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The evolution of quadrupole and octupole collectivity in neutron-deficient Xe, Ba, Ce, and Nd nuclei near the
“octupole magic” neutron number N = 56 is investigated within the mapped sdf -IBM framework. Microscopic
input is obtained via quadrupole and octupole constrained Hartree-Fock-Bogoliubov calculations, based on the
parametrization D1M of the Gogny energy density functional. Octupole-deformed mean-field ground states are
predicted for Ba and Ce isotopes near N = 56. Excitation energies of positive- and negative-parity states as well
as electric transition rates are computed with wave functions resulting from the diagonalization of the mapped
IBM Hamiltonian. The parameters of the Hamiltonian are determined via the mapping of the mean-field potential
energy surfaces onto the expectation value of the Hamiltonian in the condensate state of the s, d , and f bosons.
Enhanced octupolarity is predicted for Xe, Ba, and Ce isotopes near N = 56. The shape/phase transition from
octupole-deformed to strongly quadrupole-deformed near N = 60 is analyzed in detail.
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I. INTRODUCTION

Octupole deformation emerges in specific regions of the
nuclear chart, that correspond to “magic” proton Z and/or
neutron N numbers 34, 56, 88, and 134 around which oc-
tupole shapes are stabilized as a consequence of the coupling
between states with opposite parity that differ in the angu-
lar momentum quantum numbers j and l by � j = �l =
3 h̄. The search for permanent octupole deformation repre-
sents a central topic in modern nuclear structure physics
[1–3]. Experiments using radioactive-ion beams have found
evidence for static octupole deformation in light actinides
with N ≈ 134 [4–6] and in neutron-rich nuclei with N ≈ 88
and Z ≈ 56. Typical fingerprints of octupole deformations
are large electric octupole (E3) transition rates and low-
lying negative-parity (π = −1) states forming an approximate
alternating-parity doublet with the positive-parity (π = +1)
ground-state band [7,8]. On the other hand, there is limited
experimental information [9–18] on octupole correlations in
neutron-deficient nuclei with N ≈ Z ≈ 56 and N ≈ Z ≈ 34
as well as in the case of neutron-rich nuclei with N ≈ 56 and
Z ≈ 34. Note that N ≈ Z nuclei are close to the proton drip
line, and are currently not accessible experimentally.

From a theoretical point of view, octupole related
properties have been investigated using a variety of ap-
proaches, such as macroscopic-microscopic models [19–21],
self-consistent mean-field (SCMF) and beyond-mean-field ap-
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proaches [22–51], interacting boson models (IBM) [52–64],
geometrical collective models [65–67], and cluster mod-
els [68,69]. Octupole correlations have also been studied
within the framework of the symmetry-projected generator
coordinate method (GCM) [41,49,50,70,71]. However, those
symmetry-conserving GCM calculations are quite time con-
suming and alternative schemes, such as the use of a collective
Hamiltonian obtained via the Gaussian overlap approximation
(GOA), have also been considered [45,51].

Most of the theoretical studies already mentioned have
concentrated on nuclei with (N, Z ) ≈ (134, 88) and (88, 56).
On the other hand, octupole correlations are much less studied
in lighter nuclei with (N, Z ) ≈ (56, 56), (34, 34), and (56, 34)
[19,25,48,51,72]. An exception is made for Ref. [51], calcula-
tions for those nuclei have been carried out at the mean-field
level or have been restricted to specific spectroscopic prop-
erties. Thus, considering the renewed experimental interest
in octupole correlations, it is timely to carry out systematic
reflection-asymmetric spectroscopic calculations in those re-
gions of the nuclear chart so far not sufficiently studied.

In this work, we investigate the low-energy collective
quadrupole and octupole excitations in neutron-deficient Xe,
Ba, Ce, and Nd nuclei with N ≈ Z . Special attention is paid to
the onset of octupole deformation and to whether the octupole
“magic number” 56 is robust in the case of N ≈ Z nuclei. We
employ the SCMF-to-IBM mapping procedure [73]. Within
this approach, constrained Hartree-Fock-Bogoliubov (HFB)
calculations, based on the Gogny-D1M [74] energy density
functional (EDF), are performed to obtain the mean-field
potential energy surfaces (denoted hereafter as SCMF-PESs)
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as functions of the axially symmetric quadrupole β2 and
octupole β3 deformations. Spectroscopic properties are com-
puted via the diagonalization of the IBM Hamiltonian, with
the strength parameters determined by mapping the SCMF-
PES onto the expectation value of the Hamiltonian in the
condensate state of the monopole s (with spin and parity 0+),
quadrupole d (2+), and octupole f (3−) bosons. At variance
with the conventional IBM fit, the parameters of the model
IBM Hamiltonian are completely determined from micro-
scopic EDF calculations, which enables us to access those
nuclei where experimental data are not available.

