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Smallest QCD droplet and multiparticle correlations in p-p collisions
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The collective evolution of produced matter in heavy-ion collisions is effectively described by hydrodynamics
from time scales greater than the inverse of the temperature, τ � 1/T . In the context of the Gubser solution, I
show that the hydrodynamization condition τ T � 1 is translated into an allowed domain in the spatial system
size and the final multiplicity for hydrodynamics applicability. It turns out that the flow measurements in
p-p collisions are inside the domain of validity. I predict that by approaching the boundaries of the allowed
domain the hydrodynamic response to the initial ellipticity changes its sign. I follow a rather model-independent
approach for the initial state where, instead of modeling the initial energy density of individual events, the initial
system size and ellipticity event-by-event fluctuation are modeled. The model, initial state fluctuation+Gubser
solution+Cooper-Frye freeze-out, describes the multiplicity and transverse momentum dependence of two-point
and four-point correlation functions (c2{2} and c2{4}) in an accurate agreement with p-p collision experimental
measurements. In particular, the sign of the four-point correlation function is the same as the observation, which
failed to be described correctly in previous studies. I also predict a signal for the sign change in the hydrodynamic
response that can be inspected in future experimental measurements of two-point and four-point correlation
functions at lower multiplicities.
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I. INTRODUCTION

In 2010, CMS collaboration revealed a peculiar observa-
tion of long-range correlation in p-p collisions [1] which is
considered as a signature of collective evolution. Later on, this
observation was confirmed by different experimental collabo-
rations for different small systems (p-p, pAu, dAu, 3HeAu,
pPb) at LHC [2–5] and RHIC [6,7]. Over the past years,
there have been ongoing debates on the origin of the observed
correlation. Efforts to explain the observed phenomena have
been made from different perspectives, e.g., to describe the
phenomenon via kinetic theory [8,9] or to link the correlation
to the initial stages of the collision (for review see Ref. [10]).

The present paper belongs to the category of studies that
intend to demonstrate the observed phenomena using conven-
tional hydrodynamics [11–17]. The strategy that I pursue in
the present paper is the following: studying hydrodynamic
evolution such that, first, it has essential features to explain the
real data and, second, it is still simple enough to monitor an
event evolution anatomy clearly. To this end, the best choice
in the author’s opinion is the analytical solution of relativis-
tic hydrodynamic equations for conformal fluids, the Gubser
solution, and perturbation on top of that [18,19]. Despite the
idealized assumptions for the symmetries of the system, the
Gubser solution has been used to investigate, to an extent,
realistic scenarios in heavy-ion collisions. As an example,
the power spectrum of heavy-ion collisions is obtained by
studying the evolution of narrow peaked hot spots on top of
a smooth background in Refs. [20,21].
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In the present paper, I consider the rotationally symmetric
Gubser solution, which is perturbed to acquire an initial ellip-
tical shape [19]. The free parameters of the Gubser solution
are carefully mapped to the more standard quantities such as
the root mean square (rms) radius, ellipticity, and the total
energy in the transverse direction of the system. Using this
map together with the equation of state (e.o.s.), the initiation
time of the evolution, the mass of the final particles, and the
freeze-out temperature, one obtains an estimation for the ellip-
tic flow of any given initial energy distribution. Considering
the consistency of the Gubser solution, I find the domains
of hydrodynamics applicability in terms of the spatial system
size and final multiplicity. One observes that flow measure-
ments of p-p collisions are inside the domain of validity. I also
describe the measured two-particle, c2{2}, and four-particle,
c2{4}, correlations as a function of transverse momentum
and charge multiplicity. Moreover, I predict an experimental
signal in multiparticle correlation functions in p-p collisions
to indicate whether one approaches the boundaries of the
validity domain. Indeed, due to the several simplifications
and idealizations in the Gubser solution, the present model
is not applicable to gain insight into hydrodynamic transport
coefficients such as shear viscosity over entropy density. A
more realistic hydrodynamic simulation is essential for such
studies. I justify, however, that the computations are accurate
enough for the purposes I pursue in this paper.

The paper is organized as follows: In Sec. II, I investigate
the domain of applicability of hydrodynamics as a function
of the initial system size and the total transverse energy.
In Sec. III, the model is introduced and compared with the
outcome with IEBE-VISHNU. The model is compared with
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experimental p-p collision measurements in Sec. IV, and fi-
nally one finds the conclusion in Sec. V. The computational
details of the model are presented in Appendix A. Further
comparisons between predictions of the model and IEBE-
VISHNU can be found in Appendix B.

II. SMALLEST SYSTEM SIZE FOR HYDRODYNAMIC
DESCRIPTION

I start by highlighting the main aspects of the Gubser solu-
tion [18,19]. Before that, I determine the coordinate systems
employed in this paper. I interchangeably use hyperbolic-
cylindrical coordinates xμ = (τ, r, φ, η) [τ = √

t2 − z2 is
proper time, η = arctanh(z/t ) is space-time pseudorapidity,
and (r, φ) is the polar coordinate in the transverse plane]
and the de Sitter coordinate x̂μ = (ρ, θ, φ, η) (ρ is de Sitter
time, and θ is de Sitter radial coordinate in the trans-
verse direction). Two coordinates are related to each other
via q τ = sechρ/(cos θ − tanh ρ) and q r = sin θ/(cos θ −
tanh ρ) where q is a free parameter. In the de Sitter coordinate,
the Gubser solution for the energy density of a boost-invariant
ideal conformal fluid reads as

εb(ρ, θ ) = 1

τ 4

ε̂0

cosh8/3 ρ
, (1)

where τ should be written in terms of θ and ρ with
the transformation mentioned earlier. In the above, ε̂0 is a
free parameter. An elliptic perturbation on top of the rota-
tionally symmetric background solution [i.e. Eq. (1)] leads
to ε(ρ, θ, φ) ≈ εb(ρ, θ )[1 + 4λ δ2(ρ) y(θ, φ)] with y(θ, φ) =
−√

3/8Y2,2 + Y2,0/2 − √
3/8Y2,−2 [Yl,m ≡ Yl,m(θ, φ) is the

spherical harmonic function]. The fluid velocity is given by
uμ = τ (∂ x̂ν/∂xμ)ûν where ûμ = (−1, λ δûθ , λ δûφ, 0), λ is
a small free parameter, and δûi = δ̃2(ρ) ∂iy(θ, φ) for i =
θ, φ [18–20] (see a more detailed review in Appendix A).
The hydrodynamic equations lead to a linear system of dif-
ferential equations for δ2(ρ) and δ̃2(ρ) which can be solved
analytically for ideal hydrodynamics. The isotropic initial
fluid velocity assumption at de Sitter time ρ = ρhyd fixes the
initial value for the system of equations as δ2(ρhyd) = 1 and
δ̃2(ρhyd) = 0. In this paper, I do not present the Navier-Stokes
solution, which reveals instability as one expects. The prob-
lem could be cured in a causal hydrodynamics framework.
However, the Gubser solution for causal hydrodynamics has
been found only in certain limits [22,23], and perturbation on
top of causal Gubser flow has not been done yet. In addition
to the ignored dissipative effects, the conformal symmetry
prevents one from choosing a realistic e.o.s. Moreover, the
hydrodynamic solution is limited to an elliptic perturbation
(a linear hydrodynamic response) which also means that in-
teraction between the ellipticity mode with itself (e.g., cubic
response [24]) and other mode-mode interactions are ignored.
I address the effect of all these idealizations before I start
model/data comparison.

From now on, as an abbreviation, the Gubser hydrody-
namic solution together with Cooper-Frye prescription [25]
for the freeze-out is called GUBSHYD. A detail of the “model”
can be found in Appendix A. A difference between GUBSHYD

and the conventional numerical hydrodynamic solutions is

FIG. 1. The initiation of hydrodynamic evolution at τ = τhyd

(left) and ρ = ρhyd (right).

in their initiations. In the numerical hydrodynamic computa-
tions, the initial energy density is prepared on a τ = const.
surface [Fig. 1 (left)] while GUBSHYD is initiated on a surface
with condition ρ = ρhyd = const. [Fig. 1 (right)]. Referring
to Eq. (1), one simply finds that ρ = const. is equivalent
to τε1/4 = const. which is subsequently equivalent to τT =
const. by using e.o.s. ε = C0T 4.

