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Unfolding the effects of final-state interactions and quantum statistics in two-particle
angular correlations
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Angular correlations of identified particles measured in ultrarelativistic proton-proton (pp) and heavy-ion
collisions exhibit a number of features which depend on the collision system and particle type under consid-
eration. Those features are produced by mechanisms, such as (mini)jets, elliptic flow, resonance decays, and
conservation laws. In addition, of particular importance are those related to the quantum statistics (QS) and
final-state interactions (FSIs). In this paper we show how to unfold the QS and FSI contributions in angular
correlation functions by employing a Monte Carlo approach and using momentum correlations (femtoscopy),
focusing on pp reactions. We validate the proposed method with PYTHIA 8 Monte Carlo simulations of pp
collisions at

√
s = 13 TeV coupled to calculations of QS and FSI effects with the Lednický and Lyuboshitz

formalism and provide predictions for the unfolded effects. In particular, we show how those effects modify
the shape of the angular correlation function with emphasis on pions and protons. Most importantly, specific
structures observed in the near-side region for both baryon-baryon and baryon-antibaryon pairs, originating
from the strong interaction, are unveiled with the proposed method.

DOI: 10.1103/PhysRevC.104.054909

I. INTRODUCTION

Collisions of ultrarelativistic protons and heavy ions al-
lows one to study the quantum chromodynamics (QCD) with
unprecedented precision. Various tools can be used to gain
insight into the underlying processes governing them. In this
paper we focus on angular correlations which can be em-
ployed to access the particle production mechanism.

Two-particle correlations measured as a function of rela-
tive pseudarapidity �η = η1 − η2 and azimuthal angle �ϕ =
ϕ1 − ϕ2 (where indices “1” and “2” denote the two parti-
cles of the pair) are referred to as the angular correlations.
They are sensitive to a number of physical mechanisms,
such as (mini)jets, elliptic flow, Bose-Einstein or Fermi-
Dirac quantum statistics (in the case of identical bosons
or fermions), resonance decays, conservation laws, etc., al-
lowing to study both short- (limited in phase space) and
long-range (event wide) effects. Each of these mechanisms
manifests differently in the global angular correlation pic-
ture. However, a typical correlation function, observed in
proton-proton (pp) collisions, can be characterized by the
presence of a near-side peak, an away-side ridge, and
an underlying correlation originating from the momentum
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conservation. The influence of those mechanisms which mani-
fest in elementary particle collisions is schematically shown in
Fig. 1.

Studies of pp collisions at
√

s = 7 TeV performed for
identified hadrons by the ALICE Collaboration at the Large
Hadron Collaboration revealed that the global correlation
shape changes for different particle species [1]. In partic-
ular, correlations of baryon-baryon pairs (combined with
antibaryon-antibaryon ones) in pp collisions qualitatively
differ from the correlations of two mesons and baryon-
antibaryon pairs. They exhibit only a depletion around
(�ϕ,�η) ≈ (0, 0), similar to correlation arising from the
momentum conservation only and lack typical near- and
away-side structures originating mainly from (mini)jets. The
main conclusion from Ref. [1] is that the correlation pattern
remains very similar for pp ⊕ pp, p� ⊕ p�, and �� ⊕ ��

pairs. Thus, the final shape of the correlation function may
be connected to the intrinsic nature of baryon production.
Moreover, none of the observed two-baryon correlations agree
even qualitatively with PYTHIA [2] (various tunes of versions
6.4 [3,4] and 8 [5,6]) and PHOJET [7] simulations with mod-
els predicting a correlation with jetlike near- and away-side
structures for those pairs.

The ALICE Collaboration results have been later followed
up by STAR Collaboration measurements in Au-Au collisions
in the beam energy scan (BES) program at the Brookhaven
National Laboratory Relativistic Heavy Ion Collider [8]. In
that case, the two-particle correlation was measured as a func-
tion of rapidity difference �y = y1 − y2, instead of �η. In
particular, the near-side depletion is also visible in Au-Au
collisions across BES collision energies [8]. However, for√

sNN = 200-GeV data, it is convoluted with the underlying
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FIG. 1. Schematic of the angular correlation function
C(�η,�ϕ) showing contributions from various correlation
sources.

flow correlation, which produces specific near- and away-side
ridges.