The mapping procedure, hereafter referred to as
mapped sdf -IBM, was first employed to describe octupole
shape/phase transitions in reflection-asymmetric light
actinides and rare-earth nuclei [58,59] based on the
relativistic DD-PC1 [75] EDF as microscopic input. A similar
approach has also been applied to study the low-energy
spectroscopy of Gd and Sm nuclei using microscopic input
from Gogny-D1M EDF calculations [60]. More recently,
the mapped sdf -IBM, in combination with the Gogny-D1M
EDF, has been successfully employed in systematic studies
on the evolution of the octupole collectivity in the Ra, Th, U,
Pu, Cm, and Cf isotopic chains [61,63] and in neutron-rich
Xe, Ba, Ce, and Nd nuclei [64]. Within this context, it is
reasonable to extend the mapped sdf -IBM calculations, based
on Gogny-D1M microscopic input, to describe the low-lying
states in N ≈ Z ≈ 56 nuclei, where octupole correlations are
expected to play an essential role.

The paper is organized as follows. The theoretical pro-
cedure is outlined in Sec. II. Both the Gogny-D1M SCMF-
and mapped IBM-PESs are discussed in Sec. III. The re-
sults obtained for the spectroscopic properties of the studied
nuclei are presented in Sec. IV. In this section, attention is
paid to low-energy excitation spectra and electric transition
probabilities. Alternating-parity doublets and signatures of
the octupole shape/phase transitions are discussed in Sec. V.
Finally, Sec. VI is devoted to the concluding remarks.

II. THEORETICAL METHOD

To obtain the SCMF-PES, the HFB equation is solved
with constrains on the axially symmetric quadrupole Q̂20

and octupole Q̂30 operators [38,49]. The mean value
〈�HFB|Q̂λ0|�HFB〉 ≡ Qλ0 defines the deformation βλ (λ = 2
for quadrupole and λ = 3 for octupole), through the relation
βλ = √

4π (2λ + 1)Qλ0/(3Rλ
0A) with R0 = 1.2A1/3 fm. The

constrained Gogny-D1M calculations provide a set of HFB
states {|�HFB(β2, β3)〉}, labeled by their static quadrupole β2

and octupole β3 deformations. The corresponding SCMF en-
ergies EHFB(β2, β3) define the SCMF-PESs. Note that, since
the interaction is reflection-symmetry invariant, the HFB ener-
gies satisfy the property EHFB(β2, β3) = EHFB(β2,−β3), and
therefore only positive β3 values are considered in the plots
and the discussion. The Gogny-D1M SCMF-PES is sub-
sequently mapped onto the sdf -IBM Hamiltonian via the
procedure briefly described below.

From a microscopic point of view, IBM bosons represent
collective pairs of valence nucleons [76–78]. In principle,
one should consider both neutron and proton bosons, which

correspond to neutron-neutron and proton-proton pairs, re-
spectively, within the framework of the proton-neutron IBM
(IBM-2) [77]. However, in order to keep our approach as
simple as possible, we have employed the simpler IBM-1
framework, which does not make a distinction between proton
and neutron boson degrees of freedom.

Within the standard IBM framework, neutron-proton pairs
are not included. In medium-heavy and heavy nuclei, to
which the IBM has been mainly applied, neutrons and protons
occupy different major oscillator shells and, therefore, the
contribution of the neutron-proton coupling is expected to be
negligible. On the other hand, for N ≈ Z nuclei in addition
to the neutron-neutron and proton-proton pairs the neutron-
proton pairs should be considered, since, in this case, both
protons and neutrons can occupy similar orbits. However, this
would require the introduction of additional isospin degrees
of freedom in the IBM [79,80]. This is probably the reason
why the IBM has rarely been applied to N ≈ Z nuclei. For the
same reason, the sdf -IBM framework employed in the present
study does not consider the neutron-proton pairs.

The total number of bosons n = ns + nd + n f is equal to
half the number of valence nucleons within the neutron and
proton N, Z = 50 − 82 major shells, and is conserved for a
given nucleus. In the majority of the sdf -IBM phenomenol-
ogy, certain truncation of the boson model space has been
considered, that is, the maximum number of f bosons nmax

f
is limited to nmax

f = 1 or nmax
f = 3. In the present study, we do

not make such an assumption, but allow n f to vary between
zero and n.