It is worth reminding the reader that, although I ex-
plicitly present the ideal Gubser solution in Eq. (1), I
implicitly assume it is only an approximation of a more
general causal hydrodynamics in which the system is not
in perfect local equilibrium. As a result, to apply hydrody-
namics to a far-from-equilibrium initial state, a finite time
is needed for hydrodynamization. In this context, the τT =
const. surface can be understood as follows: regarding stud-
ies about hydrodynamization, specifically, the computations
from gauge/gravity duality, the evolution of a boost-invariant
system with translational and rotational symmetry in the
transverse space (Bjorken symmetry) is attracted to the hy-
drodynamic solutions after the time τ ∼ 1/T [26,27]. It has
been demonstrated that the hydrodynamic gradient expan-
sion (1/τT expansion in this context) is divergent, and its
divergence is due to the presence of nonanalytic contributions
∝ e−z0τT known as nonhydrodynamic modes [28–32]. Here,
the coefficient z0 ∼ O(1) is a positive real numerical factor
depending on the underlying microscopic theory. Therefore,
the nonhydrodynamic modes die out at τT ∼ 1, and the hy-
drodynamic description works appropriately afterward.1

The attractor solution of a system that goes through Gubser
flow has been studied in Ref. [34] within the relativistic kinetic
theory framework (see also Ref. [35]). This paper shows that
hydrodynamic quantities which are parametrized with vari-
able w = tanh ρ/τT approach to an attractor at a specific
value of w, namely, w ∼ w0. Since τT ∼ τε1/4 ∼ cosh−2/3 ρ,
the condition w ∼ w0 is equivalent to the condition τT ∼
const., similar to what has been found for the systems with
Bjorken symmetry. In Gubser flow, however, the temperature
drops when one moves from the center to the tail of the
initial energy density. As a result, it is plausible to consider
that the hydrodynamization happens at different proper times
depending on the transverse radius. This argument allows

1The attractor solution has been observed in an expanding ultra-
relativistic gas of hard spheres with Bjorken symmetry. It has been
shown that the causal hydrodynamics can describe this system even
when gradients are significant at all times of evolution [33].
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one to define the hydrodynamization surface, the surface on
which τ T (τ, r) is constant and is in the order of unity [see
Fig. 1 (right)]. For a system with fewer symmetries and more
complicated initial conditions, one would expect that the non-
hydrodynamic modes decay at τ ∼ 1/T (τ, �x), leading to a
more complicated hydrodynamization surface τ = τ (�x).

To compare the GUBSHYD predictions with real experi-
mental data, one translates the free parameters of the Gubser
solution (q, ε̂0, λ, ρhyd) to more standard quantities: total
transverse energy εtot, rms radius rrms, and ellipticity ε2:

εtot =
∫

r dr dφ ε(τ, r, φ), (2a)

r2
rms = 1

2εtot

∫
r dr dφ r2ε(τ, r, φ), (2b)

ε2 = − 1

2r2
rmsεtot

∫
r dr dφ r2 cos(2φ) ε(τ, r, φ). (2c)

The measure of these integrals reads as τ 2 cosh2

ρhyd sin θ dθdφ in the de Sitter coordinates. Using the mea-
sure together with the fact that the solution is initiated on the
ρ = ρhyd surface, one obtains

ε̂0 = 3 εtot r2
rms

4π cosh4/3 ρhyd
+ O(ε2), (3a)

1

q2
= r2

rms(1 + 3 tanh2 ρhyd) + O(ε2), (3b)

λ = (
√

5π/3)ε2 + O
(
ε2

2

)
. (3c)

For finding ρhyd in terms of standard quantities, one notes
that some parts of the initial energy density are about to
freeze-out immediately after the initiation because the energy
density of these parts is equal to the freeze-out energy den-
sity εFO. As a result, at the hydrodynamization surface, one
has τε1/4 = τhydε

1/4
FO . Subsequently, by employing Eq. (1) and

substituting ε̂0 in terms of standard quantities [Eq. (3a)], one
finds

ρhyd = −arccosh

[(
3 r2

rms εtot

4π τ 4
hyd εFO

)1/4]
+ O(ε2). (4)

I employ Cooper-Frye prescription [25] with Boltzmann
equilibrium distribution to obtain the associated final particle
distribution function:

dN

d p
= − g

(2π )3

∫
pμd
μ exp[pμuμ/TFO], (5)

where d p ≡ d3 p/E and 
μ = (ρ, θFO(ρ, φ), φ, η) indicates
the freeze-out surface specified by equation ε(ρ, θFO, φ) =
εFO. In Eq. (5), g is the degeneracy constant and TFO is the
freeze-out temperature related to εFO via e.o.s. The equa-
tion ε(ρ, θFO, φ) = εFO for the unperturbed Gubser solution
[Eq. (1)] leads to the following equation for the freeze-out
surface:

cos θFO(ρ) = tanh ρ + 1

q

(εFO

ε̂0

)1/4
sech1/3ρ. (6)

Red curves show the freeze-out surfaces in Fig. 2 for systems
with three different sizes.

FIG. 2. Freeze-out surfaces for systems of three different sizes
where rcrit = 0.1 fm, τhyd = 0.62 fm/c, C0 = 11.

Initiating the evolution on the hydrodynamization surface
leads to an interesting conclusion. One defines τ̄FO as the
time when the last fluid cell of the system is frozen out (blue
open circles in Fig. 2). On the other hand, by definition, τhyd

on the hydrodynamization surface is also a member of the
freeze-out surface (blue bullets show τhyd location in Fig. 2).
One can interpret τhyd as the time at which the last fluid cell
is hydrodynamized. One notes that the condition τhyd � τ̄FO

should always be satisfied; otherwise, the last frozen-out cell
has not enough time to be hydrodynamized. It turns out that
there are some values for (rrms, εtot, εFO, τhyd) that correspond
to no valid hydrodynamic solution for making a hydrody-
namization surface. With that, one concludes a lower bound
on the system size. Considering that the argument in Eq. (4)
should be greater than unity to have a real-valued ρhyd, one
obtains the following lower bound on the system size:

rrms � rcrit, rcrit =
√

4π

3

[
τ 2

hyd ε
1/2
FO

]
ε

−1/2
tot . (7)

In Fig. 2, the freeze-out surface for a system at a critical size
is depicted in the right panel.

The above arguments can be considered as a hint
for the presence of the same lower bound for any
nonideal/nonconformal hydrodynamic systems. Naïve rea-
soning is as follows: Consider a nonequilibrium system with
a fixed amount of total transverse energy εtot. The smaller the
system size, the sharper the concentration of energy. Com-
pared to a system with a larger size, a system with more
concentration of energy would expand faster because of the
more considerable “pressure” gradient. Therefore, one might
consider cases in which the system expands so fast that the
nonhydrodynamic modes do not have enough time to decay
before the nonequilibrium system reaches the phase transition
boundary. For such a system, equation τε1/4(τ, �x) = τhydε

1/4
FO

has no solution, and the hydrodynamization surface τ (�x) does
not exist. For more robust evidence, computations beyond the
hydrodynamic regime are needed. In fact, the bound (7) is
compatible with that obtained from studying two colliding
shock waves in the context of numerical holography [36,37].
One can estimate the averaged initial energy density as ε̄init ∼
εtot/πr2

crit. Using Teff = (4ε̄init/3π4)1/4 [Eq. (7) in Ref. [36]],
the condition rcrit Teff ∼ 1 [Eq. (10) in Ref. [36]] is equivalent
to rcrit ε

1/2
tot ∼ 1 in Eq. (7). The other possibility is using the

kinetic theory with nontrivial energy distribution in the trans-
verse direction, such as that studied in Refs. [8,9]. Studying
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the hydrodynamic attractors for such a system would lead to
evidence for the presence of a lower bound on the system size
at which hydrodynamics is applicable.

