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Critical point and Bose-Einstein condensation in pion matter
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The Bose-Einstein condensation and the liquid-gas first-order phase transition are studied in the interacting
pion matter. Two phenomenological models are used: The mean-field model and the hybrid model. Free model
parameters are fixed by fitting the lattice QCD data on the pion Bose condensate density at zero temperature. In
spite of some minor differences, the two models demonstrate an identical qualitative and very close quantitative
behavior for the thermodynamic functions and electric charge fluctuations. A peculiar property of the considered
models is an intersection of the Bose-Einstein condensation line and the line of the first-order phase transition at
the critical endpoint.
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I. INTRODUCTION

The Bose statistics [1] and Bose-Einstein condensation
(BEC) phenomenon [2] were predicted almost hundred years
ago. The BEC can take place in equilibrium systems of non-
interacting bosons when a macroscopic part of all particles
begins to occupy a single zero-momentum state. This was
approximately realized experimentally in atomic systems at
very small temperatures and particle number densities [3–6].

The BEC can also happen in condensed matter, nuclear
physics, astrophysics, and cosmology (see, e.g., Refs. [7–15]).
In most of these situations, particle interactions should be
taken into account. If both the attractive and repulsive inter-
actions between particles are taken into account, the system
reveals the first-order liquid-gas phase transition (FOPT) and
the critical endpoint (CP). Therefore, the two phenomena—
BEC and CP—can be expected for interacting bosons.

Pions are three pseudoscalar mesons π+, π0, π− that obey
the Bose statistics, thus, an emergence of the BEC of pions
is possible. The BEC can take place during the cooling of the
early Universe [16], in the gravitationally bound pion stars
[17–19], or as a nonequilibrium phenomenon in heavy-ion
collisions [8,9,20]. It has been also predicted to occur at large
isospin (electric) chemical potentials [21,22]. This sugges-
tion has been studied in quantum chromodynamics (QCD),
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a theory of strong interactions. A presence of the BEC was
supported by recent first-principles lattice QCD simulations
[23,24]. The Bose condensate (BC) of pions was observed at
low temperature, T < m, and large electric (isospin) chemical
potential, m < μ < 2m, where m is the pion mass (in what fol-
lows we use an approximate value m = 140 MeV, neglecting
a small difference between the masses of neutral and charged
pions). In this specific region of the (μ, T ) phase diagram the
QCD matter is expected in a form of the interacting pions.
The heavier hadrons and/or quark-gluon degrees of freedom
are expected to be suppressed at T � m and not too large μ.

Various approaches to a description of the pion matter
were developed: Chiral perturbation theory [25,26], the linear
sigma model [27,28], the Nambu–Jona-Lasinio model [29]
or Polyakov-loop extended quark-meson model [30,31], func-
tional renormalization group [32,33], hard thermal loops [34],
self-interacting mean-field theory [35], etc.

The influence of particle interactions on the thermody-
namic properties was also considered within the S-matrix
formulation of statistical mechanics [36]. In particular, the
attractive and repulsive interaction from hadron-hadron scat-
terings were discussed in a number of works [37–41]. A
possibility of the BEC in the pion system with zero chemi-
cal potential was also discussed using a Skyrme-like model
including both attractive and repulsive interactions [14,35,42].

A description of the repulsive and attractive interaction
in statistical systems of hadrons is often performed in terms
of the following phenomenological approaches: Mean-field
approximation, effective-mass model, excluded volume ap-
proximation, etc. The mixtures of these approaches are also
used. For example, a famous Walecka model [43] for nuclear
matter describes repulsive interactions in terms of the mean
field U (n) being a linear function of nucleon number density,
and attractive interactions in terms of the effective nucleon
mass. These different phenomenological models belong to
the same universality class, the so-called “classical models”
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[44] (the names “mean-field models” and “van der Waals-type
models” are also used). These classical models lead to very
similar description of the FOPT and CP (see, e.g., Ref. [45]).
The models from the same universality class for the CP can
however lead to rather different consequences for the BEC.
This was discussed in Ref. [39] where only the repulsive parts
of interactions were taken into account.

In Ref. [46] the effective mass model with φ4 attractive
and φ6 repulsive interaction was studied. It was found that
both phenomena, FOPT and BEC, take place. An additional
peculiar feature of the model was an observation that the CP
belongs to the line of the BEC. How do these features of the
pion matter depend on the specific model used in Ref. [46]?