The sdf -IBM Hamiltonian employed in the present study
has the form [61,63]

Ĥ = εd n̂d + ε f n̂ f + κ2Q̂2 · Q̂2 + ρL̂ · L̂ + κ3Q̂3 · Q̂3. (1)

The first (second) term on the right-hand side represents the
number operator for the d ( f ) bosons with εd (ε f ), standing
for the single d ( f ) boson energy relative to the s boson one.
The third, fourth, and fifth terms represent the quadrupole-
quadrupole interaction, the rotational term, and the octupole-
octupole interaction, respectively. The quadrupole Q̂2, angular
momentum L̂, and octupole Q̂3 operators read

Q̂2 = s†d̃ + d†s̃ + χd (d†d̃ )(2) + χ f ( f † f̃ )(2), (2a)

L̂ =
√

10(d†d̃ )(1) +
√

28( f † f̃ )(1), (2b)

Q̂3 = s† f̃ + f †s̃ + χ3(d† f̃ + f †d̃ )(3). (2c)

Note that the term proportional to (d†d̃ )(1)( f † f̃ )(1) in the
L̂L̂ term has been neglected [61]. Exception made of ρ, all
the parameters of the sdf -IBM Hamiltonian are determined,
for each nucleus, by mapping the SCMF-PES onto the cor-
responding IBM-PES [60,61]. This requires the approximate
equality EHFB(β2, β3) ≈ EIBM(β2, β3) to be satisfied in the
neighborhood of the global minimum. The IBM-PES is de-
fined as the expectation value of the sdf -IBM Hamiltonian in
the boson condensate state [81] wave function |n, β2, β3〉, i.e.,
EIBM(β2, β3) = 〈n, β2, β3| Ĥ |n, β2, β3〉, where

|n, β2, β3〉 = (n!)−1/2(b†
c )n |0〉 (3a)
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FIG. 1. SCMF-PESs, as functions of the quadrupole β2 and octupole β3 deformations, for 108–118Xe, 110–120Ba, 112–122Ce, and 114–124Nd. The
color code indicates the total HFB energies (in MeV) plotted up to 5 MeV with respect to the global minimum. The energy difference between
neighboring contours is 0.2 MeV. For each nucleus, the global minimum is indicated by a red solid circle. Results have been obtained with the
Gogny-D1M EDF.

with

b†
c = (

1 + β̄2
2 + β̄2

3

)−1/2
(s† + β̄2d†

0 + β̄3 f †
0 ). (3b)

The ket |0〉 denotes the boson vacuum, or inert core. The
doubly magic nucleus 100Sn is taken as the inert core in
the present study, hence n = (A − 100)/2 for a nucleus with
mass A. The amplitudes β̄2 and β̄3 entering the definition of
the boson condensate wave function are proportional to the
β2 and β3 deformations of the fermionic space, β̄2 = C2β2

and β̄3 = C3β3 [59,60,81] with dimensionless proportionality
constants C2 and C3. Their values are also determined by the
mapping procedure, so that the location of the global mini-
mum in the SCMF-PES is reproduced. Finally, the parameter
ρ is fixed [82] by equating the cranking moment of inertia
obtained in the intrinsic frame of the IBM [83] at the global
minimum to the corresponding Thouless-Valatin (TV) value
[84] computed with the Gogny-HFB cranking method. For a
more detailed description of the whole procedure the reader
is referred to Ref. [61]. For the numerical diagonalization of
the mapped Hamiltonian Ĥ (1), we use the computer code
ARBMODEL [85].

III. POTENTIAL ENERGY SURFACES

The Gogny-D1M SCMF-PESs obtained for the studied
Xe, Ba, Ce, and Nd nuclei are depicted in Fig. 1. A shal-
low octupole-deformed minimum is observed for the N ≈ 56
nuclei 110Ba, 112Ba, 114Ba, and 114Ce. On the other hand,
the ground states of all the considered Xe and Nd nuclei

are reflection symmetric. Nevertheless, especially for 108Xe,
110Xe, and 112Xe the SCMF-PESs are rather soft along the
β3 direction. For N � 56, the octupole minimum disappears
in all the isotopic chains while well quadrupole-deformed
ground states emerge. The SCMF-PESs resulting from the
Gogny-HFB calculations are qualitatively similar to the ones
obtained from the constrained relativistic mean-field calcula-
tions based on the DD-PC1 EDF [51]. The major difference is
that the latter predict βmin

3 = 0 for 110Ba.
The mapped IBM-PESs are plotted in Fig. 2. They re-

produce the overall features of the SCMF-PESs, such as the
location of the global minimum and the softness along the β3

direction. In comparison to the SCMF-PESs, the IBM ones
are flat especially in regions corresponding to large β2 and β3

values that are far from the global minimum. This is a com-
mon feature within the IBM framework arising from the fact
that the IBM consists of valence nucleon pairs in one major
shell, while the SCMF model involves all nucleon degrees of
freedom. For a detailed account of this problem, the reader is
referred to Ref. [63].