From Eq. (6), one can also find the de Sitter time when
the last fluid cell is frozen out via cos θFO(ρmax) = 1. Conse-
quently, the condition ρhyd = ρmax means there is no “time”
left for hydrodynamic evolution. With that, one concludes an
upper bound,

rrms � Rcrit(εtot ), (8)

for the system size corresponding to the case that there is not
enough energy density deposited into the given region to pro-
duce a deconfined matter. Translating variables into standard
quantities, one can solve the equation cos θFO(ρhyd) = 1 in
Eq. (6) to find Rcrit(εtot ) in Eq. (8).

III. HYDRODYNAMIC RESPONSE TO INITIAL
ELLIPTICITY

The domain of hydrodynamic validity has been inves-
tigated in the previous section. To determine whether the
experimental measurements for p-p collision are inside this
domain, one needs to relate the hydrodynamic solutions to
the final particle distribution. Having found the freeze-out
surface, one can compute the final particle distribution by
performing the integrals in the Cooper-Frye formula. The
details of the computation are presented in Appendix A.
Furthermore, these computations are implemented in a MATH-
EMATICA package available as Supplemental Material [38].
In the following, I briefly mention some of the functions
discussed in Appendix A: the total multiplicity in the unit ra-
pidity ntot(rrms, εtot ) (ntot ≡ dN/dyp); the translation of critical
values rcrit(εtot ) and Rcrit(εtot ) in terms of multiplicity in unit
rapidity, ncrit(rrms) and Ncrit(rrms); the particle distributions
in unit space-time pseudorapidity dN/pT d pT dη and dN/dη;
and finally and most importantly k2(ntot, rrms) and k2(εtot, rrms)
(and their pT dependent versions) which relate the initial
ellipticity ε2 to the elliptic flow, the second Fourier coefficient
of the final particle distribution in the azimuthal direction:

v2(ntot, rrms) = k2(ntot, rrms) ε2. (9)

The initial hydrodynamization time τhyd, the final particle
mass m, the freeze-out energy density εFO, and the constant
C0 in e.o.s. are considered to be fixed in the model.

In Fig. 3, the contour plot of k2(ntot, rrms) for pions m ≈
136 MeV is depicted for 0.3 < pT < 3 GeV/c. Here, I have
fixed τhyd = 0.9 fm/c, εFO = 0.18 GeV/fm3, and C0 = 13.
The latter is chosen close to the plateau in s95p-v1 [39]
at temperatures above the critical point where most of the
evolution period is in this range. The functions ncrit(rrms) and
Ncrit(rrms) are also shown with thick black curves. What one
sees from the figure is that the system is hydrodynamized in
the range ntot > ncrit(rrms). Moreover, in the valid domain of
hydrodynamics, there are two different regions: the in-plane
response region where particles are mostly emitted along the
minor axis of the initial elliptic shape (blue contours) and
the out-of-plane response regions where most of the particles
are emitted along the major axis (red contours). As it will be

FIG. 3. Domain of hydrodynamics validity in the (ntot, rrms)
phase space. The GUBSHYD output for k2(ntot, rrms) (0.3 < pT <

3.0 GeV) is shown as a contour plot (ntot ≡ dN/dyp).

discussed later, the signature of in-plane/out-of-plane transi-
tion is traceable in multiparticle correlations in p-p collisions.

Due to the idealizations that have been made, one might
be doubtful about the applicability of the presented hydrody-
namic model in explaining the experimental data. To show
that GUBSHYD is accurate enough for the purpose I pursue
in this paper, I compare a causal hydrodynamic simulation,
IEBE-VISHNU (MC-GLAUBER+VISH2+1) [40] with GUBSHYD.
Since the interested quantities are those which are averaged
over an ensemble of events, I show that all the corrections can
be encapsulated in a generic constant χ :

v2 = χ k2(εtot, rrms) ε2. (10)

It will be shown that χ can be absorbed into the ellipticity
fluctuation width, a free parameter in the model, and has no
impact on the predictions in the present paper.

I employ IEBE-VISHNU with MC-GLAUBER as an initial
state model for Pb-Pb collisions at

√
sNN = 2.76 TeV. The

simulation is based on solving 2+1 boost-invariant causal
hydrodynamic equations with a fixed η/s = 0.08. The initial
time of hydrodynamic evolution is τ = 0.6 fm/c, and freeze-
out energy density is fixed to εFO = 0.18 GeV/fm3. The
afterburner is not included in this simulation. The events are
classified into 16 bins between 0 and 80% centrality classes,
and at each bin 14 000 events are generated. The elliptic
flow is computed for charged pions with the momentum in
the range 0.28 < pT < 4 GeV at each event. After that, the
probability density function (p.d.f.) of elliptic flow fluctuation
pv (v2) at each centrality class is obtained, and eventually I
compute the two first cumulants of the p.d.f. [41]:

c2{2} = 〈
v2

2

〉
v

≡ (v2{2})2, (11a)

c2{4} = 〈
v4

2

〉
v
− 2

〈
v2

2

〉2
v

≡ −(v2{4})4, (11b)

where 〈· · · 〉v stands for averaging with respect to pv (v2). Now,
from the same set of initial states, I compute (εtot, rrms, ε2)
at each event. Setting τhyd = 0.6 fm/c, m = 136 MeV, εFO =
0.18 GeV/fm3, and C0 = 13, I employ GUBSHYD [the function
in the second line of Eq. (A38)] for 0.28 < pT < 4 GeV and
use v2 = k2(εtot, rrms) ε2 to obtain v2 at each event. Eventu-
ally, one has 14 000 events for each centrality class where its
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FIG. 4. Two- and four-particle correlations (v2{2} and v2{4})
from MC-GLAUBER+VISH2+1 and MC-GLAUBER+GUBSHYD.

elliptic flow is evaluated from GUBSHYD. Similar to IEBE-
VISHNU events, one can compute vIdealGub

2 {2} and vIdealGub
2 {4}

from GUBSHYD as well. One notes from Eq. (11) that the
constant χ in Eq. (10) corrects the cumulants as

vGub
2 {2k} = χ vIdealGub

2 {2k}. (12)

The results are shown by red filled circles in Fig. 4 where
χ = 0.39 is chosen. As seen from the figure, there is a good
agreement between IEBE-VISHNU and GUBSHYD in the given
range of centralities.

Equation (10) is different from that mentioned in Ref. [42]
as a linear hydrodynamic response:

v2 ≈ k̃2 ε2, (13)

where k̃2 is a constant unlike k2(εtot, rrms). To show that the
observed agreement is not trivially inherited from the initial
state, one can obtain the same cumulants as Eq. (12) by
employing Eq. (13):

vGlaub
2 {2k} = k̃2 ε2{2k}. (14)

In the above, ε2{2k} can be obtained from Eq. (11) by re-
placing the variable v2 with ε2 while the average 〈· · · 〉ε is
performed using the distribution pGlaub

ε (ε) associated with the
ellipticity fluctuation in the MC-GLAUBER model. In Fig. 4,
vGlaub

2 {2} and vGlaub
2 {4} with k̃2 = 0.25 are plotted by the green

filled triangles. Although linear response explains the causal
hydrodynamic simulations in central collisions, it fails to ex-
plain it in peripheral collisions.

The above investigation indicates that, concerning many
event averages, the effect of idealizations in the GUBSHYD

model can be corrected approximately via a constant value χ .
The numerical value of χ is irrelevant in the analysis I perform
in the next section. For completeness, the GUBSHYD predic-
tions have been compared with IEBE-VISHNU for pT spectrum,
differential v2{2}, and v2{4} and centrality dependence of the
multiplicity for charged pions in Appendix B.

IV. TWO- AND FOUR-PARTICLE CORRELATIONS
IN p-p COLLISIONS

The initial state is the final piece in the model presented in
this paper. In this paper, I follow a rather model-independent
approach for the initial state. Instead of generating an en-
semble of initial energy densities, ε2 and rrms event-by-event

fluctuations are modeled. By comparing the model with data,
one finds the properties of the ε2 and rrms fluctuations. In the
end, one can check different initial state models (or one model
with different parameter tuning) to determine which one can
reveal the same fluctuating properties.