Recent theoretical developments suggest that the quark
coalescence process may be responsible for the presence of
this effect in ALICE Collaboration and STAR Collabora-
tion data [9,10], whereas others suggest that we are lacking
some fundamental insight into baryon production in the string
model [11].

ALICE Collaboration and STAR Collaboration results
reveal yet another interesting observation. In two-proton
correlations an additional small peak convoluted with the
depletion at exactly (�ϕ,�η) = (0, 0) is visible in ALICE
Collaboration data, whereas the pp correlation from the STAR
Collaboration also exhibits a depletion around (�ϕ,�η) ≈
(0, 0), although much narrower with respect to the baryon-
baryon case. Both structures, the small peak in pp and the
depletion in pp correlations, are postulated to originate from
the strong final-state interaction (FSI). Verification of this
hypothesis is one of the goals of this paper.

The strong final-state interaction in relativistic particle col-
lisions is studied by using the technique of femtoscopy, that
is, the measurement of two-particle correlations as a function
of the pair relative momentum [12]. In recent years this tech-
nique has proven to be a robust tool allowing for a precise
determination of the strong FSI for various hadron-hadron
pairs both in elementary and heavy-ion collisions, see, i.e.,
Refs. [13,14].

Both angular and femtoscopic correlation functions are
measured experimentally. The effects of quantum statistics
(QS) and FSI are well studied and understood in the case of
the femtoscopic representation; however, their contribution to
the angular correlation function is less clear. In this paper we
propose a Monte Carlo procedure that links the angular corre-
lation function with momentum correlations and employs the
femtoscopic formalism to unfold the strong interaction com-
ponent in the angular space. We demonstrate and validate the
procedure with PYTHIA simulations, coupled to the Lednický

and Lyuboshitz [15] formalism for the calculation of the QS
and FSI effects [15–17] and present how the strong interaction
component manifests in the angular space for both baryon-
baryon and baryon-antibaryon cases. For reference, we also
study correlations of same and opposite-charge pion pairs
where the Bose-Einstein QS and Coulomb FSI are significant
ingredients, respectively.

II. DEFINITION OF TWO-PARTICLE
CORRELATION FUNCTION

In general, the two-particle correlation function (CF) can
be defined as a ratio of the conditional probability of observ-
ing two particles simultaneously, divided by the product of
probabilities of observing them independently,

C(p1, p2) = P1,2(p1, p2)

P1(p1) · P2(p2)
, (1)

where p1 and p2 denote momenta of the first and second
particles in the pair, respectively [18]. Such a definition is
valid for any representation of the two-particle CF [18].

In the experiment the CF is then defined as a ratio of dis-
tribution of pairs constructed from the same collision (“same
events”), usually referred to as the “signal distribution, divided
by a distribution of pairs of particles where each particle
comes from a different event, usually referred to as the “back-
ground distribution,” which is the basis of the so-called “event
mixing” technique [12].

In order to conveniently analyze the CF defined in Eq. (1),
calculations are performed in various representations, depend-
ing on the physics mechanism under study, which leads to the
reduction of dimensions in data processing. For instance, the
angular correlations are expressed as a function of �η and
�ϕ, and femtoscopic correlations are frequently expressed as
a function of the magnitude of the half of the pair relative
momentum k∗ = |k∗|, which is equal to the first particle’s
momentum in the pair rest frame (PRF) where the pair center
of mass is at rest (p1 = −p2).

In general, each physics mechanism being a correlation
source influences all representations; however, different ef-
fects are pronounced to the varying degree depending on the
representation. For example, those related to QS and FSI and
studied using the technique of femtoscopy in the momen-
tum representation also exhibit specific shapes in the angular
representation. Similarly, jets are frequently studied in the
angular correlation representation, but they are also present
as a prominent background with a dependence on k∗ in the
femtoscopic representation.

In this paper we concentrate on the effects of QS and FSI,
and via the femtoscopic formalism investigate their contribu-
tion to the overall angular correlation shape.