The parameters for the Hamiltonian (1), determined by
the mapping procedure, are shown in Fig. 3. Each parameter
exhibits a weak dependence on the neutron number N and,
in some cases, is almost constant. For most of the param-
eters, there is no striking difference in their values and N
dependence for the considered isotopic chains. For the sake of
simplicity, the parameters χ f and χ3 are assumed to have the
same magnitude χ3 = −χ f , and only the χ f value is plotted
in panel (e).
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FIG. 2. The same as in Fig. 1, but for the mapped IBM-PESs.

IV. RESULTS FOR SPECTROSCOPIC PROPERTIES

A. Excitation energies for yrast states

The low-energy excitation spectra corresponding to the
π = +1 even-spin yrast states in 108–118Xe, 110–120Ba,
112–122Ce, and 114–124Nd are plotted in Fig. 4. As can be seen
from the figure, the π = +1 excitation energies decrease with
increasing neutron number. The calculated π = +1 ground-
state (K = 0+

1 ) band for those Xe nuclei with N � 60 appear
to be more compressed than the experimental ones. The π =
+1 spectra for Ba and Ce nuclei with N � 62 agree reason-
ably well with the experiment. For Xe and Ba isotopes, the
predicted excitation energies exhibit a pronounced decrease
from N = 58 to 60, suggesting the onset of a pronounced
quadrupole collectivity. This correlates well with the features
observed in the corresponding Gogny-D1M SCMF-PESs in
Fig. 1. Note, that the SCMF-PESs become rather soft along
the β2 direction for N � 60.

The spectra corresponding to the π = −1 odd-spin yrast
states are depicted in Fig. 5. The predicted excitation energies
exhibit a weak dependence with neutron number, reaching
a minimal value around N = 56. This tendency reflects that
for that neutron number the SCMF-PESs exhibit an octupole-
deformed minimum or are notably soft along the β3 direction
(see Fig. 1). The mapped sdf -IBM predicts π = −1 levels
lower in energy than the experimental ones. Similar results
have been obtained in Ref. [51] for the odd-spin π = −1 band
centered around N = 56. However, the π = −1 excitation
energies obtained in those calculations are higher than the
present results.

B. Excitation energies for nonyrast states

The excitation energies of the non-yrast states 0+
2 , 2+

2 , and
4+

2 are shown in Fig. 6. In most cases, these states are the
lowest-spin members of the quasi-β band, interconnected by
strong E2 transitions. For 116Xe, 118Xe, 120Ba, and 122Ce, the
predicted quasi-β band is comprised of the 0+

2 , 2+
3 , and 4+

3
states. This explains the inversion of the 0+

2 and 2+
2 levels

in Fig. 6 for these particular nuclei. The predicted quasi-β
states exhibit a weak parabolic dependence as functions of
N , with a minimum around N = 56. The excitation energy of
the band-head state 0+

2 is systematically high (above 2 MeV
excitation from the ground state), overestimating the experi-
mental values for 114Xe, 116Xe, and 118Xe by a factor of two.
The mapped IBM procedure often yields excitation energies
of nonyrast states higher than the experimental ones. The
discrepancy suggest that some of the values obtained for the
Hamiltonian parameters might not be reasonable. Specifically,
for the quadrupole-quadrupole boson interaction strength we
have obtained κ2 ≈ −0.1 MeV [see Fig. 3(c)], while purely
phenomenological IBM calculations (see, for example, [87]
for 118Xe) usually employ a value for this parameter that is an
order of magnitude smaller. In the mapped sdf -IBM frame-
work, the large magnitude of the derived κ2 parameter often
leads to non-yrast π = +1 bands lying quite high in energy
with respect to the ground-state band [64]. The calculations
[87,88] with the parameters fitted to experimental data, on the
other hand, generally reproduced the observed quasi-β and
quasi-γ bands quite nicely. The values of the derived IBM
parameters, however, reflect the topology of the SCMF-PES.
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FIG. 3. Strength parameters (a) εd , (b) ε f , (c) κ2, (d) χd , (e) χ f ,
(f) ρ, and (g) κ3, of the sdf -IBM Hamiltonian (1), and the coefficients
(h) C2 and (i) C3. for the studied isotopic chains. For more details, see
the main text.

Many of the available EDFs yield SCMF-PESs with a steep
valley along the β2 direction around the global minimum. This
often requires to choose IBM parameters quite different from
those in phenomenological studies.

The predicted excitation energies for the 2+
3 , 3+

1 , 4+
3 , and

5+
1 states are shown in Fig. 7. Those states are considered

as members of the quasi-γ band, exception made of 116Xe,
118Xe, 120Ba, and 122Ce for which the 2+

2 and 4+
2 are the states

to be assigned as the even-I members of the γ band. As with
the quasi-β band, the predicted energies display a parabolic
trend centered around N = 56, whereas the band-head energy
is too high with respect to the yrast band.

