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New effective AN interactions are proposed for the density-dependent relativistic mean-field model. The
multidimensionally constrained relativistic mean-field model is used to calculate ground-state properties of
eleven known A hypernuclei with A > 12 and the corresponding core nuclei. Based on effective NN interactions
DD-ME2 and PKDD, the ratios R, and R, of scalar and vector coupling constants between AN and NN
interactions are determined by fitting calculated A separation energies to experimental values. We propose six
new effective interactions for A hypernuclei: DD-ME2-Y1, DD-ME2-Y2, DD-ME2-Y3, PKDD-Y1, PKDD-Y2,
and PKDD-Y3 with three ways of grouping and including these eleven hypernuclei in the fitting. It is found that
the two ratios R, and R, correlate well and a good linear relation exists between them. The statistical errors
of the ratio parameters in these effective interactions are analyzed. These new effective interactions are used to
study the single-A excited states, the equation of state of hypernuclear matter, and neutron-star properties with

hyperons.
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I. INTRODUCTION

Hyperon-nucleon (YN) interaction is an important part
of baryon-baryon interactions [1-6]. It is crucial for under-
standing the structure of hypernuclei and the properties of
compact stars and vice versa, i.e., the studies of hypernu-
clear structure and compact stars are crucial for constraining
the YN interaction [7,8]. Many experiments have been car-
ried out to study hypernuclear structure at the Large Hadron
Collider (LHC), the Double Annular & Factory for Nice
Experiments (DA®NE), the Jefferson Laboratory (JLab), the
Japan Proton Accelerator Research Complex (J-PARC), the
Mainz Microtron (MAMI), the Relativistic Heavy Ion Col-
lider (RHIC), and the GSI Helmholtz Centre for Heavy Ion
Research (GSI) [9-14]. The investigations of single A, double
A [15], E hypernuclei [16,17], and antihypernuclei [18] have
provided valuable information on YN and YY interactions.
From the theory side, the SU(3) flavor symmetry, which re-
veals the relation between baryon and meson octet states, is
generally used for determining the YN interaction. With the
constraint of SU(3) flavor symmetry or experimental observ-
ables, many approaches, such as lattice QCD [19-22], the
chiral effective-field theory [23-25], the Nijmegen soft-core
model [2,26,27], the Jiilich hyperon-nucleon model [28-30],
the Skyrme Hartree-Fock model [31-33], and the relativistic
mean-field (RMF) model [34-37], have been used to study the
structure of hypernuclei based on various (effective) YN and
Y'Y interactions.
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In the RMF model proposed by Walecka [38], there are
only linear coupling terms in the interaction Lagrangian, i.e.,
mesons do not interact between themselves. Such linear cou-
plings lead to an improper description of the incompressibility
of nuclear matter and surface properties in finite nuclei. To
describe adequately these essential nuclear properties, either
nonlinear (NL) self-couplings of meson fields [39-43] or
density-dependent (DD) nucleon-meson couplings [44-50]
have been introduced in the RMF model. The NL-RMF model
has been extended and widely applied to the study of hyper-
nuclei and many effective interactions have been proposed.
However, there are much fewer DD-RMF effective interac-
tions for hypernuclei [51-58]. The effective AN interactions
were usually obtained by fitting the calculated A separation
energies to experimental values of known hypernuclei and, in
the fitting procedure, the RMF calculations were carried out
with the restriction of spherical symmetry. Yet most observed
hypernuclei are deformed and there are only a few spherical
hypernuclei. In this paper, we propose new DD effective inter-
actions for hypernuclei by using a deformed RMF model—the
multidimensionally constrained (MDC) RMF model.