III. DESCRIPTION OF DATA SIMULATION

A. Choice of the Monte Carlo model

In order to perform calculations proposed in this paper,
an event generator is needed. In elementary particle colli-
sions, such as pp, PYTHIA [2] is one of the most successful
general-purpose models used to calculate the dynamics of
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particle collision at ultrarelativistic energies. Therefore, it is
a natural choice for this paper. It includes perturbative QCD
calculations for interactions at high momentum transfer and
phenomenological models for the description of the processes
in the low-momentum regime. For modeling of the hadroniza-
tion process the Lund string fragmentation approach [19] is
employed. The Bose-Einstein QS effects are implemented in
PYTHIA [20,21] as well, however, by default, they are switched
off [5]. In this paper a more complete description of QS and
FSI is employed as discussed in Sec. III B, and, therefore, this
option is not used.

In this paper PYTHIA version 8.4 [5] Monash tune [6] is
used for simulation of pp collisions at

√
s = 13 TeV center-

of-mass energy. A total number of 12 × 108 minimum-bias
events were simulated and used for calculation of the correla-
tion functions.

B. QS and FSI afterburners

None of the Monte Carlo event generators includes a com-
plete description of the effects related to QS and FSI [22,23].
Hence, so-called “femtoscopic afterburners” are used to intro-
duce them a posteriori.

As described in Ref. [18], in theoretical modeling proba-
bilities in Eq. (2) can be expressed using respective single-
and two-particle emission functions. For instance, probability
to emit a particle pair from given space-time points with
a given momentum can be expressed using the emission
function S(k∗, r∗), where r∗ = x1 − x2 is the separation vec-
tor between space-time emission points x1 and x2 of the
first and second particles in the pair, respectively. It is also
referred to as the “source function.” In general, it should
contain all physics processes, including those related to QS
and FSI; however, since models do not account for them one
can assume their independence from the emission process.
This yields the following form of the CF in the momentum
representation [24,25]:

C(k∗) =
∫

S(k∗, r∗) |�(k∗, r∗)|2d4r∗, (2)

where S(k∗, r∗) is the two-particle source emission function
and �(k∗, r∗) is the pair wave function. The pair wave func-
tion depends on the QS and FSI effects between particles
forming pairs under consideration and their kinematic prop-
erties [15,16]. Therefore, for each pair, the modulus square of
the pair wave function is calculated as an additional weight.
In the case of the equal emission times of both particles in
PRF it is represented by the Bethe-Salpeter amplitude which
coincides with a stationary solution of the scattering problem
with reversed time direction in the emission process [17].
The mathematical procedure of calculating such weights, re-
ferred to as the Lednický and Lyuboshitz [15] formalism, is
described in Appendix.

PYTHIA does not provide the space-time emission points
of final-state particles; therefore, the form of the S(k∗, r∗)
has to be introduced by other means. In this paper we
assume a simplified spherically symmetric Gaussian distri-
bution in the PRF, S(r∗) = 1

(4πR2
inv )3/2 exp(−r*2/4R2

inv), where
Rinv = 1.5 fm is the source size. This is based on the

ALICE Collaboration observations from femtoscopic studies
in pp collisions at

√
s = 7 and 13 TeV [26]. We note that

the non-Gaussian forms of the source have been proposed
and successfully employed in the analysis of experimental
data analysis [27–32]. However, the proposed procedure is
independent of this ansatz.

IV. CORRELATION FUNCTION CALCULATION

The procedure of obtaining the CF from the simulated data
resembles the approach performed in the experiment which
has been introduced in Sec. II; however, in order to distin-
guish the components of QS and FSI from the underlying
mechanisms in the simulations, we define the following three
variants of the signal distribution. (1) The first distribution S
is created when each same-event pair is added with the same
weight equal to 1.0. (2) The second distribution Sw is created
when each same-event pair is added with a weight equal to the
Bethe-Salpeter amplitude, which is calculated according to
the procedure described in Sec. III B. (3) The third distribution
Mw is calculated from mixed-event pairs, where each pair
is added to the distribution also with a weight calculated as
above. Subsequently, three distinct types of the CF can be
constructed, each containing different information:

(1) Cbase = S/M, where M is the mixed-event distribution,
contains only the event-wide correlations without the
QS and FSI effects added by the afterburner;

(2) Cfull = Sw/M contains the full information, that is, the
event-wide correlations with additional effects of QS
and FSI added by the afterburner;

(3) CQS+FSI = Mw/M contains only the effects related to
QS and FSI and is an equivalent to numerical integra-
tion of Eq. (2).