Assuming rrms and ε2 fluctuate event by event inde-
pendently, the p.d.f. of the two-dimensional (2D) variable
(ε2, rrms) can be written as a product of ellipticity distribution
pε (ε2) and rms radius distribution pr (rrms):

pinit(ε2, rrms) = pε (ε2) pr (rrms).

To find the p.d.f. of elliptic flow, one changes the variable
(ε2, rrms) to (v2, rrms) via Eq. (9). The new p.d.f. reads as
pε (v2/kcaus

2 )pr (rrms)/kcaus
2 where

kcaus
2 ≡ χk2(ntot, rrms).

By averaging out the variable rrms, a p.d.f. for v2 fluctuation is
obtained:

pv (v2; ntot ) =
∫

drrms

kcaus
2

pε

(
v2/kcaus

2

)
pr (rrms), (15)

where ntot in the argument appears as a parameter.
Now, I estimate each pε (ε2) and pr (rrms) separately. The

ellipticity distribution can be expanded as the following se-
ries [43,44]:

pε (ε2) = ε2

σ 2
ε

e−ε2
2 /2σ 2

ε

[
1 + �ε

2

2
L2

(
ε2

2/2σ 2
ε

) + · · ·
]
, (16)

where L2(ε2
2/2σ 2

ε ) is the second Laguerre polynomial and

�ε
2 ≡ −(ε2{4}/ε2{2})4 (17)

is the kurtosis of the distribution. One could use the power
distribution introduced in Ref. [45] for the ellipticity fluctua-
tion in small systems. Compared to power distribution which
is obtained for pointlike sources, the distribution in Eq. (16)
is more general. It turns out that the ellipsis in Eq. (16) ex-
pansion is irrelevant to v2{2} and v2{4} quantities. Therefore,
concerning the ellipticity fluctuation, no physical assumption
is imposed here. For rrms, I assume a Gaussian distribution

pr (rrms) = rrms

σ 2
r

e−r2
rms/2σ 2

r , (18)

with free parameter σr , and ignore other corrections to it.
By substituting Eq. (16) into Eq. (15) and using relations

in Eqs. (11) and kcaus
2 ≈ χ k2, one finally obtains the model

predictions:

v2{2} = χ σε

√
2
〈
k2

2

〉
r
, (19a)

v2{4} = χ σε

[
8
〈
k2

2

〉2
r − 4

(
2 + �ε

2

)〈
k4

2

〉
r

]1/4
, (19b)

with free parameters σε , �ε
2, and σr . In the above, 〈· · · 〉r refers

to averaging with respect to pr (rrms). One obtains the pT de-
pendent or pT integrated predictions for v2{2} and v2{4} from
GUBSHYD by substituting the pT dependent or pT integrated
k2 function into relations (19) [see Eq. (A39)].

After adding the final piece into the model, one can com-
pare it with experimental data. In Fig. 5, the measured v2{2}
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FIG. 5. Comparing GUBSHYD predictions with CMS and ATLAS
measurements published in Refs. [3,5].

and v2{4} by CMS [3] and ATLAS [5] collaborations for
p-p collisions at

√
s = 13 TeV are presented. The GUBSHYD

predictions for v2{2} (blue curve) and v2{4} (red dashed curve)
are also shown where I have used the following parameters,

χ σε ≈ 0.097,

�ε
2 ≈ −0.75,

σr ≈ 0.4 (fm), (20)

in Eq. (19). To compare with experimental data, the parameter
ntot is translated to the average charge multiplicity 〈Nch〉 in the
range |η| < 2.4 via

〈Nch〉 = 2

3

∫
drrms pr (rrms)

× Ntot(ntot, rrms, pT,min, pT,max, ηmin, ηmax) (21)

where Ntot can be found in Eq. (A23). In measuring v2{4}
in the ATLAS collaboration, the three-subevent method is
employed to reduce the nonflow effect [5]. For that reason,
I compare the model prediction for v2{4} only with AT-
LAS results. I did not present multiplicity dependence of
v2{2} from the ATLAS collaboration (with peripheral sub-
traction method) because it follows the same trend as the
CMS result (with η-gap �η > 2) and makes the plot hard
to read.2 Given that the idealized model GUBSHYD has been
employed to extract the initial state fluctuation properties, the
numbers in Eq. (20) should be assumed as an approximate
estimation.

By comparing the model with experimental data, one could
extract the parameters �ε

2 and σr . However, due to the lack
of knowledge about constant χ , the parameter σε remains
undetermined. The term χ σε is an overall factor in Eq. (19)
and has no impact on multiplicity and pT dependence of v2{2}
and v2{4}. It means irrespective to the value of χ the agree-
ment between GUBSHYD prediction and experimental data for
v2{2} and v2{4} is a triumph for the model. Moreover, an
interesting physics prediction from the model can be tested by

2The data points of ATLAS measurements for v2{2} are not avail-
able online. For the comparison with CMS data, I extracted the
ATLAS measurement data points directly from the published figure.
This is a second reason I have not used the ATLAS data in the figure.

TABLE I. The rms radius fluctuation width and the kurtosis of
ellipticity fluctuation from AMPT, and �v

2 from AMPT+GUBSHYD.

σg (fm) σ AMPT
r (fm) �

ε(AMPT)
2 �

v(AMPT+Gubs)
2

0.5 0.48 0.53 0.80
0.4 0.41 0.18 0.53
0.3 0.35 −0.17 0.26
0.2 0.30 −0.48 0.01
0.1 0.26 −0.73 −0.20

pushing the experimental measurements close to the critical
multiplicity in the future. In Fig. 5 (left), the model predicts
a valley around 〈Nch〉 = 10 shown by a vertical dashed line.
This is an indication of in-plane/out-of-plane transition. By
translating 〈Nch〉 to ntot, a similar vertical dashed line is shown
in Fig. 3 and a horizontal dashed line that locates 〈rrms〉r . The
latter is shown as an indicator for the average value of the
system size. Moving from right to left along the horizontal
dashed line in Fig. 3, k2(ntot, rrms) changes sign from positive
to negative. Since there are only even powers of k2 in Eq. (19),
the sign change makes a valley in v2{2} and v2{4} versus
multiplicity. Indeed, nonflow effects are more pronounced at
lower multiplicities, and observing the flow signals at lower
multiplicity would be experimentally challenging. The dis-
continuity in v2{4} prediction is due to the fact that in a region
of multiplicity the terms in the bracket in Eq. (19b) turn to
negative values. One notes that the predicted valley in multi-
plicity dependence of v2{2} and v2{4} is based on an idealized
hydrodynamic model. A framework beyond hydrodynamics is
needed for a more accurate prediction.

As a final remark, I comment on the sign of c2{4} =
−(v2{4})2 when one initiates the energy density with a re-
alistic model. This model must contain nucleon substructure
to produce enough fluctuation. To this end, the AMPT event
generator [46] and TRENTO with nucleon substructure [47,48]
are examined as initial state models.