C. f -boson content of the bands

We have analyzed the relevance of the octupole degree of
freedom in the predicted bands. In particular, changes in the
f -boson content in the bands with the neutron number can be
considered as signatures of shape/phase transitions involving
octupolarity. The expectation value of the f -boson number
operator 〈n̂ f 〉 for states in the ground state (K = 0+

1 ), lowest
π = −1 (K = 0−

1 ), quasi-β, and quasi-γ bands is plotted in

FIG. 4. The low-energy excitation spectra of positive-parity
(π = +1) even-spin yrast states obtained for 108–118Xe, 110–120Ba,
112–122Ce, and 114–124Nd are compared with the available experimental
data [86]. Theoretical (experimental) values are represented by filled
(open) symbols connected by solid (dotted) lines.

Fig. 8. Results are shown for Xe isotopes as illustrative exam-
ples.

As seen from Fig. 8(a), for I � 6+ the members of the
ground-state band are dominated by the positive-parity s and

FIG. 5. The same as in Fig. 4, but for the negative-parity (π =
−1) odd-spin states.
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FIG. 6. The same as in Fig. 4, but for the quasi-β band states.

d bosons, while the contribution from the negative-parity f
boson is minor (〈n̂ f 〉 < 1). In the case of transitional nuclei
with N � 58, the f -boson components start to dominate the
higher-spin states with I � 8+. The odd-I states in the K = 0−

1
band for all the Xe nuclei have expectation values which are
typically within the range 1 < 〈n̂ f 〉 < 1.5 and therefore can
be interpreted as being made of one f boson coupled to the sd
bosons space.

FIG. 7. The same as in Fig. 4, but for the quasi-γ band states.

FIG. 8. The expectation values of the f -boson number operator
〈n̂ f 〉 in the IBM wave functions corresponding to the K = 0+

1 (a) and
K = 0−

1 (b) states, the quasi-β (c) and quasi-γ (d) bands of Xe
isotopes.

In Fig. 8(c), the structure of the quasi-β band, which in-
cludes the 0+

2 , 2+
2 , and 4+

2 states, substantially differs from
one nucleus to another. For the transitional nuclei with 56 �
N � 60, the quasi-β band is considered to be of double-
octupole-phonon nature with 〈n̂ f 〉 ≈ 2. On the other hand, for
well-quadrupole deformed nuclei with N = 62 and N = 64,
the expectation value 〈n̂ f 〉 decreases and the contribution
from the f boson becomes less important. An irregularity
is observed for N = 54. However, in this case, the number
of bosons is only n = 4 and the IBM description can be
expected to be worse than for nuclei with a larger number
of bosons. Similar observations can be made for the quasi-γ
band [Fig. 8(d)], which is comprised of the 2+

3 , 3+
1 , 4+

3 , and
5+

1 states.

D. Band structure of individual nuclei

Experimental information is available for 114Xe, 116Xe, and
118Xe nuclei. This allows to assess the quality of the model
description. The partial level schemes predicted for 114Xe,
116Xe, and 118Xe are compared in Fig. 9 with the available
experimental data [86].

The nucleus 114Xe represents a transitional system between
the nearly spherical and the strongly quadrupole deformed
shapes (see Fig. 1). As can be seen from Fig. 9(a) the mapped
sdf -IBM calculations reproduce the lowest π = ±1 (K = 0±

1 )
bands reasonably well. While the observed π = +1 spectra
look harmonic, the theoretical ones exhibit rotational SU(3)
features: the ground-state band resembles a rotational band
with a moment of inertia larger than the experimental one;
both the quasi-β and quasi-γ bands are high in energy with
respect to the ground-state band; the moments of inertia for
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FIG. 9. Experimental and predicted band structures in 114Xe,
116Xe, and 118Xe.

the ground-state, quasi-β, and quasi-γ bands are almost equal
to each other. Both empirically and theoretically, the π = −1
even-I states are found above 2 MeV excitation from the
ground state.