In this paper, all three CFs are expressed as a function
of either k∗ or �η and �ϕ in the femtoscopic or angular
representation, respectively. Examples of all three correlation
functions in both representations, for π+π+, π+π−, pp, and
pp pairs, calculated from PYTHIA 8 simulated data for pp
collisions at

√
s = 13 TeV are shown in Fig. 2. No differences

other than statistical fluctuations are expected for the corre-
sponding charge conjugate pairs (i.e., π−π−, pp).

V. UNFOLDING PROCEDURE

In Monte Carlo simulations we can easily switch on or off
the QS and FSI afterburners. Consequently, for those particle
pairs where these effects are well known in theory and the
afterburner produces meaningful results, we can investigate
their contribution to the overall shape of the angular corre-
lation by defining CFs as in the previous section. However,
this approach will not work for those pairs where the strong
component of the FSI is poorly known or not known at all.
In this section we propose and describe the algorithm of the
procedure allowing to unfold the effects of QS and FSI, which
are typically studied with femtoscopy, in angular correlations.
This allows to use experimentally measured data without the
need of relying on simulations.
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FIG. 2. Correlation functions in (left) femtoscopic and (right) an-
gular representations of π+π+ pairs (first row), π+π− pairs (second
row), pp pairs (third row), and pp pairs (fourth row) from PYTHIA 8
simulations, coupled to the Lednický and Lyuboshitz [15] formalism
of pp collisions at

√
s = 13 TeV, showing Cfull (in green), CQS+FSI

(in red), and Cbase (in blue). For better visualization of the differences,
the �ϕ projections are shifted by a constant value so that the baseline
is at C(�ϕ) = 0.

The proposed procedure employs a Monte Carlo approach
of creating particles from sampling single-particle kinematic
distributions, such as the transverse momentum (pT), pseu-
dorapidity (η), and azimuthal angle (ϕ), which are normally
measured in the experiment. Each particle is then represented
by a set of three numbers. Then, they are combined in pairs,
and each pair is assigned a weight from the experimentally
measured femtoscopic correlation function. Such an approach
allows for studies of the short-range correlations, such as the
effects of QS and FSI; however, it is not sensitive to long-
range phenomena, i.e., the energy-momentum conservation,
which is by definition not present while constructing pairs in
that simple way.

Input. The main required ingredient for the procedure is a
measured femtoscopic correlation function C(k∗) for a given
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FIG. 3. Schematic showing which k∗ ranges in the femtoscopic
correlation function corresponds to which �η�ϕ regions in the
angular correlation.

particle pair under consideration. In addition, single-particle
experimental distributions of pT, η, and ϕ are needed. Al-
ternatively, since collider experiments are designed to have
a uniform acceptance in η and ϕ, it should be possible to
substitute the η and ϕ distributions by uniform ones without
introducing significant distortions to the results.

Algorithm flow. In order to create particles from the input
data one needs to start from sampling the pT, η, and ϕ distri-
butions provided in the input. Each particle will be described
then by a set of three pseudorandom values of pT, η, and
ϕ. Next, particles can be combined in pairs and for each
pair one can easily calculate �η and �ϕ corresponding to
the given pair. In order to obtain the background distribu-
tion B(�η,�ϕ), each pair is added with the same weight.
In order to obtain the signal distribution, for each pair a
weight w = C(k∗) from the experimental femtoscopic corre-
lation function has to be extracted. Therefore, for each pair the
value of the pair relative momentum k∗ has to be calculated
from sampled kinematic quantities of a given pair. Then, the
pair is added to the the signal distribution A(�η,�ϕ) with a
given weight w. Finally, the angular correlation unfolded from
the femtoscopic correlation function is Cunfolded(�η,�ϕ) =
A(�η,�ϕ)/B(�η,�ϕ). The Cunfolded(�η,�ϕ) distribution
obtained in the way described above can be then used for
direct comparisons of angular correlation functions obtained
in the experiment.