This question motivates the present studies. We discuss two
other phenomenological descriptions of the pion matter. The
first model considers both attractive and repulsive interactions
in terms of the mean field U (n) depending on the pion num-
ber density. The second “hybrid” model treats the repulsive
interactions as the mean field, and the attractive interactions
in terms of the effective pion mass m∗(T, μ) < m. We first fit
the lattice QCD (lQCD) data at zero temperature and finite
isospin chemical potential μ to fix the model parameters.
Then, thermodynamic functions and electric (isospin) charge
fluctuations are calculated in the (μ, T ) plane.

Intensive measures of the electric charge fluctuations, the
scaled variance, skewness, and kurtosis, appear to be very
sensitive to a presence of the CP and the BEC. The paper
is organized as follows: The ideal Bose gas of pions is con-
sidered in Sec. II. The two phenomenological models of the
interacting pion matter are discussed and compared in Sec. III.
A summary in Sec. IV closes the paper.

II. IDEAL PION GAS

The ideal pion gas (IdPG) is described in the grand canon-
ical ensemble by the pressure function [47]

pid (T, μ) =
∑

i=+,0,−
pid (T, μi )

= −
∑

i=+,0,−

1

2π2

∫ ∞

0
dkk2 log

×
[

1 − exp

(
μi − √

k2 + m2

T

)]

=
∑

i=+,0,−

1

6π2

∫ ∞

0
dk

k4

√
k2 + m2

fk (T, μi ), (1)

where integration by parts was used.
The chemical potential μ corresponds to the electric charge

conservation,

μ+ = μ, μ0 = 0, μ− = −μ, (2)

and

fk (T, μi ) =
[

exp

(√
k2 + m2 − μi

T

)
− 1

]−1

, (3)

is the Bose momentum distribution. The particle number den-
sities of the ith sort of pions equals

nid
i (T, μi ) =

(
∂ pid
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)
T

= 1

2π2

∫ ∞

0
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The electric charge density is calculated as

nQ(T, μ) =
(

∂ p

∂μ

)
T

= nid
+(T, μ) − nid

−(T,−μ), (5)

and the number density of all pions is∑
i=+,0,−

nid
i (T, μi )

= T m2

2π2

∞∑
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1

l
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[
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(
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)]
, (6)

where K2 is the modified Bessel function.
The inequality |μ| � m should be satisfied in the IdPG. An

onset of the BEC occurs at |μ| → m − 0. The condition nQ =
nQ(T, |μ| = m) defines then a line TBC = TBC(nQ) denoted
further as the BEC line. Under this line at T < TBC(nQ) there
is a region with a nonzero BC. In what follows we consider
μ � 0. It leads to n+ � n0 � n− and nQ = n+ − n− � 0,
where n+, n0, and n− denote the number densities of π+, π0,
and π−, respectively. The results for μ � 0 can be obtained by
interchanging π+ and π−. A line of the BEC TBC(nQ) for the
IdPG corresponds to μ → m − 0. It is shown in the (nQ, T )
plane in Fig. 1(a).1 At this line there is an onset of the π+
BEC. Under this line nonzero values of the π+ BC are formed.
The total pion number density (6) should be then modified at
T < TBC(nQ),

n =
∑

i=+,0,−
nid

i (T, μi ) + n+
BC, (7)

where n+
BC � 0 corresponds to the BC of π+. At T → 0 all

thermal densities (4) vanish. Thus, n = nQ = n+
BC at T = 0,

i.e., at zero temperature the pion system consists from the
pure BC of π+. A dashed line in Fig. 1(a) shows the BEC
line for only one sort of pions, i.e., for π+. It gives a good
approximation of the general case with all three types of
pions. This is because n− � n+ on the BEC line TBC(nQ).
Therefore, an analytic behavior of the TBC(nQ) at TBC/m � 1
corresponds approximately to the well-known textbook result
for one sort of nonrelativistic bosons [44]:

TBC(nQ) ∼= 2π

m

(
nQ

ζ (3/2)

)2/3

, (8)

where ζ (3/2) ∼= 2.612 is the Riemann zeta function. Correc-
tions to Eq. (8) from π− are small, as seen from Fig. 1(a).
Relativistic corrections to Eq. (8) at T/m � 1 are considered
in Ref. [9]. The ratios n0/n+ and n−/n+ along the BEC line
are shown in Fig. 1(b). The inequalities n+ � n0 � n− re-
main valid on the BEC also for the interacting pion matter. An
intensive measure for fluctuations of the electric charge

1In the figures of the present paper we use dimensionless variables
with the pion mass m as the energy scale.
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FIG. 1. (a) A line of the BEC TBC for the ideal pion gas as a function of electric charge density nQ is shown by a solid line. A dashed line
shows the same function when the π− presence is neglected. (b) Ratios of the π 0 and π− number densities to that of π+ in the IdPG on the
BEC line as functions of TBC.

