, the mapping to
learn is

(N, n)
momentum networks−−−−−−−−−−→ {

ke
T L

}4

e=1. (18)

Fitting Eqs. (17) and (18) as per Eq. (13) provides an effective-
mass prediction. Alternative formulations that attempted to
resolve these discontinuities included the use of custom loss
functions, and the use of transfer learning to initialize the net-
works with noninteracting trends. Ultimately, the momentum
networks were required and sufficient. The hyperparameter
optimization here is more difficult than in the UG case, since
there are additional considerations for the two networks and
the different features they may capture. For this, we will seek
additional metrics.

B. Selecting similar networks

The discontinuous effective-mass predictions can be re-
solved by training networks to learn both the energy and
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FIG. 7. The effective masses predicted by neural networks at
a density of 0.05 fm−3 are contrasted for two fit methods. These
predictions constitute an interpolation, since this density was not
included during training. In the top panel, the energy predictions
are fit to the analytic momentum, which results in discontinuities.
In the bottom panel, the energy predictions are fit with predictions
from a separate network that was trained on the momentum, which
resolves the discontinuities. The smoothing effects shared by both
network predictions eliminate the discontinuities in the fits. At low
particle numbers, the effective-mass predictions are more sensitive to
the large energy/momentum values (shown in Fig. 6) which results
in more variability. At high N , the predictions begin struggling to
extrapolate and must contend with the larger QMC error.

momentum N dependence, and combining the results in a fit.
Since the energy and momentum networks are independent,
different details may be captured between the two. While we
expect the energy and momentum trends to differ according
to Eq. (16), the ability of the networks to capture these details
may vary depending on the hyperparameters associated with
each network. So, both network types are trained under a
variety of hyperparameters, but in contrast to the UG, the test-
ing error is not a sufficient metric. Ultimately, the prediction
quality depends on the combination of networks, whereas the
testing error provides an independent metric. This can cause
issues since two networks with similar testing errors may
perform better/worse at different regions, resulting in a fit that
could potentially be poor along the whole domain. To combat
this, we aim to construct a selection criterion that identifies
networks that capture similar features.

The energy and momentum dependencies experience dis-
continuities due to the discrete momentum states; however,
the effective mass does not. In fact, the effective mass is
relatively constant as shown in Fig. 7. The claim that the
effective mass is constant would be too strong, however the
effective-mass predictions should have a low variance across
N . At a given density, we can evaluate the variance to define
the disagreement factor D as a metric for the quality of a
prediction:

D ≡ Var

({
m∗

m
(n, N )

}Nhigh

N=Nlow

)
, (19)

2 4 6 8
-ln(D)
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FIG. 8. The effective-mass predictions m∗/m as a function of the
disagreement factor D for a density of 0.04 fm−3 (left) and 0.18
fm−3 (right) for networks with various hyperparameter settings. This
contrasts with the effect of increasing density; the networks at a
lower density are more variable than those at higher densities. This
is likely due to the reduced energy scale, which requires increased
precision. Regardless of the density, there is a common trend that the
network predictions limit towards some value as the disagreement
factor decreases. At each density, the bottom 10% (the rightmost
portion) are selected to calculate an effective-mass statistic, as done
for Fig. 9. These networks averaged their predictions over the domain
N ∈ [0, 130].

where n is the number density, and the variance is evaluated
over particle numbers N ∈ [Nlow, Nhigh]. This interval is used
to exclude particle numbers where QMC and/or the networks
may perform poorly. The predictions in the intermediate re-
gions are generally stable, but may vary near the extremes. To
identify possible boundary effects, we consider two domains:
N ∈ [0, 130], and N ∈ [40, 120]. The effective-mass predic-
tions averaged over a given interval are used as a statistic.
The effective-mass predictions from networks with lower dis-
agreement factors have best captured the overall dependence
and are therefore used to generate an estimate. In general, the
effective-mass predictions tend to converge to some value as
the disagreement factor increases as shown in Fig. 8. Each
point on this plot corresponds to a pair of neural network
ensembles and their associated set of hyperparameter values.
The average prediction of networks with disagreement factors
in the lowest 10% is chosen as a statistic. At lower densities,
the network predictions are less consistent. The networks may
be struggling due to the difference in scale between higher and
lower densities.