One should note that the method is dependent on the k∗
range which is taken into account in the C(k∗) femtoscopic
correlation function. The femtoscopic region (small values
of k∗), corresponds to a limited phase space. As already
explained, the proposed method will not be sensitive to the
event-wide correlation effects that manifest at large k∗ values.
Figure 3 presents how k∗ ranges in the femtoscopic correlation
functions correspond to given �η�ϕ regions. One can clearly
see that the femtoscopic region clearly translates to the near-
side region of the angular CF, which is the subject of our
interest.
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VI. RESULTS AND DISCUSSION

This paper focuses on same and opposite charge pair com-
binations of pions and protons. The correlation functions for
all four pair combinations in the femtoscopic representation
CQS+FSI(k∗) are shown in the left panels of Fig. 2. The effects
of QS and FSI variously manifest in those pairs. In the case of
π+π+ pairs the most dominant effect is the Bose-Einstein QS,
reflected by the peak structure at low k∗, which is sensitive to
the size of the pion emitting source [12]. Additionally, effects
related to the Coulomb and strong FSI are present with the for-
mer affecting the correlation function for the few first k∗ bins
for both pion and protons pairs, and the latter having an almost
negligible effect for pion pairs. In the case of π+π− pairs,
the correlation effect is driven essentially by the Coulomb FSI
only [12]. Similarly the strong and Coulomb FSI also play
a significant role [17] for pp pairs. In particular, the strong
interaction component produces a characteristic peak with a
maximum around k∗ ≈ 50 MeV/c. Such sensitivity allows
for a precise study of the strong interaction between various
baryon-baryon pairs; see, i.e., Refs. [13,14]. In terms of QS
the pp pairs also the Fermi-Dirac quantum statistics is present.
The pp correlations are sensitive to the strong interaction as
well, especially to its inelastic channel, allowing for the de-
termination of the annihilation process [33]. Therefore, these
four pair combinations can be used to quantify individually
the QS and FSI effects in the angular representation and allow
for a validation of the unfolding procedure.

The QS + FSI correlation functions in the angular rep-
resentation for all four pair combinations are presented in
Fig. 4. Panels in the left column show the CQS+FSI(�η,�ϕ)
correlations obtained directly from the PYTHIA 8 simula-
tion with the QS + FSI afterburner. Panels in the middle
column show the unfolded correlations Cunfolded

QS+FSI (�η,�ϕ), ob-
tained from CQS+FSI(k∗) femtoscopic correlations from the
PYTHIA 8 simulations with the QS + FSI afterburner, ac-
cording to the procedure described in Sec. V. The ratios
Cunfolded

QS+FSI (�η,�ϕ)/CQS+FSI(�η,�ϕ) for each pair are shown
in panels in the right column. The �η and �ϕ projections of
these distributions are shown in Fig. 5. From the correlation
functions of π+π+ pairs one can clearly see that the Bose-
Einstein QS produces a significant peak around (�η,�ϕ) ≈
(0, 0) with a magnitude around 1.4. On the other hand, the
Coulomb FSI effect, observed for the π+π− correlations is
much less pronounced, reaching the magnitude of 1.03. In
the case of pp pairs a narrow depletion around (�η,�ϕ) ≈
(0, 0) can be observed with an additional narrow peak located
exactly at (�η,�ϕ) = (0, 0). This result is in line with the ex-
perimental analysis by the ALICE Collaboration [34], which
also observed a depletion convoluted with an additional small
peak for pp pairs. Although the depletion in the experimental
analysis is a result of the wide-range energy-momentum con-
servation, the origin of the small peak was postulated to arise
from the two-proton strong interaction. This paper proves that
assumption.

Proton-antiproton pairs are also interesting as another
depletion is visible in that case. It originates from the anticor-
relation structure seen in the femtoscopic correlation function
[red line of panel (d) in Fig. 2] which is produced by the
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FIG. 4. Correlation functions Cunfolded
QS+FSI (�η,�ϕ) (left column)

and CQS+FSI(�η,�ϕ) (middle column) in the angular representa-
tion of π+π+, π+π−, pp, and pp pairs from PYTHIA simulated pp
collisions, coupled to the Lednický and Lyuboshitz [15] formalism
at

√
s = 13 TeV. The right column shows the ratio of the ratio

CQS+FSI(�η, �ϕ)/Cunfolded
QS+FSI (�η, �ϕ).

inelastic channel of the pp strong interaction (annihilation).
That structure is also preserved in the unfolded correla-
tion. Therefore, this paper validates with a detailed model
simulations, the strong interaction hypothesis for both experi-
mentally observed structures in the ALICE Collaboration and
the STAR Collaboration.