I follow Ref. [49] and employ the AMPT event generator in
the string melting mode to generate 10 000 p-p collision initial
state events at

√
s = 13 TeV. I map all the initiated partons

inside the range η < 1 into the transverse plane at each event.
After that, I smear the partons with a 2D Gaussian distribution
with width σg weighted by the energy of each parton. After
calculating rrms and ε2 at each event, I compute σ (AMPT)

r and
�

ε(AMPT)
2 . The results are tabulated in Table I for different

choices of σg. In the fourth column, I have presented the
kurtosis of elliptic flow fluctuation,

�v
2 = c2{4}/c2

2{2}, (22)

from AMPT+GUBSHYD at 〈Nch〉 ≈ 150. I compute this quantity
[which is Eq. (17) for v2 fluctuation] because the term χσε

is canceled out from the numerator and denominator, and
at the same time its sign is the same as c2{4}. A similar
quantity called the effective number of sources, Ns, has been
measured for p-p collisions by ATLAS [5] and can be trans-
lated to kurtosis by �v

2 = −4/(Ns + 3). At charge multiplicity
〈Nch〉 ≈ 150, one finds the following range for the ATLAS
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measurement:

−0.39 � �
v(ATLAS)
2 � −0.31. (23)

Referring to Table I, one observes that the negative sign
for kurtosis is more compatible with σg = 0.1 (fm). A p-p
collision hydrodynamic study uses the HIJING+IEBE-VISHNU

model in which a positive sign for c2{4} has been ob-
tained [50]. In addition to examining two values σg =
0.2, 0.4 (fm) for the smearing width, a range of other initial
state and hydrodynamic parameters is tested in this paper.
For all cases, the simulation outcome for c2{4} (and con-
sequently �v

2 ) has a positive sign. The GUBSHYD model
with the parameters mentioned in Eq. (20) returns the value
�

v(Gubs)
2 = −0.41 which is the most accurate result compared

to AMPT+GUBSHYD and HIJING+IEBE-VISHNU.
By comparing the content of Table I with Eq. (20), one

observes tension between AMPT initial state fluctuation prop-
erties with those extracted from the measurement directly by
employing GUBSHYD [Eqs. (19)]. The rms radius fluctuation
is more compatible with smearing width σg = 0.4 (fm) while
kurtosis is more compatible with σg = 0.1 (fm).

The initial state model TRENTO with nucleon substructure
successfully describes the initial state of large and small col-
lision systems. I use this model with parameters calibrated by
Bayesian analysis [48]. For the calibration, experimental mea-
surements of Pb-Pb and p-Pb collisions at

√
sNN = 5.02 TeV

have been used. A full description of the parameters can be
found in Ref. [48]. Here, I focus on two parameters that
impact the initial state fluctuation: nc, the number of con-
stituents inside the nucleon, and χstruct, which controls the
width of the constituents (χstruct = 0 corresponds to a nucleon
with well-separated hot spots and χstruct = 1 corresponds to
a nucleon as a single Gaussian blob). The calibrated values
(maximum a posteriori) of these parameters are nc = 6.3 and
χstruct = 0.35. I generate 100 000 p-p collision initial state
events and compute kurtosis of ellipticity fluctuation and rms
radius fluctuation width:

�
ε(TREN)
2 ≈ 0.09, σ TREN

r ≈ 0.47 (fm). (24)

The result shows tension between TRENTO initial state fluctu-
ation and Eq. (20). I also compute the hydrodynamic response
to the TRENTO initial state by using GUBSHYD. At 〈Nch〉 ≈ 150,
TRENTO+GUBSHYD leads to �

v(TREN+GUBS)
2 = 0.26, meaning

c2{4} is positive. I checked all combinations of nc = 2, 4, 6, 8
and χstruct = 0.1, 0.3, 0.5, 0.7. The largest negative kurtosis
for ε2 fluctuation is obtained by nc = 8 and χstruct = 0.1
as �

ε(TREN)
2 ≈ −0.18. For rms radius fluctuation width, one

finds σ TREN
r ≈ 0.37 (fm) in this choice of parameters. Even in

this case, the kurtosis of elliptic flow fluctuation is positive,
�

v(TREN+GUBS)
2 ≈ 0.18.

A more realistic hydrodynamic simulation that includes
more stages (namely, pre-equilibrium and afterburner) is
needed for a rigorous conclusion. Given that the estimations
based on AMPT and TRENTO could not predict a correct sign
for c2{4} irrespective of its actual value, one might deduce
that there is a missing piece in modeling the initial states or
in modeling the collective evolution in p-p collisions. I will
elaborate on this conclusion in the next section.

V. CONCLUSION

In this paper, I introduced GUBSHYD, a simple hydro-
dynamic “model” based on the Gubser solution. I showed
that there is a lower bound for the size of a hydrody-
namized system. I found that the flow measurements of p-p
collisions are inside the domain of validity. I checked the
validity of the presented simple model by comparing MC-
GLAUBER+GUBSHYD and MC-GLAUBER+VISH2+1 predictions
in Pb–Pb collisions. I discussed the limitations of GUBSHYD

that should be taken into account in the conclusions. I found
that three normalization/moments of the initial energy den-
sity, namely, total energy density in the transverse direction,
rms radius, and ellipticity [see Eqs. (2)], approximate the
initial energy density and lead to a reasonable agreement be-
tween GUBSHYD and IEBE-VISHNU for elliptic flow predictions
in a wide range of centrality classes. The model could explain
v2{2} and v2{4} measured by CMS and ATLAS collaborations
for high multiplicity p-p collisions. Moreover, for systems
close to the smallest QCD droplet, the model predicts an
experimental signal in v2{2} and v2{4} measurements at lower
multiplicities where in-plane/out-of-plane hydrodynamic re-
sponse transition happens.

Employing the simplicity of the Gubser solution, I found
a smooth function for a hydrodynamic response to the ini-
tial ellipticity. This response function is given in terms of
final state multiplicity and rms radius of the initial state
k2(ntot, rrms) (see Fig. 3). Given that ε2 and rrms play the
most significant roles in the final value of elliptic flow, I
modeled ellipticity and rms radius fluctuations. Then, using
the smooth function k2(ntot, rrms), I explicitly obtained elliptic
flow fluctuation in terms of initial state fluctuation properties
[Eqs. (19)]. Since I do not use any specific model for the
initial state energy density, I could extract the fluctuation prop-
erties from the experimental measurements. By comparing
GUBSHYD predictions for two- and four-particle correlations
with those measured for p-p collisions, I found that the kur-
tosis of ellipticity fluctuation should be −3/4 approximately
[see Eq. (20)]. I examined two initial state models, AMPT

and TRENTO, in a wide range of parameters. None of these
models could reproduce such a significant negative value for
the kurtosis and, at the same time, a reasonable value for
rms radius fluctuation width. This observation could explain
the unsuccessful hydrodynamic predictions for c2{4} in p-p
collisions in recent studies.

Regarding the sign of c2{4}, a more realistic hydro-
dynamic simulation is essential for the future. However,
considering the validation of GUBSHYD with IEBE-VISHNU in
Sec. III and Appendix B, I would expect that the conclu-
sions based on GUBSHYD should be close to a conventional
causal hydrodynamic study. One notes that the effect of the
hydrodynamization surface becomes important at lower mul-
tiplicities. The four-particle correlation, c2{4}, is measured at
high enough multiplicities that one can ignore the impact of
the hydrodynamization surface. These remarks bring one to
conclude the following scenarios: First, the anisotropic flow in
p-p collisions can be explained by conventional hydrodynam-
ics, but there is a missing piece in the initial state models that
prevents the model from producing a large negative kurtosis
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for ellipticity fluctuation. Second, conventional hydrodynam-
ics alone cannot explain p-p collision observations while
the initial states have the correct fluctuating properties. One
candidate for the second scenario could be the presence of
hydrodynamic fluctuations [51]. In particular, in the context
of Gubser flow, it has been demonstrated that hydrodynamic
fluctuations have non-negligible effects on flow measurements
of p-p collisions [52]. This scenario is worth a more careful
study in the future.
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APPENDIX A: SIMPLE HYDRODYNAMIC MODEL BASED
ON THE GUBSER SOLUTION (GUBSHYD)

The initiation and hydrodynamic evolution in the GUBSHYD

model are based on the Gubser solution. Although the solution
is briefly mentioned in the main text, I present it with slightly
more details as it is necessary for the rest of the Appendix.