Within the Gogny-HFB framework 116Xe displays a large
quadrupole deformation (see Fig. 1). The experimental band
structure of 116Xe is similar to the band structure of 114Xe.
The mapped sdf -IBM reproduces the ground-state and lowest

π = −1 (K = 0−
1 ) bands, though they are stretched compared

to the experimental bands. The band heads of the quasi-β and
quasi-γ bands have an excitation energy around 2.5 MeV.
In comparison with 114Xe, the predicted quasi-β band looks
more irregular, as seen, for example, from the large energy
gap between the 4+

3 and 6+
4 levels. This is a consequence of the

strong level repulsion between low-spin states due to a consid-
erable amount of shape mixing. From the experimental point
of view, the band built on the 2+

3 state is tentatively assigned
to be quasi-γ band. Such a band exhibits the staggering pat-
tern (2+

γ , 3+
γ ), (4+

γ , 5+
γ ), . . . and resembles the level structure

predicted in the rigid-triaxial rotor model [89]. In contrast, the
quasi-γ band obtained in the present calculation shows the
staggering pattern 2+

γ , (3+
γ , 4+

γ ), (5+
γ , 6+

γ ), . . . characteristic of
the γ -unstable-rotor picture [90].

Figure 9(c) displays the results obtained for 118Xe. The
K = 0±

1 bands predicted within the mapped sdf -IBM ap-
proach agree well with the experimental data. The 0+

2 state
and the band built on it are known experimentally, with a
band-head energy below 1 MeV. The quasi-γ band with the
staggering pattern, 2+

γ , (3+
γ , 4+

γ ), (5+
γ , 6+

γ ), . . . is also known
experimentally. As can be seen, the quasi-β and quasi-γ bands
are much higher than their experimental counterparts. Never-
theless, overall features of the bands, such as the moments
of inertia and energy splitting members of the bands, agree
well with the experiment. Note, that the band-head energy of
the predicted quasi-β band is slightly lower than that of the
quasi-γ band.

At this point it is worth to make a few remarks on some
of the features of the predicted spectra shown in Fig. 9. First,
the moments of inertia for the predicted ground-state bands at
low spin are systematically larger than the experimental ones,
with too low 2+

1 excitation energies and E (4+
1 )/E (2+

1 ) ratios
close to the rotor limit value 3.33. The responsible for this
behavior is the TV moment of inertia obtained in the cranking
calculation with the Gogny force. The cranking rotational
band corresponds to a very good rotor and the moment of
inertia is roughly a factor of two larger than the experimental
data. As the moment of inertia is inversely proportional to
the square of the pairing gap, the disagreement is probably
a consequence of the missing proton-neutron pairing present
in N ≈ Z nuclei and not considered in neither the cranking
calculation nor the sdf -IBM Hamiltonian. Second, for the
three Xe nuclei one observes almost degenerated 1−

1 and 3−
1

energy levels corresponding to the K = 0−
1 band with the 3−

1
slightly below the 1−

1 , which is at variance with the empirical
trend of negative parity rotational bands. Such irregularity
may suggest that there is strong configuration mixing in the
low-spin π = −1 states. It could also reflect the lack of the
dipole p boson degree of freedom with spin and parity 1− in
our model space. Its inclusion could allow a more accurate
description of the low-spin part of the 0−

1 band.

E. Electric transition rates

The electric dipole (E1), quadrupole (E2), and octupole
(E3) transition probabilities are computed using the cor-
responding operators defined as T̂ (E1) = e1(d† f̃ + f †d̃ )(1),
T̂ (E2) = e2Q̂2, and T̂ (E3) = e3Q̂3, respectively. The opera-
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FIG. 10. The calculated B(E1; 1−
1 → 0+

1 ) (a), B(E2; 2+
1 → 0+

1 )
(c), and B(E3; 3−

1 → 0+
1 ) (e) reduced transition probabilities in

Weisskopf units (W.u.), represented by the solid symbols con-
nected by lines. Experimental data for the Xe nuclei are taken from
[12,16,86,87], and are represented by the open symbols. Note that
the error bars for the experimental B(E2) rates of 114,116,118Xe are not
shown, as they are smaller than the marker size.

tors Q̂2 and Q̂3 have the same forms and parameters as those
in Eqs. (2a) and (2c). The boson effective E1 and E3 charges
e1 = 0.01e b1/2 and e3 = 0.12e b3/2 are adopted from our pre-
vious study on the neutron-rich Ba region [59,64]. The E2
boson charge e2 = 0.107 eb is fixed so that the experimental
B(E2; 2+

1 → 0+
1 ) transition rates for Xe nuclei [12,86,87] are

reproduced reasonably well. The computed B(E1; 1−
1 → 0+

1 ),
B(E2; 2+

1 → 0+
1 ), and B(E3; 3−

1 → 0+
1 ) transition probabili-

ties are shown in Fig. 10. The available experimental data
are the B(E2) transition rates for 114Xe [12], 116Xe [12], and
118Xe [87], and the B(E3) value for 114Xe [16].