Accuracy of the procedure can be quantified by compar-
ing the Cunfolded

QS+FSI (�η,�ϕ) correlations with the ones obtained
directly from PYTHIA 8 simulations with the QS and FSI af-
terburners CQS+FSI(�η,�ϕ). The shape of the near-side peak
is well reproduced by the unfolding procedure for same and
opposite charge pion pairs with relative differences smaller
than 8% and 5%, respectively. In the case of pp pairs, the un-
folding procedure does reproduce qualitatively both observed
features, that is, the depletion centered around (�η,�ϕ) ≈
(0, 0) with a narrow peak located exactly at (�η,�ϕ) =
(0, 0), although with a different magnitude and slightly differ-
ent shape. In the pp system, the depletion around (�η,�ϕ) ≈
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FIG. 5. Upper panels: projections of CQS+FSI(�η,�ϕ) (closed
symbols) and Cunfolded

QS+FSI (�η,�ϕ) (open symbols) in �ϕ for |�η| <

1.3 (left column) and in �η for − π

2 < �ϕ < π

2 (right column) for
π+π+, π+π−, pp, and pp pairs from PYTHIA simulated pp colli-
sions, coupled to the Lednický and Lyuboshitz [15] formalism, at√

s = 13 TeV. Lower panels: ratios of Cunfolded
QS+FSI to CQS+FSI.

(0, 0) is also reproduced by the unfolding procedure. How-
ever, since the pp strong interaction has a wider dependence in
k∗, its contribution to the (�η,�ϕ) angular correlation func-
tion is not limited to the ≈ (0, 0) region only. Nevertheless,
the distinct depletion observed in the near-side region in that
case is reproduced well with relative differences reaching a
maximum of 30%.

The �η and �ϕ projections of Cbase(�η,�ϕ) and
Cfull (�η,�ϕ) correlations for π+π+ pairs are shown in
Figs. 6 and 7, respectively. We can clearly see that the shape of
the unfolded correlation disagrees with the one calculated di-
rectly from the model. The reason is that naturally the effects
originating from jets and the energy-momentum conservation
occupy a wide range of the phase space. Since the unfolding
procedure is based on sampling single-particle distributions,
such effects are not accounted for. Therefore, part of the infor-
mation on the wide-range correlations is lost in the unfolding
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FIG. 6. Upper panels: projections of Cbase(�η, �ϕ) (closed sym-
bols) and Cunfolded

base (�η, �ϕ) (open symbols) in �ϕ for |�η| < 1.3
(left column) and in �η for − π

2 < �ϕ < π

2 (right column) for π+π+

pairs from PYTHIA simulated pp collisions, coupled to the Lednický
and Lyuboshitz [15] formalism at

√
s = 13 TeV. For better visualiza-

tion of the differences, the �η projections are shifted by a constant
value so that the baseline is at C(�η) = 0. Lower panels: ratio of
Cunfolded

base to Cbase.

procedure, leading to poor description of the signal in such
case. This is also the reason for the less accurate result of
the unfolding the pp CQS+FSI(�η,�ϕ) correlations due to the
wide-range effect of the annihilation in k∗ as seen in panel (d)
of Fig. 2. The unfolded correlations are then more diluted, and
the away-side structure is not present at all. However, from
Fig. 7 where all short- and wide-range effects are present,
we can certainly quantify that the description of the near-
side structure is preserved, concludin that the Bose-Einstein
QS effect is the dominant effect for π+π+ pairs and has to
be accounted whereas comparing the experimental results to
model calculations.