C. Predictions for density dependence

We now have a systematic procedure for training neu-
ral networks to predict effective masses that are continuous.
The use of both energy and momentum networks resolved
the discontinuous predictions, and the disagreement factor
was used to assess the effective-mass prediction quality. The
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FIG. 9. Network predictions for the effective mass m∗/m as a
function of number density n along with raw AFDMC calculations
for N = 66. The blue dashed trend (which matches the raw calcu-
lation at the lowest density) shows predictions from networks with a
single hidden layer, while the orange dotted trend uses networks with
two equally sized hidden layers. These predictions were averaged
over the domain N ∈ [0, 130]. Overall, the agreement between the
networks is quite good.

predictions are averaged over a domain which is then used as
an effective-mass statistic at a given density. This procedure
can be repeated for a variety of densities as done in Fig. 9. We
consider comparisons between different averaging domains
and the effect of multiple hidden layers. In general, the agree-
ment between all the predictions is quite good and they tend
to agree within error.

Predictions at the lowest densities experience the high-
est variance. Networks trained on the larger domain (N ∈
[0, 130]) tend to capture the overall effects with less uncer-
tainty than the smaller domain. Although a network with a
single hidden layer can in theory approximate a function as
well as a multilayered network, we would like to determine
if multiple hidden layers may capture particular effects. To
investigate this, we consider networks with two hidden layers
of the same size. The predictions are similar, but tend to differ
in subtle effects.

As a comparison to previous work, the effective-mass pre-
dictions of Ref. [25] take the AFDMC calculation at N = 66
as the estimate for each density. There is a good amount
of overlap between the predictions and these raw estimates.
In addition to the use of neural networks to carry out this
regression analysis, another significant contrast is that this
work makes use of many particle numbers to provide a den-
sity estimate. For these reasons, the networks are expected
to have captured additional details that would otherwise be
missed. The networks are able to interpolate between den-
sities and particle numbers and so effects like the slightly
higher effective masses predicted by the networks at higher

densities are expected to be better descriptions of the overall
behavior.

V. SUMMARY & CONCLUSION

We trained feed-forward neural networks on two related
nuclear systems to study finite-size effects through machine
learning techniques to understand potential issues, demon-
strate techniques to resolve them, and improve predictions.
The difficulty of carrying out high-precision calculations
through QMC restricts our datasets to small sizes. We found
the technique of data augmentation effective to mitigate these
issues, although some care was required to account for in-
troduced correlations. Despite increasing the number of data
points available, the accuracy of the model still depends on the
quality of the original dataset. Outliers can skew the data, but
due to the scarcity of data, we take care to demonstrate their
negative impact before justifying their removal. After vali-
dating the dataset, a hyperparameter optimization was carried
out by using k-fold cross validation. The optimized networks
were able to produce TL estimates for the zero-range limit
of the UG, that were not trivial to access directly in a QMC
approach.

Networks can also struggle with other dataset effects, like
discontinuities. They tend to predict smooth trends and strug-
gle to capture sudden jumps. This smoothing bias introduces
an inconsistency between the energy and momentum that was
remedied by independently training networks to predict the
associated momentum; as long as both quantities experienced
similar behavior, the fitting process resulted in a continuous
effective-mass prediction. The notion of network disagree-
ment was introduced to identify networks that satisfied this
property. Following this, the networks were trained on data
resulting from raw AFDMC energy calculations, which are
given as Supplemental Material in Ref. [23]. The TL density
dependence of the effective mass for networks with single
and double hidden layers were compared to raw calculations
stemming from previous work.

Overall, we have found that neural networks provide a ver-
satile tool that allows one to capture finite-size effects for both
ground-state and excited-state properties. This is especially
important when there is no a priori analytic expectation of
what the N-dependence should be, as is often the case for
strongly interacting systems. As seen in the results reported
on in this work, it is possible to use machine learning to fold in
the entire N dependence, without having to invoke simplifying
approximations.
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