The B(E1) transition probabilities obtained for Xe, Ce, and
Nd nuclei are plotted in Fig. 10(a). They exhibit a parabolic
dependence on N with a minimum around N = 56. This trend
correlates with the systematic of the E (1−

1 ) energy (see Fig. 5).
A similar trend was obtained for Xe isotopes in Ref. [51].
However, one should keep in mind that the E1 properties
may have a strong component determined by noncollective
(single-particle) degrees of freedom, which are by construc-
tion not included in the configuration space of the sdf -IBM.

TABLE I. The B(E1), B(E2), and B(E3) transition probabilities
(in W.u.) obtained for 112Xe, 114Xe, 116Xe, and 118Xe are compared
with experimental data from Refs. [12,15,16,86,87,91].

Eλ Ii I f Expt. IBM

112Xe E1 5−
1 4+

1 (1.0 ± 0.3) × 10−4 5.4 × 10−3

7−
1 6+

1 (6 ± 2) × 10−5 7.4 × 10−3

114Xe E1 3−
1 4+

1 (7.4 ± 2.1) × 10−5 2.4 × 10−5

2+
1 (2.0 ± 0.5) × 10−5 3.6 × 10−3

5−
1 6+

1 (1.6 ± 0.2) × 10−4 2.0 × 10−6

E2 2+
1 0+

1 56 ± 4 65
4+

1 2+
1 56 ± 3 90

6+
1 4+

1 43 ± 6 93
5−

1 3−
1 94 ± 11 58

7−
1 5−

1 69 ± 15 63
E3 3−

1 0+
1 77 ± 27 39

5−
1 2+

1 68 ± 17 59
116Xe E1 7−

1 6+
1 (1.4 ± 0.6) × 10−4 8.2 × 10−3

9−
1 8+

1 (9.4 ± 1.2) × 10−5 1.1 × 10−2

E2 2+
1 0+

1 72 ± 3 76
4+

1 2+
1 127 ± 5 106

6+
1 4+

1 113 ± 10 112
8+

1 6+
1 100 ± 12 108

10+
1 8+

1 113 ± 21 97
7−

1 5−
1 82 ± 44 72

9−
1 7−

1 90 ± 15 79
11−

1 9−
1 86 ± 10 79

118Xe E1 7−
1 6+

1 (2.3 ± 0.1) × 10−4 8.2 × 10−3

9−
1 8+

1 (2.2 ± 0.1) × 10−4 1.1 × 10−2

11−
1 10+

1 (1.2 ± 0.3) × 10−4 1.3 × 10−2

E2 2+
1 0+

1 76.8 ± 1.1 84
4+

1 2+
1 118 ± 2 119

6+
1 4+

1 156+7
−6 127

8+
1 6+

1 143+17
−13 125

Thus the mapped IBM framework, in its current version, does
not provide an accurate description of the E1 transitions. The
B(E2) rates in Fig. 10(b) increase monotonously with N ,
which confirms the increasing quadrupole collectivity. The 2+

1
excitation energy also becomes lower, as one approaches the
middle of the neutron major shell N = 66 (see Fig. 4).

In the case of nuclei with pronounced octupole defor-
mation effects, the B(E3; 3−

1 → 0+
1 ) transition probabilities

are expected to be large. As can be see from Fig. 10(c),
the predicted B(E3) values do not show this pattern. To
take into account the empirical isotopic dependence of the
B(E3; 3−

1 → 0+
1 ) rate, in earlier studies [63,64] we assumed

the boson effective E3 charge to have a certain boson-number
dependence. In the present study, however, we have used the
constant E3 charge e3 = 0.12 e b2/3, mainly due to the lack of
B(E3) data. The present calculations underestimate the large
experimental B(E3; 3−

1 → 0+
1 ) value for 114Xe (77 ± 27 W.u.)

[16]. The data, however, also has a large error bar.
Table I lists the B(Eλ) values for 112Xe, 114Xe, 116Xe,

and 118Xe, for which experimental data are available
[12,16,86,87,91]. For the B(E2) rates, only the data for
in-band transitions in the lowest-energy π = ±1 bands are
known. The calculations account reasonably well for the
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FIG. 11. The energy displacement δEI− (4) is plotted as a func-
tion of the neutron number. Theoretical values are connected by
lines. Experimental values [86] for the Iπ = 3−, 5−, 7−, and 9−

yrast states are represented by open squares, diamonds, and left-
and right-pointing triangles, respectively. A broken horizontal line
in each panel stands for the limit of stable octupole deformation
δEI− = 0.

B(E2; I → I − 2) values in 116,118Xe. For 114Xe, the mapped
IBM overestimates these in-band E2 transitions, which sug-
gests a much stronger quadrupole collectivity than expected
experimentally. For completeness, some B(E1) rates are also
included in the table.