The paper is organized as follows: In Sec. II, we introduce
the MDC-RMF model for A hypernuclei with density-
dependent couplings. In Sec. III, we present our results and
discuss A separation energies, deformation effects, parameter
correlations, and neutron-star properties with the new effec-
tive interactions. Finally, a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

The RMF model has been very successful in describing
properties of nuclear matter and finite nuclei in the whole

©2021 American Physical Society
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nuclear chart [59-69]. Both the NL-RMF and DD-RMF
models have been extended to the study of hypernuclei
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[34-37,51-58,70-79]. In the DD-RMF model, the Lagrangian
for a A hypernucleus is written as
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where B represents neutron, proton, or A, and My is the cor-
responding mass. o and o* are scalar-isoscalar meson fields
coupled to baryons, w* and ¢* are vector-isoscalar meson
fields coupled to baryons, p* is the vector-isovector meson
field coupled to nucleons, and A* is the photon field. €2,
Sy ﬁlw, and F,, are field tensors of the vector mesons w*,
(bﬂ’ Z)M’ and PhOtonS AR, mey (gaB), Mg+ (gG*B)’ my, (ng)7 mey
(g4B), and m, (g,p) are the masses (coupling constants) for
meson fields. The coupling constants are dependent on the
total baryonic density p",

gmB(;OU) - gmB(psat)me(x)a X = ,OU/Psat, (2)

where m represents mesons and p,, is the saturation density of
nuclear matter. g,,5(psat), the coupling constant at saturation
density, and f,,5(x) describing the density dependence are
discussed in Sec. II1.

Starting from the Lagrangian (1), the equations of motion
can be derived via the variational principle. The Dirac equa-
tion for baryons reads

[ -p+Vp+Tp+ X + B(Mp + Sp)l¥ip = €ivvip, (3)

the Klein-Gordon equations for mesons and the Proca equa-
tion for photon are

(—A+m)o = —gonpy — 8orP)»
(—A+ml)o" = —goenp}.
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—AA = epy. )

Equations (3) and (4) are coupled via the scalar, vector, and
tensor densities,

,OE = Z ’ﬁiBWiB,
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and various potentials:
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The rearrangement term X is present in the DD-RMF model
to ensure energy-momentum conservation and thermody-
namic consistency [48].

Under the mean-field and no-sea approximations, the Dirac
equation (3), the Klein-Gordon equations, and the Proca
equation (4) have been solved in different bases, including co-
ordinate space [80—83], the harmonic-oscillator basis [§4-86],
the Woods-Saxon basis [87], and the Lagrange mesh [88]. To
simplify the solving procedure of these equations, most RMF
models were developed with certain spatial symmetries im-
posed on nuclei. Note that the solution of the Dirac equation in
a three dimensional (3D) lattice was achieved recently and in
such a RMF model, the nuclei in question are not restricted by
any spatial symmetry [89,90]. In the present work, we use the
MDC-RMF model [68,91,92] in which an axially deformed
harmonic-oscillator (ADHO) basis [84] is used, the pairing
correlations are treated by the BCS approach, and the Vj
symmetry is assumed for nuclear shapes, i.e., all deformations
characterized by B,,, with even u, e.g., B20, B22, B30, B32, Bao,

., are included self-consistently. The MDC-RMF model has
been used to study the potential-energy surfaces and fission
barriers of heavy and superheavy nuclei [91-95], nonaxial
octupole Y3, correlations [96,97], the octupole correlations in
chiral doublet bands [98,99], etc.

Both NL and DD couplings have been implemented in the
MDC-RMF model for normal nuclei. The MDC-RMF model
with NL self-couplings of meson fields has been also extended
to A hypernuclei [37,75,77]. In the present work, we have
included the DD couplings in the MDC-RMF model for A
hypernuclei and, under the V; symmetry, solved Egs. (3) and

Tk =

(on = p,)Po
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054321-2



NEW EFFECTIVE INTERACTIONS FOR HYPERNUCLEI IN ...

PHYSICAL REVIEW C 104, 054321 (2021)

(4) in the ADHO basis. To keep the time-reversal symme-
try, when dealing with the unpaired baryon, we adopt the
equal filling approximation, which has been widely used in
mean-field calculations [100]. The spurious motion due to
the breaking of the translational invariance is treated by in-
cluding the center-of-mass correction E ;,,, = —(P%)/2M with
M = (A — 1)My + M, in the binding energy.