Q = N+ − N− is the scaled variance

ωQ = 〈Q2〉 − 〈Q〉2

〈Q〉 , (9)

where N+ and N− are the total numbers of π+ and π−, respec-
tively, and 〈. . .〉 denotes the grand canonical averaging. In the
IdPG it takes the following form:

ωid
Q = T

nQ

(
∂nQ

∂μ

)
T

= nid(T, μ) + nid (T,−μ)

nQ

+ 1

2π2nQ

∫ ∞

0
dkk2[ f 2

k (T, μ) + f 2
k (T,−μ)

]
. (10)

When μ = m the function fk (T, μ = m) is proportional to
k−2 at k/m � 1. The integral

∫ ∞
0 k2dk f 2

k (T, μ = m) becomes
thus divergent at the lower limit as k−2. Therefore, the scaled
variance ωQ becomes infinite on the BEC line. At μ → m − 0,
the electric charge fluctuations show an anomalous behav-
ior ωQ ∝ V 1/2 in the finite volume V . This leads to infinite
values of ωQ on the BEC line [8,9]: ωQ ∝ (m − μ)−1/2 at
μ → m − 0 in the thermodynamic limit V → ∞. It happens
due to the BEC of π+ and is rather similar to a behavior of the
ideal Bose gas for one sort of particles. Under the BEC line
an additional contribution ωC from the BC n+

BC > 0 should be
added to ωQ (10). It behaves as [9]

ωC = V
(n+

BC)2

3nQ
(11)

in the large finite system and goes to infinity in the thermo-
dynamic limit V → ∞. It should be noted that the scaled
variance (9) cannot be applied at μ → 0. It becomes mean-
ingless in this limit as 〈Q〉 → 0. At 〈N+ − N−〉 = 0 the other
fluctuation measure 〈(N+ − N−)2〉/〈N+ + N−〉 is usually used
to describe the charge fluctuations.

III. INTERACTING PION GAS

In this section, two phenomenological models for the
repulsive and attractive interactions in the pion matter are
considered.

A. Mean-field model

The mean-field model for the system of interacting pions
is given by the following set of self-consistent equations:

p(T, μ) =
∑

i=+,0,−
pid(T, μ∗

i ) +
∫ n

0
dn′n′ dU (n′)

dn′ , (12)

n(T, μ) =
∑

i=+,0,−
nid

i (T, μ∗
i ) + n+

BC, (13)

μ∗
i = μi − U (n), (14)

where U (n) is the mean field that describes pion interactions,
μi in Eq. (14) is given by Eq. (2), and n+

BC in Eq. (13) is
the BC density of π+ that can attains nonzero values when
the BEC condition μ∗ = m is fulfilled. A second term on the
right-hand side of Eq. (12) corresponds to the so-called excess
pressure that makes Eqs. (12)–(14) be thermodynamically
self-consistent (see, e.g., Ref. [48]). The mean-field potential
U (n) will be taken in the following form:

U (n) = −An + Bn2, A > 0, B > 0, (15)

where constants A and B correspond to the attractive and
repulsive interactions, respectively. In the model with mean
field the BEC can take place at both μ < m, for U (n) < 0,
and μ > m, for U (n) > 0. For the potential U (n) given by
Eq. (15) these conditions correspond to small and large val-
ues of n, respectively. At T = 0 the pion system can only
exist in the form of the π+ BC. A condition of the BEC,
μ − U (n+

BC) = m, leads to the following solution for n+
BC:

n+
BC(T = 0, μ) = A +

√
A2 + 4B(μ − m)

2B
. (16)

The system pressure at T = 0 is given by a second term in the
right-hand side of Eq. (12):

p = −A

2
(n+

BC)2 + 2B

3
(n+

BC)3
. (17)

At small μ the system exists in the “gaseous” phase with n =
0 and p = 0. At some μ = μ0 there is the FOPT. According to
the Gibbs criteria, the pion BC density jumps to the “liquid”
phase with n+