Instead of R1,3 space, one is able to employ the conformal
symmetry to represent a generic field � in dŝ2 = �−2ds2

space with � = τ . I show � in the rescaled space dŝ2 with
a hat. Depending on the mass dimension and the type of the
tensor �, the appropriate scaling should be employed as well.
For instance, a scalar quantity φ with mass dimension � is
written in dŝ2 space as φ̂ = τ�φ. In this space, the Gubser
solution with an elliptic perturbation on top of that is given
by [18–20]

ε̂ = ε̂0

cosh8/3 ρ
[1 + 4λ δ2(ρ) y(θ, φ)] + O(λ2), (A1a)

ûμ = (−1, λ δûθ , λ δûφ, 0) + O(λ2), (A1b)

where

y(θ, φ) = −
√

3

8
Y2,2 + 1

2
Y2,0 −

√
3

8
Y2,−2, (A2a)

δûi = δ̃2(ρ) ∂iy(θ, φ) + O(λ), i = θ, φ, (A2b)

and Yl,m ≡ Yl,m(θ, φ) is the spherical harmonic function. The
hydrodynamic equations are given by ∂μT μν = 0 where

T μν = (p + ε)uμuν + pημν (A3)

is the ideal stress-energy tensor and ημν = diag(−1, 1, 1, 1)
is the metric. Substituting the ansatz in Eq. (A1) into hy-
drodynamic equations and using conformal e.o.s. ε = 3p,
one obtains the following system of differential equations for
δ2(ρ) and δ̃2(ρ):

d

dρ

(
δ2(ρ)
δ̃2(ρ)

)
= −

(
0 −2sech2ρ

1 − 2
3 tanh ρ

)(
δ2(ρ)
δ̃2(ρ)

)
. (A4)

Initial isotropic in fluid velocity assumption fixes the initial
condition as

δ2(ρhyd) = 1, δ̃2(ρhyd) = 0. (A5)

This solution can be translated to hyperbolic-cylindrical coor-
dinates via

τ = 1

q

sechρ

cos θ − tanh ρ
,

r = 1

q

sin θ

cos θ − tanh ρ
. (A6)

The connection between (q, ε̂0, λ, ρhyd) and standard param-
eters (rrms, εtot, ε2, τhyd) has been discussed in the main text.
For the next step, I compute the hadronization of the above
solution.

I focus on events with size rcrit < rrms < Rcrit in which a
hydrodynamized matter, “QGP,” is formed at least in a small
region in the energy density (core) while at the tail of the en-
ergy density (corona) the system is in the hadronic phase. The
spectrum of such a system can be written as (d p ≡ d3 p/E )

dNQGP

d p
= dNcore

d p
+ dNcorona

d p
. (A7)

I assume the core part evolves with hydrodynamic equations,
while free streaming starts immediately after the initiation for
the corona part.

I employ the Cooper-Frye prescription [see Eq. (5)]
to obtain the particle distribution [g = 2(N2

c − 1) = 16 has
been chosen]. In this paper, I have considered Boltzmann
equilibrium distribution instead of a more sophisticated Bose-
Einstein/Fermi-Dirac near-equilibrium distribution.

For the core part, the particles are emitted after the
hydrodynamic evolution from freeze-out surface 
μ =
(ρ, θFO(ρ, φ), φ, η) with surface element

d
μ = − cosh2 ρ sin θFO

(
∂θFO

∂ρ
,−1,

∂θFO

∂φ
, 0

)
dρ dφ dη.

(A8)

The functionality of cos θFO(ρ, φ) for the Gubser background
solution (λ = 0) has been mentioned in Eq. (6). To obtain
anisotropy in the final particle distribution, however, one
needs to keep the elliptic perturbation. This modifies Eq. (6)
to the following:

cos θFO(ρ, φ)

= tanh ρ + 1

q

(εFO

ε̂0

)1/4
sech1/3ρ[1 + λδ2(ρ) f (ρ, φ)],

(A9)

where

f (ρ, φ) = 1

8

√
5

π
[1 + 3 cos 2φ − 6 cos2 φ cos2 θb(ρ)],

(A10)
and θb(ρ) = cos θFO(ρ, φ)|λ=0.

I start with computing the final multiplicity. Because the
Gubser solution has a more straightforward analytical form
in rescaled space dŝ2, I first calculate Eq. (5) in the rescaled
space and then I transform dNcore/d p̂ into dNcore/d p, using
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the fact that the latter has mass dimension −2 (recall d p ≡
d3 p/E ):

dN

d p
= τ 2 dN

d p̂
. (A11)

One notes that the four-momentum pμ (pμ pμ = −m2) in the
hyperbolic-cylindrical coordinate reads as

pτ = mT cosh(yp − η),

pr = pT cos(φp − φ),
(A12)

pφ = pT

r
sin(φp − φ),

pη = mT

τ
sinh(yp − η),

where (pT , φp) is the transverse momentum in the polar
coordinate, mT is the transverse mass, and yp is rapidity.
Subsequently, one obtains the momentum in dŝ2 via

p̂μ = τ 2 ∂ x̂μ

∂xν
pν, (A13)

where x̂μ = (ρ, θ, φ, η) and xμ = (τ, r, φ, η). Keeping terms
up to linear order in λ, the particle distribution for the core
part is written as

dNcore

d p
=

∫
freeze

exp

[−p̂ρ + λ p̂θ δûθ + λ p̂φδûφ

τFO TFO

]

=
∫

freeze

[
1 + λ

(
p̂θ δûθ + p̂φδûφ

τFOTFO

)]
exp

[ −p̂ρ

τFO TFO

]
,

(A14)

where∫
freeze

≡ − g

(2π )3

∫ 2π

0
dφ

∫ ρmax

ρhyd

dρ

∫ ∞

−∞
dη

× cosh2 ρ sin θFOτ 2
FO

(
p̂ρ ∂θFO

∂ρ
− p̂θ + p̂φ ∂θFO

∂φ

)
.

(A15)

The extra τFO = τ (ρ, θFO) in the measure is coming from
Eq. (A11). The relation T̂FO = τFOTFO has also been used.

To calculate the multiplicity, I concentrate on λ = 0 (back-
ground solution). In this case, the integration on η and φ in
Eq. (A14) can be performed trivially. The result reads as

dNcore

pT d pT dyp
= − g

π

∫ ρmax

ρhyd

dρ[A mT I0(β pT ) K1(α mT )

− B pT I1(β pT ) K0(α mT )] (A16)

where

A(ρ) = cosh2 ρ sin θFOτ 4
FO

[
∂θFO

∂ρ

∂ρ

∂τ

∣∣∣∣
FO

− ∂θ

∂τ

∣∣∣∣
FO

]
,

(A17a)

B(ρ) = cosh2 ρ sin θFOτ 4
FO

[
∂θFO

∂ρ

∂ρ

∂r

∣∣∣∣
FO

− ∂θ

∂r

∣∣∣∣
FO

]
,

(A17b)

α(ρ) = τFO

TFO

∂ρ

∂τ

∣∣∣∣
FO

, (A17c)

β(ρ) = τFO

TFO

∂ρ

∂r

∣∣∣∣
FO

. (A17d)

The particle distribution of the corona part can also be
obtained by the Cooper-Frye formula, where the freeze-out
surface is coincident with the hydrodynamization surface,

μ = (ρhyd, θ, φ, η):

dNcorona

pT d pT dφpdyp

∣∣∣∣
ρhyd

= − g

(2π )3

∫ 2π

0
dφ

∫ ∞

−∞
dη

∫ θ (ρhyd )

θ=π

dθ

× p̂ρ cosh2 ρhyd sin θ τ 2 dθdφdη e−p̂ρ/T̂ (ρhyd ) (A18)

where T̂ (ρhyd) = (ε̂b/C0)1/4/ cosh2/3 ρhyd is obtained
from (A1) at λ = 0 and e.o.s. ε = C0T 4. Similar to the
core part, one can trivially perform the integration on φ and
η:

dNcorona

pT d pT dyp

∣∣∣∣
ρhyd

= − g

π

∫ θ (ρhyd )

θ=π

dθ [A′ mT I0(β ′ pT ) K1(α′ mT )

− B pT I1(β ′ pT ) K0(α′ mT )] (A19)

where

A′(θ ) = cosh2 ρhyd sin θ τ 4(ρhyd, θ )
∂ρ

∂τ

∣∣∣∣
ρhyd

, (A20a)

B′(θ ) = cosh2 ρhyd sin θτ 4(ρhyd, θ )
∂ρ

∂r

∣∣∣∣
ρhyd

, (A20b)

α′(θ ) = τ 2(ρhyd, θ )