III. RESULTS AND DISCUSSIONS

In this section we determine the parameters of the coupling
constants g,,5(p") in Eq. (2) for hypernuclei based on avail-
able DD-RMF effective interactions for normal nuclei. For
the mesons in Eq. (1), one usually considers o, w, and p for
normal nuclei. In this work, we focus on single- A hypernuclei
in which o* and ¢ can be omitted because they only couple
to strange quarks according to the Okub-Zweig-lizuba (OZI)
rule. Furthermore, the electromagnetic field and p mesons
do not couple to A because the A hyperon is charge neutral
with isospin T = 0. Therefore, we are left with g, and gy
to be fixed. Many DD-RMF effective interactions have been
proposed for normal nuclei, e.g., TW99 [49], DD-MEI1 [50],
PKDD [43], DD-ME2 [101], DD [102], D*C [102], PKO1
and PKO2 [103], PKO3 [104], PKA1 [105], DD2 [106],
DDMES$ [107], DDME-X [108], DD-LZ1 [109], and DDV,
DDS, DDVT, DDST, DDVTD, and DDSTD [110]. Most of
them can provide a good description for the properties not
only of nuclear matter but also of finite nuclei around and far
from the valley of g stability. In this work we choose two
typical ones, PKDD [43] and DD-ME2 [101], in which the
density dependence in Eq. (2) is taken as

1+ by(x + dy)?
—_— m =0 Orw

A s
ﬁnN(x) - 1+ Cm(x + dm)2 (7)

e—ap(x— 1)’ m=p,

with nine parameters. Under five constraints, f,(1) =1,
fo) =1, £20) =0, f2(0) = 0, and f/(1) = £/(1), there
are four free parameters which have been adjusted to proper-
ties of nuclear matter and selected finite nuclei [43,101]. We
assume the same density dependence of g,,5(p") as that of
gmn(pV) (m = o or w). So there are two parameters g, A (Osat)
and g, (psat) to be determined.

In A hypernuclei, the single-particle potential depth for
A is about 30 MeV [111,112] and the energy splitting be-
tween spin partners in single- A states is very small compared
with that for nucleons [113—-115]. The shallow potential and
small spin-orbit splittings for A have been understood under
the following mechanisms: (i) the effective scalar and vector
boson exchange interactions with ¥ and A-isobar interme-
diate states [116]; (ii) the combined quark-gluon exchange
between the valence baryon and the nucleons of the core
[117]; (iii) a weak SU(3) symmetry breaking and a tensor
wA A coupling [118,119]. In the RMF model, the last mech-
anism has been used mostly for the study of A hypernuclei
[72,75,78,79,120,121]. According to the OZI rule, the tensor
coupling constant f, 5 is the same as that of g, and R,pap =
Sorn/8wn = —1.0 [119,122]. In the present work we follow
this convention concerning the tensor coupling between w

and A and assume fua2(p") = —gua(p”). According to the
quark model, the ratio R,, = gua (0sat)/8&mn (Psat) = 2/3 with
m=o or w [34,123,124]. These two ratios, together with
the parameters of DD-ME2 or PKDD, define completely the
DD-RMF functionals for A hypernuclei. We use DD-ME2-Y0
and PKDD-YO to label these two effective interactions. Since
they cannot give even a decent description for A separation
energies of hypernuclei with A > 12, as seen in Table I, we
adjust the ratios R, and R,, to the experimental values of A
separation energies of selected hypernuclei.