BC = n0 > 0 and the pressure p = 0. This FOPT
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FIG. 2. (a) A fit of the LQCD data [17,23] of the n+
BC at T = 0 as a function of μ in the mean-field model. A solid line shows the results

with A and B given by Eq. (21), the dashed line corresponding to A = 0 when attractive interactions are neglected, and the dotted vertical line
presenting the IdPG results, i.e., when both A = 0 and B = 0. The leading order of the chiral perturbation theory χPT from Ref. [21] is shown
by a dashed-dotted line. A green box corresponds to the μ0 and n0 values of the pion matter ground state. (b) The ratio of p to pid as functions
of T for μ = 0. A solid line corresponds to the mean-field model for p with the parameters (21), a dashed line corresponds to the hybrid model
discussed below.

takes place at

n+
BC = 3A

4B
≡ n0, (18)

where the liquid pressure (17) equals zero, and the chemical
potential μ0 found from Eq. (16) is

μ0 = m − 3A2

16B
, (19)

which defines also the ground-state binding energy per pion

W ≡ ε

n0
− m = − 3A2

16B
. (20)

At μ > μ0 the BC n+
BC as a function of μ is defined by

Eq. (16). In Fig. 2(a) the fit of the Monte Carlo lattice data for
n+

BC at T = 0 with Eq. (16) is presented. The fitting parameters
A and B are fixed as

A = 0.05m−2, B = 1.30m−5. (21)

With these parameters one finds

n0
∼= 0.029m3 ∼= 0.01 fm−3, (22)

W ∼= −0.00036m ∼= −0.05 MeV. (23)

This ground state of the pion BC looks rather rarefied and
weakly bounded when it is compared with the ground state of
the nuclear matter, nnuc

0
∼= 0.16 fm−3 and Wnuc

∼= −16 MeV.
In Fig. 2(b) the ratio of the pressure of interacting pion gas
to that of the IdPG is shown by a solid line as a function of
T at μ = 0. The effects of the repulsive interaction suppress
the pion pressure, p < pid, and they are seen at large T .
The repulsive effects are still rather moderate and correspond
approximately to the excluded volume corrections with rather
small hard-core pion radius r ∼= 0.13 fm. Tiny effects of the
attractive interactions are only seen at small T where p >

pid. Note that our modeling concerns the nonresonance part
of the pion-pion interactions. These interactions contribute
to the n+

BC(μ) at T = 0 presented in Fig. 2(a). At μ = 0 a
contribution of these nonresonance residual pion interactions

to the thermodynamic functions are small. There are almost
no chances to observe them in hadron statistical equilibrium
models using the data on heavy-ion collisions. This is because
of |μ| � m in the equilibrium systems created in heavy-ion
collisions. Previous suggestions to observe the BEC in heavy-
ion collisions assumed a large values of μ ≈ m for all three
types of pions due to chemical nonequilibrium effects [8,9].

The mean-field model with free parameters A and B was
discussed in Ref. [35] for μ = 0. Several interesting phe-
nomena, including BEC, can take place in this case due
to large attractive interactions, A � Acr = 2(Bm)1/2. The re-
quired large values of the parameter A are, however, fully
unrealistic ones, Acr is about 45 times larger than the A given
by Eq. (21). These large values A � Acr are in a strong contra-
diction with lattice data at T = 0. In contrast with the μ = 0
case, at large μ ∼= m and μ > m the small pion interactions
are, however, crucially important. A vertical dotted line μ =
m in Fig. 2(a) presents a behavior μ = m in the IdPG. As seen
from Fig. 2(a) the IdPG behavior is far away from the lattice
data. A dashed line in Fig. 2(a) presents the model results
at A = 0, i.e., when only repulsive interactions are included.
Both fits, with A > 0 and A = 0, are of the similar quality
with χ2 per degree of freedom (dof) ∼= 2. This fact means a
dominant role of the repulsive interactions. The lattice data
at T = 0 presented in Fig. 2(a) cannot give indisputable esti-
mates of the parameter A. Similar conclusions were made in
Ref. [46].

The lattice data shown in Fig. 2(a) defines the value of
parameter B rather accurately but gives only some restrictions
from above for A. Thus, a presence or absence of the FOPT
remains as an open question. In Fig. 2(a) a dashed-dotted
line presents the π+

BC calculated using the leading-order chiral
perturbation theory χPT in Ref. [21]. This model being in good
agreement with the lattice data for π+

BC at T = 0 does not in-
clude the FOPT and predicts a second-order phase transition.