T̂ (ρhyd)

∂ρ

∂τ

∣∣∣∣
ρhyd

, (A20c)

β ′(θ ) = τ 2(ρhyd, θ )

T̂ (ρhyd)

∂ρ

∂r

∣∣∣∣
ρhyd

. (A20d)

The integrals in Eqs. (A16) and (A19) can be computed
numerically. Referring to Eq. (A7), one obtains the total
multiplicity, dNQGP/d p|λ=0, by adding the outcome of two
integrals. I have prepared the integrals in a MATHEMATICA

package as Supplemental Material [38] where the pT depen-
dent and pT integrated multiplicity in the unit rapidity are
available:

dNtotalOverPdPdyp[εtot,rrms,pT ],

dNtotalOverdyp[εtot,rrms,pT,min,pT,max]. (A21)

The total multiplicity in the unit rapidity ntot(rrms, εtot ) is ob-
tained from the second function with pT range from zero to
infinity. One can also change the parameters of final particle

054906-9



SEYED FARID TAGHAVI PHYSICAL REVIEW C 104, 054906 (2021)

distribution from yp to space-time pseudorapidity via

dN

dη
=

√
1 − m2

m2
T cosh2 y(η)

dN

dyp
,

y(η) = 1

2
log

⎛
⎝

√
p2

T cosh2 η + m2 + pT sinh η√
p2

T cosh2 η + m2 − pT sinh η

⎞
⎠. (A22)

Now by using the above and by inverting ntot(rrms, εtot ) to find
εtot(ntot, rrms), one obtains dNQGP/pT d pT dη|λ=0 and Ntot|λ=0

as a function of total multiplicity in the unit rapidity, rms
radius, transverse momentum, and space-time pseudorapidity:

dNtotalOverPdPdEta[ntot,rrms,pT ,η],

Ntotal[ntot,rrms,pT,min,pT,max,ηmin,ηmax]. (A23)

Having found the energy dependence of multiplicity, one
can translate the lower and upper bound of the system size into
multiplicity. The total energy density for a system at critical
size can be obtained from Eq. (7):

εcrit = 4π

3

(
τ 4

hydεFO
) 1

r2
crit

. (A24)

Substituting εcrit into ntot(rrms, εtot ), one obtains a critical value
for the multiplicity. Another critical value can be found by
inverting Rcrit(εtot ) [see Eq. (8)] and substituting the result into
ntot(rrms, εtot ). Both of these critical multiplicities are available
in the package,

ncrit[rrms,pT,min,pT,max],

Ncrit[rrms,pT,min,pT,max]. (A25)

The above functions are shown with thick black curves in
Fig. 3 for 0.3 < pT < 3 GeV. In massless limit m = 0, both
ntot(rrms, εtot ) and ncrit (I assume a full range pT integration)
can be obtained analytically:

ntot(rrms, εtot ) = g

C3/4
0

√
3

π3

[
τhyd ε

1/4
FO rrms ε

1/2
tot

]
,

ncrit = 4g

πC3/4
0

[
τ 3

hyd ε
3/4
FO

]
. (A26)

As can be seen in the massless limit, ncrit has no rrms depen-
dence.

Now, one can compute k2(rrms, ntot ) = (∂v2/∂ε2)|ε2=0. The
final particle distribution is obtained via

dNQGP

d p
≈ dNQGP

d p

∣∣∣∣
λ=0

+ d

dλ

dNcore

d p

∣∣∣∣
λ=0

λ. (A27)

The first term in the right-hand side is already computed. In
the second term, only the core part contributes to momentum
anisotropy at the final state. This is because I have assumed
free streaming for the corona part. Therefore, the elliptic flow
can be obtained by

v2 =
(

dNQGP

d p

∣∣∣∣
λ=0

)−1[∫
dφp cos 2φp

(
d

dλ

dNcore

d p

∣∣∣∣
λ=0

)]
λ.

(A28)

One can write the linearized dNcore/d p in Eq. (A14) with
respect to λ as follows:

dNcore

d p
= g

(2π )3

∫
dφdη

∫ ρmax(λ)

ρhyd(λ)
dρ

× [Q0eχ0 + λ(Q1 + Q0χ1)eχ0 ], (A29)

where

Q ≡ − cosh2 ρ sin θFOτ 2
FO

(
p̂ρ ∂θFO

∂ρ
− p̂θ + p̂φ ∂θFO

∂φ

)
,

χ ≡ 1

τFO TFO
[−p̂ρ + λ p̂θ δûθ + λ p̂φδûφ] (A30)

and

Q = Q0+ λQ1+ O(λ2), χ = χ0+ λχ1+ O(λ2). (A31)

For a given function f (x, t ), I employ the following calculus
identity:

d

dt

∫ b(t )

a(t )
f (x, t )dx

=
∫ b(t )

a(t )

∂ f

∂t
dx + ∂b(t )

∂t
f (b(t ), t ) − ∂a(t )

∂t
f (a(t ), t ).

(A32)

By using the above identity, the derivative of Eq. (A29) at λ =
0 is given by

d

dλ

dNcore

d p

∣∣∣∣∣
λ=0

= g

(2π )3

∫
dφdη

[(∫ ρmax(0)

ρhyd(0)
dρ eχ0 (Q1 + Q0χ1)

)

× (Q0eχ0 |ρmax(0) )ρ
′
max(0) − (Q0eχ0 |ρhyd(0) )ρ

′
hyd(0)

]
,

(A33)

where the prime in ρ ′
hyd(λ) is the derivative with respect to λ.

One notes that, by definition, cos θFO(ρmax) = 1, which imme-
diately leads to sin θFO(ρmax) = 0. Given that there is a term
containing sin θFO in Q0, the boundary term Q0eχ0 |ρmax(0) in
Eq. (A33) is identically vanishing. The second boundary term,
however, is not zero. To find ρ ′

hyd(0), one needs to compute
ρhyd at finite λ. The quantity ε̂0 up to the linear term in λ is
given by

ε̂0 = 3 εtot r2
rms

4π cosh4/3 ρhyd

(
1 + λ√

5π

)
+ O(λ2). (A34)

Noting ε = ε̂/τ 4 and substituting Eq. (A34) into Eq. (A1a),
one obtains

cosh4 ρhyd(λ) = cosh4 ρhyd(0)

×
[

1 +
(

1√
5π

+ 4y(θFO, φ)

)
λ

]
+ O(λ2),

(A35)

where in the above θFO ≡ θFO(ρhyd(0), φ). One can compute
ρ ′

hyd(0) from Eq. (A35).
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In Eq. (A33), the integration over φ and η is tedious but
analytically doable, while the integration over ρ needs to be
done numerically. Symbolically, one can write Eq. (A33) as
follows:

d

dλ

dNcore

d p

∣∣∣∣
λ=0

= g

2π
[V0(pT ) + 2V2(pT ) cos 2φp], (A36)

where V0(pT ) and V2(pT ) are two complicated functions
depending on the standard quantities including a numerical
integration over ρ. Using Eq. (A28), one finds

k2(εtot, rrms, pT ) = ∂v2

∂ε2

∣∣∣∣
ε2=0

=
√

5π

3

(
dNQGP

d p

∣∣∣∣
λ=0

)−1

V2(pT ) (A37)

where I have substituted λ = (
√

5π/3)ε2. This function and
its pT integrated version are available in the MATHEMATICA

package as Supplemental Material [38]:

k2Energy[εtot,rrms,pT ],

k2Energy[εtot,rrms,pT,min,pT,max]. (A38)

Also, by substituting εtot(ntot, rrms) into k2(εtot, rrms), I obtain
hydrodynamic response in terms of rms radius and multiplic-
ity in the unit rapidity:

k2[ntot,rrms,pT ],

k2[ntot,rrms,pT,min,pT,max]. (A39)

The second function in the above within range 0.3 < pT <

3 GeV/c has been employed to plot Fig. 3.

APPENDIX B: VALIDATION OF GUBSHYD VIA IEBE-VISHNU

The dissipative effects in both hydrodynamic evolution and
freeze-out have been ignored in the GUBSHYD model. In the
main text, I assume that the contribution of dissipative effects
on integrated v2{2} and v2{4} can be corrected via an overall
factor χ [see Eq. (12)]. I have examined this assumption by
comparing the prediction of MC-GLAUBER+GUBSHYD and MC-
GLAUBER+VISH2+1 (IEBE-VISHNU) with nonvanishing shear
viscosity over entropy density for integrated v2{2} and v2{4}
of charged pions (see Fig. 4). In this Appendix, I extend
the comparison to the following observables: pT spectrum,
differential v2{2}, and v2{4} and centrality dependence of the
multiplicity for charged pions. These comparisons lead to a
clearer picture of the accuracy of GUBSHYD and the limitations
that should be considered in the conclusions (see Ref. [53] for
a comprehensive study about the role of the dissipative effects
on anisotropic flow and pT spectrum).