To date, A separation energies of 33 single-A hypernuclei
have been measured. Most of these hypernuclei are very light
and there are fifteen with A > 12: }\ZB, 1\2_14C, f‘lﬁN, 160,
%\SSi, 32g, f\OCa, f\l'SZV, f\gY, 139La, and iong. In the present
work, the difference of A separation energies of mirror hy-
pernuclei, (B, }2C) and (}°N, 1°0), cannot be reproduced
because A interacts with both protons and neutrons via the ex-
change of the same mesons and the charge symmetry breaking
is not enough. Therefore we select only one hypernucleus in
each pair, namely, }>C and 1°0. }*C and >N are not included
because their separation energies were measured only by us-
ing the photographic emulsion technique which should not be
trusted for hypernuclei with A > 12 [7]. To date, all effective
YN interactions used in the RMF model were obtained with
the restriction of spherical symmetry, although many of the
observed hypernuclei are deformed. In this work, we use the
MDC-RMF model and consider axial and reflection symmet-
ric deformations when adjusting the parameters of DD-RMF
effective interactions. For simplicity, the pairing correlations
are ignored.

We first calculate the ground-state properties of the core
nuclei of these eleven selected hypernuclei: !-'2C, 150, ?’Si,
g, 3Ca, 05y, 88y 1381 5 and 27Pb. The relative devia-
tions of the calculated binding energies from the experimental
values are shown in Fig. 1(a). The experimental binding ener-
gies are taken from AME2016 [125]. From Fig. 1(a), one can
see that binding energies calculated with both DD-ME2 and
PKDD are close to the experimental values for all of these
nuclei. The relative deviations from AME2016 are within
5% and the largest deviation occurs for '>C. Except >0 and
207Pb, all other nuclei are deformed, although ?\9 Ca is almost
spherical, as seen in Fig. 1(b). From MDC-RMF calculations
with PKDD and DD-ME?2, similar deformations are obtained
for ten of these eleven nuclei with ''C as an exception: ''C is
oblate with DD-ME2 but prolate with PKDD.

Based on effective NN interactions DD-ME2 and PKDD,
the mass of the A hyperon is fixed at 1115.6 MeV and the two
ratios R, and R, are determined by minimizing the average
square deviation,

calc.
BA i

N expt. . 2
1 B, — i (-xi’a)
-2 A,i s
= — s 8
x@=yg Z,- < N ) ®

where a is the ensemble of parameters to be determined (R,
and R,), i numbers each hypernucleus, B, is the separation
energy, and ABZXPL represents the experimental uncertainty.

The experimental values of BS"" and ABS" are taken from

Ref. [7] and references therein, except for f\oCa for which
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TABLE I. The calculated A separation energies B, (in MeV) for selected hypernuclei with DD-ME2-Yi and PKDD-Yi (i = 0, 1, 2, and
3) in comparison with experimental values. X2 (¥2,) represents the average least-square deviation of the calculated A separation energies of
hypernuclei in each group (all eleven hypernuclei) from the experimental values. The bold-faced B, values denote that the experimental values
of the corresponding hypernuclei are used in the parametrization fitting. See text for the grouping of hypernuclei used in the fitting. The root
mean square (rms) deviation A is given in MeV and the root of relative square (rrs) deviation 4§ is in percent. The corresponding ratios R, and
R, of the effective AN interactions together with statistical errors 0,;; and oy of R, are listed at the bottom of the table. The tensor coupling
constant fuaxn = —guwn-

DD-ME-Yi PKDD-Yi
Hypernucleus Expt. i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3
2c 11.36 +0.20 25514 10.789 10.588 10.120 25.566 10.854 10.514 10.013
Bc 12.0+0.2 28.080 12.262 12.023 11.422 27.814 11.932 11.534 10.944
INO) 13.0£0.2 27.516 12.849 12.643 12.174 27.771 13.089 12.684 12.105
2si 17.2+£0.2 34.724 17.643 17.560 17.450 34.857 17.731 17.578 17.469
328 17.5+0.5 36.814 18.865 18.895 18.827 36.341 18.824 18.695 18.640
0Ca 187+ 1.1 36.600 19.566 19.448 19.265 36.730 19.756 19.493 19.235
Sy 21.5+0.6 39.126 21.227 21.228 21.401 39.095 21.251 21.221 21.407
vV 21.8+0.3 39.429 21422 21440  21.662 39.348  21.400  21.402  21.649
Yy 23.6 +0.5 41.882 23.511 23.576 23.974 41.788 23.501 23.578 24.018
9La 251+1.2 42.691 24.306 24.479 25.215 42.226 23.987 24.295 25.210
208pp 269 +£0.8 44.489 25.687 25.893 26.746 44.029 25.337 25.694 26.729
72 2.543 1.867 0.185 2.580 1.889 0.211
12 2956.907 2.543 3.009 6.690 2954.595 2.580 3.666 9.233
A 17.175 0.711 0.672 0.668 17.048 0.816 0.712 0.716
) 98.221 3.759 3.840 4.817 97.776 4018 4.060 5.419
R, 0.667 0.366 0.417 0.577 0.667 0.367 0.464 0.659
R, 0.667 0.352 0.415 0.611 0.667 0.353 0.472 0.712
ox 0.053 0.036 0.080 0.080 0.092 0.084
O, 0.079 0.071 0.082 0.088 0.093 0.085