In the mean-field model, the BEC line is defined by the
condition μ = m + U (n). At U (n) > 0, one thus observes
μ > m. The BEC line TBC(n) is approximately a universal
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FIG. 3. (a) The phase diagram of the pion matter in the mean-field model with parameters (21) on the (nQ, T ) plane. The left and right
binodals are shown by solid lines, the BEC line by a dashed line. A green box denotes the ground state with nQ = n0 and T = 0, and a red star
denotes the CP with Tc

∼= 0.21m. (b) The same as in panel (a), but for the (μ, T ) plane.

function of particle number density2 and remains the same as
for the IdPG where U (n) = 0. This is valid for U (n) > 0 in
the region with no FOPT. At A = 0 there is no FOPT and the
BEC line TBC(nQ) look almost the same as for the IdPG shown
in Fig. 1(a). A behavior of the electric charge fluctuations ωQ

(10) is, however, drastically changed on the BEC line and
under this line due to a presence of the repulsive mean-field
interactions. As will be seen below, in contrast to the IdPG,
the scaled variance ωQ becomes finite at all nQ > 0 due to the
repulsive interactions.

The phase diagram of the interacting pion gas is shown in
Fig. 3. For A > 0 and B > 0 the considered mean-field model
reveals the FOPT. The mixed-phase region is constructed by
the standard Gibbs procedure: When several solutions exist
for the pressure function p at the same T and μ values, the
physical solution corresponds to that with larger value of p.
The line of the FOPT in the (μ, T ) plane corresponds to
the equal pressures of gaseous small density and liquid large
density solutions.

Figures 3(a) and 3(b) present the phase diagram on the
(nQ, T ) and (μ, T ) planes, respectively. A line of the FOPT in
the (μ, T ) plane starts at μ = μ0 and T = 0, and it ends at the
CP T = Tc and μ = μc. The ground-state point and CP point
for the model parameters (21) are shown in Fig. 3 by a green
box and red star, respectively. A region of the mixed gas-liquid
phase is bounded by the left and right binodal curves that
are shown in Fig. 3(a). At T < Tc, the pion system inside
the mixed phase is an inhomogeneous mixture of a rarefied
gas and a dense liquid. The electric charge density nQ of
the pion matter is then given by a linear combination of the
gaseous phase with ng

Q < nQ lying on the left binodal, and
the liquid phase with nl

Q > nQ lying on the right binodal. The
right liquid binodal of the mixed state includes n+

BC > 0 while
the conditions for the BEC are not fulfilled in the left gaseous
binodal. At T → 0, one obtains ng

Q → 0 and nl
Q = n+

BC, i.e.,

2This is an exact result for one sort of bosons in the mean-field
model (see, e.g., Ref. [7]).

the gaseous phase has vanished, and the liquid phase consists
of the π+ BC. A peculiar property of the model is a position
of the CP lying on the BEC line. This is similar to the results
of Ref. [46] and is a consequence of the smallness of the
attractive forces in the pion matter. We checked that, for A
larger than some critical value, the BEC line intersects a line
of the FOPT at the triple point T = Ttr < Tc. Such a behavior
was found for the interacting α matter in Ref. [7].

We compare the mean-field model with the lattice QCD
results [17,49] at T > 0. Figures 4(a) and 4(b) present, re-
spectively, a position of the BEC line in the (μ, T )-plane
and nQ as a function of μ at T = 124 MeV. One observes
a good agreement with the lattice QCD data in Fig. 4(a) at
not too large T . At T > 100 MeV meson resonances give
a substantial contribution to the thermodynamic observables.
These degrees of freedom are absent in the present version
of the mean-field model. This point will be a subject for
future studies. To estimate the resonance contribution to nQ

we calculate the nρ
Q value that comes from a presence of

noninteracting ρ± mesons in the pion system:

nρ
Q = n+

ρ − n−
ρ

= gρ

2π2

∫ ∞

0
k2dk[ fk (T, μ; mρ ) − fk (T,−μ; mρ )], (24)

where gρ = 3 and mρ
∼= 775 MeV. A dashed line in Fig. 4(b)

presents a sum of nQ value in the interacting pion system
and nρ

Q contribution (24) from the ideal ρ-meson gas. We
introduce the quantities (i = +, 0,−)

ωi = 1 + 1

2π2nQ

∫ ∞

0
dkk2 f 2

k (T, μ∗
i ), (25)

which are equal to the scaled variances of the IdPG, ωid
i , but

with shifted chemical potentials μi → μ∗
i .
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FIG. 4. (a) A comparison of the BEC line in mean-field model at T > 0 with the lQCD data [17]. (b) The charge density nQ from the
mean-field model and the lQCD data [49] at T = 124 MeV. A dashed line includes additional contribution (24) to nQ from ρ± mesons. Vertical
dotted lines indicate μ = m.