VII. SUMMARY

In this paper a Monte Carlo procedure allowing to unfold
the effects of quantum statistics and final-state interactions
in the angular correlation functions from the femtoscopic
measurements is introduced. It was validated with dedicated
PYTHIA 8 simulations of pp collisions at

√
s = 13 TeV, cou-

pled to Lednický and Lyuboshitz [15] formalism. Correlation
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FIG. 7. Upper panels: projections of Cfull (�η, �ϕ) (closed sym-
bols) and Cunfolded

full (�η, �ϕ) (open symbols) in �ϕ for |�η| < 1.3
(left column) and in �η for − π

2 < �ϕ < π

2 (right column) for π+π+

pairs from PYTHIA simulated pp collisions at
√

s = 13 TeV. For bet-
ter visualization of the differences, the �η projections are shifted by
a constant value so that the baseline is at C(�η) = 0. Lower panels:
ratio of Cunfolded

full to Cfull.
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functions in the femtoscopic and angular representations were
calculated for the same and opposite charge pairs of pions and
protons. The unfolded angular correlations are compared to
the ones obtained directly from the simulation, allowing for
validation of the proposed procedure. The results show that
the unfolding works very well for both π+π+ and π+π−
pairs in describing the Bose-Einstein QS and Coulomb FSI
components of the angular correlation function with relative
differences less than 8% and 5%, respectively. Nontrivial
structures are observed for pp and pp pairs. In the former case,
a depletion in the correlation function around (�η,�ϕ) ≈
(0, 0) is visible with an additional peak structure directly at
(�η,�ϕ) = (0, 0). Although the magnitude of the peak is
substantially smaller in the unfolded correlation, the proce-
dure is able to describe the shape qualitatively. A qualitatively
similar peak structure, located at (�η,�ϕ) = (0, 0), in the
middle of the depletion, was observed experimentally by the
ALICE Collaboration and postulated to result from the strong
two-proton interaction. This paper validates this ansatz. In
the pp case, another depletion around (�η,�ϕ) ≈ (0, 0) is
revealed, originating from the annihilation process. However,
due to the fact that the pp strong interaction has a wide depen-
dence in k∗, it contributes not only to the (�η,�ϕ) ≈ (0, 0)
region of the angular correlation function. Nevertheless, the
specific depletion observed in the near-side region in that case
is reproduced with relative differences reaching a maximum
of 30%. The depletion observed in the pp correlations is qual-
itatively in agreement with the experimental observations by
the STAR Collaboration in Au-Au collisions from the Beam
Energy Scan Program also confirming the postulation of its pp
annihilation origin.
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APPENDIX: LEDNICKÝ AND LYUBOSHITZ FORMALISM

The pair wave function in Eq. (2) �(k∗, r∗) depends on the
interaction between the two particles in the pair. In the most
general case, the strong and Coulomb forces have to be taken
into account. In such a scenario, the interaction of two (non-
identical) particles is given by the Bethe-Salpeter amplitude,
which is a solution of the quantum scattering problem taken
with the inverse time direction (which is denoted by the “−”
sign in front of k∗),

�
(+)
−k∗ (r∗) = eiδc

√
AC(η)

[
e−ik∗·r∗

F (−iη, 1, iζ+)

+ fC(k∗)
G̃(ρ, η)

r∗

]
, (A1)

where δc = arg �(1 + iη) is the Coulomb s-wave phase
shift, Ac(η) = 2πη(e2πη − 1)−1 is the Gamow factor
(Coulomb penetration factor), ζ± = k∗r∗(1 ± cos θ∗), η =
1/(k∗aC), F is the confluent hypergeometric function, and
G̃ is the combination of the regular and singular s-wave
Coulomb functions. Symbol θ∗ denotes the angle between
the pair relative momentum and relative position in the
pair rest frame, whereas aC is the Bohr radius of the pair.
The component fC(k∗) is the strong interaction scattering
amplitude, modified by the Coulomb component,

f −1
C (k∗) = 1

f0
+ 1

2
d0k∗2 − 2

aC
h(k∗aC) − ik∗aC, (A2)

where aC is the Bohr radius, ζ = k∗r∗(1 + cos θ∗), θ∗ is the
angle between �k∗ and �r∗, η = 1/(k∗aC ), F is the confluent
hypergeometric function, G combines the regular and singu-
lar Coulomb functions, and h(η) = η2 ∑∞

n=1[n(n2 + η2)]−1 −
γ − ln |η| (γ = 0.5772 is the Euler constant).

In addition, if identical particles are considered, it has to be
properly symmetrized (antisymmetrized) for pairs of identical
bosons (fermions). Moreover, the description becomes more
complicated when coupled channels are present. For details
see Refs. [17,35].
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