BS™®" and ABS®" are taken from Ref. [126]. The eleven hy- these eleven hypernuclei into three groups: (1) All of them
A . A . . : 16 P

pernuclei cover a large mass interval with A = 12-208. When (A = 12-208), (2) nine of them (, 0402111d heavier, i.e., A =

we made the fitting, it was found that the two ratios R, and ~ 16-208) and (3) only six of them (,’'Ca and heavier ones,

R,, both deviate from 2/3: The more light hypernuclei are 1., A =40-208). Based on either of the two effective NN
included in the fitting, the smaller are the two ratios. This  interactions DD-ME2 and PKDD, three new parameter sets

indicates that the in-medium AN couplings are suppressed are obtained. These six new effective interactions are labeled
by structure effects in light hypernuclei. To show such de- ~ DD-ME2-Yiand PKDD-Yi withi = 1, 2, and 3 and are listed

pendence of the deviations on the mass interval, we arrange in Table L

0.4 T T T T

0.3} 4 1

0.2

0.0

B>

—-0.1+ 4

—8— DD-ME2 | _03} —8— DD-ME2 |
A —— PKDD P —A— PKDD

0 50 100 150 200 _0'40 50 100 150 200

A A

FIG. 1. (a) The relative deviations of the calculated binding energies of '"12C, 1°Q, ?7Si, 3'3, ¥Ca, 'y, 8y, 38La, and 27’Pb from the
experimental values [125] and (b) the quadrupole deformation parameters of these nuclei. The MDC-RMF calculations are carried out with
density-dependent interactions DD-ME2 and PKDD, respectively.
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FIG. 2. (a) The calculated A separation energies compared with the experimental values and (b) the calculated quadrupole deformation
parameters with DD-ME2-Y1, DD-ME2-Y2, and DD-ME2-Y3. The experimental values of B, are taken from Ref. [7] except for ‘/‘\OCa

[126]. The inset in panel (a) shows the results for 3\1’52

corresponding core nuclei calculated with DD-MEZ2.

From Table I, one can see that, if only six medium-heavy
and heavy hypernuclei (those in Group 3) are used in the
fitting, the average deviation x> is the smallest which is
around 0.2 for both DD-ME2-Y3 and PKDD-Y3. When more
light hypernuclei are included, ¥? becomes larger and the
two ratios R, and R, become smaller. To check the overall
description of the new effective interactions for all of these
eleven hypernuclei, we calculate and list in Table I the average
deviation )Z,f" as defined in Eq. (8), the root mean square (rms)
deviation A, and the root of relative square (rrs) deviation §,

N
1 ‘. 2
A= |5 2o (B - B
i
9)
N 1. 2
5= l Z <Bi(5 _B(;\alzc>
= . )
N 5 BY

with N = 11, regardless of how many hypernuclei are used in
the fitting. Therefore, ¥3, is larger than x> for DD-ME2-Yi
and PKDD-Yi with i > 1. For example, the average deviation
%2, is 6.690 for DD-ME2-Y3 and 9.233 for PKDD-Y3. Such
large 2, values are mainly due to the fact that the uncertain-
ties of A separation energies of light hypernuclei are quite
small, AB™" = 0.2 MeV for f’lSC, 160, and 2¥Si. Compared
with )"(,“211, the rms and the rrs deviations are more adequate for
describing the agreement between the calculation and exper-
iment: A = 0.67-0.82 MeV and § = 3.8%—5.4% which are
fairly small, meaning a reasonably good agreement.