One finds an explicit expression for ωQ (see the Appendix):

ωQ = T

nQ

(
∂nQ

∂μ

)
T

= n+ω+ + n−ω−
nQ

− 1

nQ

(dU/dn)(n+ω+ − n−ω−)2

T + (dU/dn)(n+ω+ + n−ω− + n0ω0)
, (26)

where ni ≡ nid
i (T, μ∗

i ).
Approaching the BEC line, i.e., at μ∗

+ → m − 0, the ωi

values demonstrate the following behavior: ω+ → ∞ while
both ω0 and ω− remain finite. This leads to the result on the
BEC line:

ωQ = T

nQ

[
dU

dn

]−1

+ n0ω0 + 4n−ω−
nQ

. (27)

If A = 0 the value of dU/dn is always positive at n > 0.
Thus, in contrast to the IdPG, the scaled variance ωQ on the
BEC line becomes finite due to the repulsive interactions.
This conclusion remains also valid for A > 0 at TBC(nQ) >

Tc where dU/dn > 0. It can be also shown that the scaled
variance ωQ is continuous across the BEC line. For A >

0 the CP becomes the endpoint of both the FOPT line
and the BEC line. When T → Tc along the BEC line the first
term on the right-hand side of Eq. (27) goes to infinity, and,
thus, the second finite term gives a negligible contribution
to ωQ. A relative contribution of this second term increases
monotonically with increasing TBC(nQ) along the BEC line.
It still remains small for the discussed region of the system
temperature.

Note that ω0
∼= 1, ω− ∼= 1, and n0 < n+, n− � n+. At Tc <

TBC(n) < 0.8m the relative contributions to ωQ (27) from each
term n0ω0/nQ and 4n−ω−/nQ are smaller than 3%. Neglecting
these small contributions to ωQ one obtains an expression

ωQ
∼= T

n+

[
dU

dn+

]−1

. (28)

It corresponds to the mean-field model result for one particle
species n = n+ (see, e.g., Ref. [39]).

At the CP, dU/dn = 0 and ωQ according to (27) goes to
infinity. For U (n) given by Eq. (15) the condition dU/dn = 0

gives the pion number density n = nc and the chemical poten-
tial μ = μc at the CP:

nc = A

2B
, μc = m − A2

4B
= μ0 − A2

16B
. (29)

The critical temperature is calculated numerically as Tc
∼=

0.21m ∼= 28 MeV. At the CP one also finds n+ � n0 and
n+ � n− [see Fig. 1(b)]. Therefore, the electric charge density
at the CP is approximately

nc
Q

∼= nc = 2
3 n0. (30)

A behavior of ωQ on the (μ, T ) plane is shown in Fig. 5.
Approaching the CP by any path, one observes ωQ → ∞. At
nQ > 0 this is the only point on the phase diagram with infinite
value of the scaled variance ωQ. Most interesting regions of
the phase diagram are μ ∼= m and μ > m. These are regions
of the FOPT and the BEC. For these two phenomena both
the repulsive and attractive interactions between pions play a
crucial role.

B. Hybrid model

Another phenomenological model considered in our paper
is constructed by combining the two frameworks: The mean
field U (n) = Bn2 to describe the repulsive interactions (the
same as in the mean-field model considered in the previous
section) and effective pion mass m∗(T, μ) < m for attractive
ones. It resembles the Walecka model [43] for the symmetric
nuclear matter. A principal difference, however, is the Bose
statistics for interacting pions instead of Fermi statistics for in-
teracting nucleons. There are also some technical differences.
For example, we consider quadratic repulsive mean field Bn2

instead of the linear function of the nucleon number density
in Walecka model. The considered model for interacting pion
matter will be called the hybrid model and is defined by the
following equations:

p =
∑

i=+,0,−
pid (T, μ∗

i ; m∗) + 2

3
Bn3 − (m − m∗)2

2A
, (31)

n =
∑

i=+,0,−
nid (T, μ∗

i ; m∗) + n+
BC, (32)

μ∗
i = μi − Bn2, m∗ = m − Ans, (33)
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FIG. 5. The scaled variance ωQ (26) on the (μ, T ) plane in the mean-field model. The lines, green box, and red star symbols are the same
as in Fig. 3.

where the scalar density

ns = m∗

2π2

∫ ∞

0

k2dk√
k2 + m∗2

∑
i=+,0,−

fk (T, μ∗
i ; m∗) + n+

BC.