The contribution of dissipative effects on elliptic flow can
be explained as follows: In the course of evolution, compared
to an ideal fluid, the initial elliptic shape of the energy den-
sity becomes more round at the presence of the dissipative
effects. Consequently, v2 fluctuates in a narrower range event
by event. This argument explains that χ in Eq. (12) should
be smaller than unity to get a reasonable agreement between
GUBSHYD and IEBE-VISHNU in Fig. 4. One notes that the dis-
sipative effects are dynamical and cannot be fully corrected

FIG. 6. Differential anisotropic flow v2{2} and v2{4} from MC-
GLAUBER+VISH2+1 and MC-GLAUBER+GUBSHYD.

via a simple scaling factor. In Fig. 6, the pT dependence of
v2{2} and v2{4} is shown where parameters are tuned as those
mentioned in Sec. III. As seen, the GUBSHYD prediction starts
deviating from IEBE-VISHNU prediction above pT ∼ 1 GeV/c,
meaning the dissipative effects have more influence on the
harder particles. Since the particles with pT � 1 GeV/c are
more abandoned, the part with pT � 1 GeV/c is less impor-
tant in integrated v2{2k} observables. As a result, a constant χ

leads to a reasonable approximation for integrated v2{2} and
v2{4}.

Now, I discuss the pT spectrum and multiplicity of charged
pions. The dissipative effects lead to entropy production and
consequently increase the number of particles in the final
state. As a result, one expects the following relation:

dNGub

d p
= χ ′ dN IdealGub

d p
, (B1)

where χ ′ should be greater than unity. The numerical value
of χ ′ has no impact on the observables I discuss in the main
text, but I analyze it here for completeness. Although the
dissipation effects act dynamically on multiplicity and cannot
be fully corrected by a constant χ ′, it is still a good approxima-
tion to assume it is a constant in a wide range of centralities,
similar to integrated v2{2} and v2{4}. By demanding that the
average of the number of charged pions in the unit rapidity,
〈dNπ±/dyp〉, is the same in the centrality range 0–80% for
GUBSHYD and IEBE-VISHNU, one finds χ ′ ≈ 1.4. Using this
number, I have plotted the pT spectrum of charged pions

FIG. 7. Charged pions pT spectrum and centrality dependence
of the charged pions multiplicity from MC-GLAUBER+VISH2+1 and
MC-GLAUBER+GUBSHYD.
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in Fig. 7 (left). As seen from the figure, the pT spectrum
of IEBE-VISHNU has a smaller slope compared to GUBSHYD.
The reason is that, similar to differential v2, the dissipative
effects are more significant at higher pT . As a result, there
is more entropy production and more particles at higher pT .

The centrality dependence of charged pion multiplicity is
depicted in Fig. 7 (right). One observes that the overall trends
of GUBSHYD and IEBE-VISHNU are in a reasonable agreement
even though the prediction from IEBE-VISHNU shows a steeper
trend.
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Rev. D 97, 091503(R) (2018).
[33] G. S. Denicol and J. Noronha, Phys. Rev. Lett. 124, 152301

(2020).
[34] A. Behtash, C. N. Cruz-Camacho, and M. Martinez, Phys. Rev.

D 97, 044041 (2018).
[35] C. Chattopadhyay, U. Heinz, S. Pal, and G. Vujanovic, Phys.

Rev. C 97, 064909 (2018).
[36] P. M. Chesler, Phys. Rev. Lett. 115, 241602 (2015).
[37] P. M. Chesler, J. High Energy Phys. 03 (2016) 146.
[38] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevC.104.054906 for the GUBSHYD model, im-
plemented into a MATHEMATICA package.

[39] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010).
[40] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz,

Comput. Phys. Commun. 199, 61 (2016).
[41] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Phys. Rev. C 64,

054901 (2001).
[42] F. G. Gardim, F. Grassi, M. Luzum, and J. Y. Ollitrault, Phys.

Rev. C 85, 024908 (2012).
[43] N. Abbasi, D. Allahbakhshi, A. Davody, and S. F. Taghavi,

Phys. Rev. C 98, 024906 (2018).
[44] H. Mehrabpour and S. F. Taghavi, Eur. Phys. J. C 79, 88 (2019).
[45] L. Yan and J. Y. Ollitrault, Phys. Rev. Lett. 112, 082301 (2014).
[46] Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang, and S. Pal, Phys. Rev.

C 72, 064901 (2005).
[47] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92,

011901(R) (2015).
[48] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C

101, 024911 (2020).
[49] H. j. Xu, Z. Li and H. Song, Phys. Rev. C 93, 064905 (2016).
[50] W. Zhao, Y. Zhou, H. Xu, W. Deng, and H. Song, Phys. Lett. B

780, 495 (2018).
[51] J. I. Kapusta, B. Muller, and M. Stephanov, Phys. Rev. C 85,

054906 (2012).
[52] L. Yan and H. Grönqvist, J. High Energy Phys. 03 (2016) 121.
[53] K. Dusling and D. Teaney, Phys. Rev. C 77, 034905 (2008).

054906-12

https://doi.org/10.1007/JHEP09(2010)091
https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.1103/PhysRevC.96.024908
https://doi.org/10.1103/PhysRevC.97.024904
https://doi.org/10.1016/j.physletb.2015.05.075
https://doi.org/10.1038/s41567-018-0360-0
https://doi.org/10.1140/epjc/s10052-019-7262-x
https://doi.org/10.1140/epjc/s10052-019-7428-6
https://doi.org/10.1016/j.nuclphysa.2018.09.071
https://doi.org/10.1103/PhysRevC.85.014911
https://doi.org/10.1103/PhysRevC.88.014903
http://arxiv.org/abs/arXiv:1404.7327
https://doi.org/10.1016/j.physletb.2017.09.077
https://doi.org/10.1016/j.physletb.2017.07.038
https://doi.org/10.1103/PhysRevC.98.024912
https://doi.org/10.1088/1742-6596/1271/1/012018
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1016/j.nuclphysb.2011.01.012
https://doi.org/10.1103/PhysRevC.84.044912
https://doi.org/10.1103/PhysRevC.90.054908
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevD.91.074027
https://doi.org/10.1103/PhysRevC.93.014909
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1007/JHEP12(2017)079
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevLett.124.152301
https://doi.org/10.1103/PhysRevD.97.044041
https://doi.org/10.1103/PhysRevC.97.064909
https://doi.org/10.1103/PhysRevLett.115.241602
https://doi.org/10.1007/JHEP03(2016)146
http://link.aps.org/supplemental/10.1103/PhysRevC.104.054906
https://doi.org/10.1016/j.nuclphysa.2010.02.015
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1103/PhysRevC.64.054901
https://doi.org/10.1103/PhysRevC.85.024908
https://doi.org/10.1103/PhysRevC.98.024906
https://doi.org/10.1140/epjc/s10052-019-6549-2
https://doi.org/10.1103/PhysRevLett.112.082301
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.101.024911
https://doi.org/10.1103/PhysRevC.93.064905
https://doi.org/10.1016/j.physletb.2018.03.022
https://doi.org/10.1103/PhysRevC.85.054906
https://doi.org/10.1007/JHEP03(2016)121
https://doi.org/10.1103/PhysRevC.77.034905