The A separation energies B, calculated with DD-ME2-Yi
(i=1, 2, and 3) are compared with experimental values in
Fig. 2(a). It can be seen that each of these three new effective
interactions can give a good description of B, for the selected
hypernuclei with an exception of 32S. Although all of these
eleven hypernuclei are used in the parametrization fitting for
DD-ME2-Y1, the light ones weigh more due to the smaller
experimental errors ABL"" (0.2 MeV). Therefore, with DD-
ME2-Y1, the calculated separation energies of the four light
hypernuclei are very close to the experimental values, while
those of heavier hypernuclei deviate more from the experi-
ment. With DD-ME2-Y3, the opposite is true: The calculated

V. The “Core” in panel (b) represents the quadrupole deformation parameters of the

B, for heavy and medium-heavy hypernuclei, which are used
in the fitting, are very close to the experiment while noticeable
discrepancies can be seen for }>'°C, and 100. As for 328, the
calculated B, with these three parameter sets are very similar
(18.865, 18.895, and 18.827 MeV) and all are considerably
larger than the experimental value (17.5 0.5 MeV). The
reason for this discrepancy is not clear to us yet.

Figure 2(b) shows the quadrupole deformation parameters
of the eleven selected hypernuclei calculated with DD-ME2-
Yi (i=1, 2, and 3) and of the corresponding core nuclei
calculated with DD-ME2. From Fig. 2(b) one can find that
the deformation parameter of a deformed hypernucleus is
always smaller than that of its normal nuclear core. This
is particularly true for light hypernuclei, e.g., ’C. Such
shape polarization effects of A have been discussed in
Refs. [75,77,127-131]. Although 2¢is obviously oblate with
B, = —0.347, 13C is spherical with DD-ME2-Yi (i = 1, 2,
and 3); such a shape change is similar to that discussed in
Ref. [75] where NL-RMF functionals were used. 3\28 is spher-
ical with DD-ME2-Y1, although its core, 3g. s moderately
deformed with 8, = 0.217. DD-ME-Y2 and DD-ME-Y3 both
predict a prolate 32§ with B, slightly smaller than that of
313, Similar discussions hold for A separation energies and
deformation parameters calculated with PKDD-Yi (i = 1, 2,
and 3) and will not be repeated.

Among the six parameter sets DD-ME2-Yi and PKDD-Yi
(i =1, 2, and 3), the two ratios R, and R, change a lot. How-
ever, they are correlated linearly with each other, as shown in
Fig. 3. We made a linear fit of these two parameters and the
relation

R, = 1.228R, — 0.097, (10)

is obtained and shown as the blue line in Fig. 3. This linear
relation can be explained as follows: In the RMF model, the
central potentials Ug (B = N or A) for A hypernuclei can be
calculated from scalar and vector potentials approximately,
—Up ~ gop0 + gupwo. With the restriction R,, = gua/&mnN
(m = o or w), one obtains

—Upr — Ry 8on0

R =
¢ —Un — gono

an
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0.8 T
¢ DD-ME2-Y1
DD-ME2-Y2
0.6 ¢ DD-ME2-Y3
O PKDD-Y1
O PKDD-Y2
5:304 [0 PKDD-Y3 A NLSH-B
PK1-Y1
A TM1-A
0.2 A DDME2D-a -
DDME2-a
* QM
0‘8.0 0.2 0.4 0.6 0.8

FIG. 3. The correlation between R, and R,, in DD-ME2-Yi and
PKDD-Yi (i = 1, 2, and 3). The blue line shows the linear relation
(10) obtained by a linear fitting of R, and R, in these six parameter
sets. Predictions from the quark model (QM), NL effective inter-
actions NLSH-B [72], PK1-Y1 [121], and TM1-A [120] and DD
effective interactions DDME2D-a [57] and DDME2-a [57] are also
shown for comparison.