(34)

At T = 0 one obtains

p = −A

2
(n+

BC)2 + 2B

3
(n+

BC)3
, (35)

μ∗ = μ − B(n+
BC)2, (36)

m∗ = m − An+
BC, μ∗ = m∗. (37)

Equations (35)–(37) give the functions μ = μ(n+
BC ) and p =

p(n+
BC) that are identical to the corresponding expressions for

the mean-field model with U (n) given by (15) and considered
in the previous sections. Therefore, these two models are
identical at T = 0, and free model parameters of the hybrid
model will be taken as in Eq. (21). At T > 0 the models are
not identical. However, all conclusions concerning the FOPT
and BEC are the same for the both models. Even more, the
numerical values of Tc and μc in the hybrid model are also
approximately equal to those in the mean-field model. This is
shown in Fig. 6(a). Because of these reasons we do not present
nQ(T, μ) and ωQ(T, μ) for the hybrid model. These results
are very similar to those in Figs. 2 and 3 for the mean-field
model. The ratio m∗/m is shown on the (μ, T ) plane for the
hybrid model with parameters (21) in Fig. 6(b). This ratio is
slightly smaller than unity, but rather close to it. This corre-
sponds to the small attractive effects in the hybrid model. In
a nonrelativistic approximation one finds ns

∼= n and observes

a straightforward correspondence of the effective mass m∗ to
the attractive part of the mean-field potential −An:

√
(m∗)2 + k2 ∼= m∗ + k2

2m∗
∼= m − An + k2

2m
, (38)

(m − m∗)2

2A
∼= 1

2
An2. (39)

Nevertheless, some differences between these two models
can be found. For example, the ratio of the pressure function in
the hybrid model to pressure of the IdPG at μ = 0 is shown as
a function of T by a dashed line in Fig. 1(b). The two models
with the same A and B parameters lead to different p = p(T )
functions.

C. Fluctuations of higher orders

Electric (isospin) charge susceptibilities χ j in the grand
canonical ensemble defined as ( j = 1, 2, . . .):

χ j = ∂ j (p/T 4)

∂ (μ/T ) j . (40)

Susceptibilities are derivatives of the thermodynamic poten-
tial and give, therefore, additional important information of
the equation of state. Particularly their values are very sen-
sitive to both the CP and BEC phenomena. Some ratios of
the susceptibilities (40) are well known and used to quantify
the fluctuations of conserved charges. Most familiar of these
measures are the scaled variance ω, skewness Sσ , and kurtosis
κσ 2 (see, e.g., Ref. [50]):

ω = χ2

χ1
, Sσ = χ3

χ2
, κσ 2 = χ4

χ2
. (41)
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FIG. 6. (a) The FOPT and BEC lines in the mean field and hybrid models on the (T, μ) plane. A dotted line presents the pure repulsive
interaction (A = 0) when the FOPT is absent. (b) The m∗/m ratio on the (μ, T ) plane.

In this section the results for Sσ and κσ 2 are pre-
sented within the hybrid model with parameters (21). These
fluctuation measures are presented in Figs. 7(a) and 7(b), re-
spectively. The results of the mean-field model are essentially
the same. At small chemical potential μ � m and not too
large T the pion densities are small. In this case both the
pion interaction and Bose statistics effects can be neglected.
It gives Sσ ∼= 1 and κσ 2 ∼= 1, which corresponds to the ideal
classical gas limit. Both these measures strongly deviate from
these baseline values of the ideal Boltzmann gas at μ ∼= m and
μ > m. This is due to a presence of the FOPT and the BEC
effects, respectively.

Skewness. The skewness Sσ is presented in Fig. 7(a).
This measure attains both positive and negative values on the
(μ, T ) plane. The positive values correspond to those regions
of the phase diagram where n+

BC = 0. The skewness Sσ has a
discontinuity along the BEC line and jumps to negative values
in the phase with the BC n+

BC > 0. At the CP, Sσ shows the
singular behavior: It can go to both −∞ and +∞ depending
on the path of approaching to the CP. When crossing the
FOPT there is a discontinuity of Sσ from positive values in
the gaseous phase to the negative ones in the liquid phase.

Kurtosis. The kurtosis κσ 2 in the (μ, T ) plane is shown in
Fig. 7(b). The considered models demonstrate only positive
values κσ 2 > 0 for the whole (μ, T ) plane. This is in contrast
to the universal behavior of fluctuations in the Ising model, as
well as in various phenomenological model calculations (see,
e.g., Ref. [35], and references therein), where negative values
of κσ 2 are observed in the so-called analytic crossover region
above the critical temperature. The large but finite values of
the kurtosis are generally obtained in a vicinity of the BEC
line with a discontinuity to smaller values on the FOPT and
BEC line at increasing μ. The singular behavior with κσ 2 →
∞ takes place at the CP. The values of the kurtosis remain
large with κσ 2 � 1 even far away from the CP. This is due to
a large sensitivity of the higher-order fluctuations to the CP.