Generally speaking, the potential depths, represented by
Up(0) = Ug(r)|,=0, are about 70 MeV for nucleons and 30
MeV for A. The scalar potential depth g,yo (0) for nucleons
is about —400 MeV. With these values, Eq. (11) becomes
R, ~ 1.212R, — 0.091, which is very close to Eq. (10). Simi-
lar linear behaviors between R, and R,, in nonlinear parameter
sets have been discussed in Refs. [51,121]. Several NL-RMF
effective interactions NLSH-B [72], PK1-Y1 [121], and TM1-
A [120] and DD-RMF effective interactions DDME2D-a [57]
and DDME2-a [57] are also shown in Fig. 3. They all fall
well on the line defined in Eq. (10). The ratios R, = R, = 2/3
predicted from the quark model deviate from the blue line only
slightly, as seen in Fig. 3. However, the A separation energies
calculated with the corresponding parameter sets (DD-ME2-
Y0 and PKDD-YO0) are much larger than the experimental
values as listed in Table I. This means that these two ratios
are connected strongly and correlate closely through the linear
relation (10).

Next we analyze the errors of the parameters associated
with the least-squares fitting by using the well-known strategy
for error estimates from statistical analysis [132,133]. For
each effective interaction, a physically reasonable parameter
space is defined by a confidence region around R, and R,
after normalization and the boundary of this space determines
the errors of the parameters. Since the A separation energy
is a highly nonlinear function of the parameters, the obtained
confidence region is asymmetric with respect to R, and R,,.
Given a certain value of R,, the error of R, is quite small
(less than 0.001) due to the strong correlation between the two
ratios [cf. Eq. (10)]. Therefore, we only evaluate the errors o

and oy of the independent parameter R, for each effective
interaction. As seen in Table I, of and o are smaller than
0.1 for all new effective interactions proposoed in this work.

A separation energies in single-A excited states are not
included in our fitting procedure. Next we calculate A sepa-
ration energies in deformed single- A levels and average those
from the same orbit with a fixed orbital angular momentum

[ to obtain single-A separation energies in the pa, da, fa,
and g, orbits. In Fig. 4, results calculated with DD-ME2-
Y2 and PKDD-Y2 are compared with experimental values
taken from Refs. [7,126]. It can be seen that A separation
energies in the pa, da, fa, and g, single-particle states can
be reproduced satisfactorily. For heavy hypernuclei 2°Pb and
139La, the theoretical A separation energies in the g, state
calculated with PKDD-Y?2 match the experimental values well
but those calculated with DD-ME2-Y2 are a little smaller than
the experimental values. For light hypernucleus }>C, although
it is weakly bound in the p, state from both (7, K*) and
emulsion experiments, A is unbound from the new effective
interactions DD-ME2-Y2 and PKDD-Y2.

These new effective interactions are obtained by adjust-
ments to properties of hypernuclei. The question then arises
as to how well the neutron-star properties can be described by
them. The equations of state (EoSs) and mass-radius (M-R)
relations of neutron stars are calculated with DD-ME2-Yi
(i=1, 2, and 3) and shown in Fig. 5. The octet baryons
p, n, A, ©* X% E° and E- and the leptons ¢~ and
u~ are considered. The vector coupling constants are deter-
mined by the naive quark model, i.e., 2g,z = gux = 28,n/3
for wY coupling constants and g,z = 28,z = 2g,n for pY
couplings. The scalar coupling constants ]\g(,z and g,z are
constrained by the empirical potentials Uf: ) =30 MeV and