IV. SUMMARY

Thermodynamic properties of the interacting pion matter
are studied in the two phenomenological models: The mean-
field model with the potential U (n) and the hybrid model. The
potential is chosen as a function of the pion number density
U (n) = −An + Bn2 and includes both the repulsive Bn2 and

FIG. 7. The skewness (a) and kurtosis (b) in the hybrid model (see text for details).
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attractive −An interactions. The hybrid model assumes the
same repulsive mean-field potential Bn2, while the attractive
interactions are described by the effective mass with the ex-
cess pressure −(m − m∗)2/(2A) similar to that in the Walecka
model for interacting nucleons [43]. Model parameters A > 0
and B > 0 are fixed by fitting the lattice QCD data on the BC
pion density at T = 0 as a function of the chemical poten-
tial μ. At zero temperature, both considered models become
identical to each other. Thus, the fitting procedure at T = 0
leads to the same set (21) of the A and B parameters. The
two phenomena—the BEC and the FOPT with the CP—take
place in the pion matter. In spite of some minor differences,
the two model demonstrate an identical qualitative and very
close quantitative behavior for the thermodynamic functions
and electric charge fluctuations in the whole (μ, T ) plane.
Note that the qualitative features found in these two models
are also in agreement with the results obtained in Ref. [46].

The interaction parameters A and B (21) found from fitting
the lattice data correspond to rather moderate interactions in
the pion matter. At μ = 0 these interactions are completely
unimportant in the pion thermodynamics. It should be empha-
sized that the mesonic resonances as a part of the pion-pion
interactions are not included in our consideration. The residual
nonresonance pion-pion interactions are, however, crucially
important at μ ∼= m and μ > m.

If A > 0 and B > 0, both models demonstrate the FOPT
with a position of the CP at μc

∼= m and Tc
∼= 28 MeV. The

BEC line merges to the CP. At T < Tc only the liquid (dense)
pion phase includes the BC n+

BC > 0, while n+
BC = 0 in the

gaseous (rarefied) phase.
In the ideal pion gas, the scaled variance of electric charge

fluctuations becomes infinite on the BEC line and under this
line. In contrast with this ideal-gas behavior, a presence of the
repulsive interactions makes ωQ a finite and continuous func-
tion. The only point of anomalous electric charge fluctuations
is the CP. At the CP both the scaled variance ωQ → ∞ and
kurtosis κσ 2 → ∞. The skewness Sσ has a more complicated
behavior. It can go to both +∞ and −∞ depending on the
way of approaching the CP. A special feature of the considered
models is an absence of negative values of the kurtosis. The
negative values κσ 2 < 0 usually happen in a crossover region
near the CP. These negative values are absent in the considered

models of the pion matter. This is because of the fact that two
phenomena—an onset of the BEC and the CP—take place at
the same point.

Both the FOPT and BEC are mainly defined by π+ mesons.
A presence of π− and π0 mesons give only moderate numer-
ical corrections and does not change the qualitative properties
of the pion matter at μ ∼= m and μ > m.

The critical point in the system of interacting pions can
be searched in lQCD. The lattice simulations should focus on
direct computations of the charge fluctuations measures and
include some “small” temperatures between 0 and 50 MeV,
i.e., in a vicinity of the hypothetical critical point.
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APPENDIX: DERIVATION OF EQ. (26)

In the Appendix we present a proof of Eq. (26). The deriva-
tive ∂nQ/∂μ can be calculated as

T
∂nQ

∂μ
= (n+ω+ − ω−n−)

∂μ∗

∂μ
+ 2ω−n−. (A1)

One then finds

∂μ∗

∂μ
= 1 − 1

T

dU

dn

[
(n+ω+ + n0ω0 + n−ω−)

∂μ∗

∂μ

− n0ω0 − 2n−ω−], (A2)

and thus

∂μ∗

∂μ
= 1 − (dU/dn)(n+ω+ − n−ω−)

T

+ (dU/(dn)(n+ω+ + n0ω0 + n−ω−). (A3)

Substituting ∂μ∗/∂μ in Eq. (A1) from (A3) one obtains
Eq. (26).
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