éN )= —15 MeV [134], respectively. The EoSs calculated
with DD-ME2-Yi (i = 1, 2, and 3) are the same as that with
DD-ME?2 at low energy density where only nucleons exist.
When the energy density is larger than a certain value (about
300 MeV fm~3), hyperons appear and the EoS is softer than
that without hyperons, leading to the so-called “hyperon puz-
zle” [135,136]: Hyperons soften the EoS so that the maximum
mass of neutron stars is smaller than 2M,, which is the lower
limit of the maximum neutron-star mass as constrained from
the astrophysical observations [137,138]. It can be seen in
Fig. 5 that the larger the R,, the stiffer the EoS and the
larger the maximum mass of neutron stars. With DD-ME2-
Y1, DD-ME2-Y2, and DD-ME2-Y3, the maximum masses
of neutron stars are, respectively, about 1.4Mq, 1.5Mg, and
1.8M,, which are all smaller than 2.5M¢, with DD-ME2. The
maximum mass calculated with the upper boundary of R,
in DD-ME2-Y3 is 1.9My which is still smaller than 2M,.
One way to stiffen the EoS and thus increase the maximum
mass of hyperon stars is to introduce an additional repulsion
from the exchange of ¢ mesons in the RMF framework [139].
A systematic study of ¢-meson effects on the properties of
hyperon stars in the DD-RMF model has been carried out, and
it was found that the 2M, limit for the maximum mass can be
reached by using several relativistic density functionals with
the ¢ meson included [140].

IV. SUMMARY

We investigate the effective interactions for A hypernuclei
in the density-dependent relativistic mean-field model and
propose new parameter sets. Based on effective NN interac-
tions DD-ME2 and PKDD, the two ratios of scalar and vector
coupling constants between effective AN and NN interac-
tions, namely, R, and R,,, are optimized by fitting calculated
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A—2/3

30t 208 (b) 1

PKDD-Y2
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FIG. 4. The A separation energies inthe sx, pa, da, fa,and g, single-particle states for’}\Z hypernuclei calculated with (a) DD-ME2-Y2
and (b) PKDD-Y2, respectively. The theoretical values are average separation energies of the deformed levels from s, pa, da, fa, and ga
single-particle states. The experimental values in black dots are taken from Refs. [7,126] and shown for comparison.

A separation energies to experimental values of eleven single-
A hypernuclei with A > 12. The calculations were carried out
by using the MDC-RMF model in which deformations are al-
lowed for these hypernuclei and their normal core nuclei. With
three ways of grouping and including these eleven selected
A hypernuclei in the fitting, six new effective interactions
DD-ME2-Yi and PKDD-Yi (i = 1, 2, and 3) are obtained. The
two ratios R, and R, in these six new effective interactions
vary largely, but they are correlated well with each other and
follow closely a linear relation. The statistical error of the
independent parameter R, is estimated and the error bars are
within 0.1.

Ground-state properties of the eleven selected hypernuclei
and the corresponding core nuclei are described well by the
MDC-RMF model. For core nuclei, the calculated binding
energies agree satisfactorily with the experiment and most of
them are deformed. For hypernuclei, the calculated A separa-
tion energies are close to the experimental values with a small
average square deviation weighed by experimental uncertain-
ties. Shape polarization effects of A and the shape change of
a hypernucleus compared with its core nucleus are obvious in
the A < 40 mass region. A separation energies in single-A ex-
cited states are well reproduced although they are not used in

350 ————
DD-ME2
300f — DD-ME2-Y1
- —— DD-ME2-Y2
™ 2501 ___ pp-ME2-Y3
E 200}
B 150
=
o 100}
(a)
50t
0

0 250 500 750 1000 1250 1500
€ (MeV fm—3)

the fitting. The newly proposed effective interactions are also
used to calculate the EoS of hypernuclear matter and study
the mass and radius of neutron stars. It turns out that they
fall into the “swamp,” which is full of effective interactions
connected with the well-known “hyperon puzzle”: The lower
limit of the maximum neutron-star mass, i.e., 2Mg, cannot be
reached because the EoS is not stiff enough when hyperons
are considered.
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