V. SIGNATURES OF OCTUPOLE SHAPE
PHASE TRANSITION

A. Possible alternating-parity band structure

In order to distinguish whether the members of π = −1 ro-
tational bands are octupole-deformed or octupole vibrational
states, it is convenient to analyze the energy displacement,
defined by

δEI− = EI− − E(I+1)+ + E(I−1)+

2
, (4)

where EI− and E(I±1)+ represent the excitation energies of the
π = −1 odd-spin and π = +1 even-spin yrast states, respec-
tively. If the two lowest bands with opposite parity share an
octupole deformed band-head they form an alternating-parity
doublet and the quantity δEI− should be equal to zero. The
deviation from the limit δEI− = 0, implies that the states gen-
erating the π = ±1 bands are different in nature, and therefore
the π = −1 state has an octupole vibrational character.

The δEI− values are displayed in Fig. 11. This quantity is
close to zero for Xe, Ba, and Ce nuclei with 54 � N � 58,
especially for higher-spin states. One observes a pronounced
increase of δEI− from N = 58 to 60 in the Ba and Xe isotopes

FIG. 12. The energy ratio E (Iπ )/E (2+
1 ) is plotted as a function of

spin Iπ , with π = +1 for even-I and π = −1 for odd-I yrast states.
The available experimental data for the Xe, Ba, and Ce isotopes are
taken from [86].

and from N = 56 to 58 in the Ce isotopes. The deviation
from the limit (δEI− = 0) becomes more significant for larger
neutron numbers. Note, that for Xe and Ba isotopes, the δEI−

values agree well with the experimental ones [86].
We have also examined the energy ratio E (Iπ )/E (2+

1 ) with
π = +1 for even-I and π = −1 for odd-I yrast states. For the
ideal alternating-parity rotational band the ratio would depend
quadratically on the spin I . If the π = ±1 yrast bands are
decoupled, as in the case of octupole vibrational states, the
ratio is expected to show an odd-even-spin staggering. As
can be seen from Fig. 12, the energy ratios for the Xe, Ba,
and Ce isotopes with N < 60 increase quadratically with I .
On the other hand, a pronounced odd-even-spin staggering
occurs for N � 60. The staggering is much more pronounced
for heavier-Z isotopes. These results confirm that octupole
correlations are enhanced around N = 56 and Z = 56.
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FIG. 13. Effective quadrupole (a) and octupole (b) deformations
〈βλ〉 and fluctuations σ (βλ) in the β2 (c) and β3 (d) deformations. For
more details, see the main text.

B. Quadrupole and octupole shape invariants

We consider shape invariants [92,93] computed using
the E2 and E3 matrix elements as another signature of
shape/phase transitions. The relevant shape invariants are de-
fined as

q(λ)
2 =

∑
i

(−1)I 〈0+
1 ‖T̂ (Eλ)

∥∥Iπ
i

〉 〈
Iπ
i

∥∥T̂ (Eλ)‖0+
1 〉 , (5)

q(λ)
4 =

∑
i, j,k

〈0+
1 ‖T̂ (Eλ)

∥∥Iπ
i

〉 〈
Iπ
i

∥∥T̂ (Eλ)‖0+
j 〉

× 〈0+
j ‖T̂ (Eλ)

∥∥Iπ
k

〉 〈
Iπ
k

∥∥T̂ (Eλ)‖0+
1 〉 , (6)

where |0+
1 〉 is the sdf -IBM ground state, 〈‖(· · · )‖〉 represents

the reduced E2 (E3) matrix element and Iπ = 2+ (3−) for
λ = 2 (λ = 3). The sums in Eqs. (5) and (6) include up to ten
lowest 0+, 2+, and 3− states. The effective quadrupole and
octupole deformations

〈βλ〉 = 4π

3eZRλ
0

√
q(λ)

2 (7)

as well as the fluctuations [93]

σ (βλ) = q

(
λ

)
4 /(q(λ)

2 )2 − 1, (8)

which measure the softness along the βλ directions are shown
in Fig. 13.

The steady increase of 〈β2〉 in Fig. 13(a), corroborates the
increasing quadrupole collectivity along the considered iso-
topic chains. In contrast, the 〈β3〉 values, in Fig. 13(b), change
much less with N . The fluctuations σ (β2), in Fig. 13(c),
appear to reach a maximum around N = 56, and show a
notable decrease from N = 56 toward N = 60. Note, that

the corresponding SCMF-PESs become more rigid along the
β2 direction from N = 56 on, and a more distinct prolate
minimum appears (see Fig. 1). This result is also consistent
with the behavior of the predicted π = +1 energy spectra,
which suggest the onset of strongly quadrupole deformed
shapes at N ≈ 60 (see Fig. 4). As seen in Fig. 13(d), the
fluctuations σ (β3) are systematically larger in magnitude than
σ (β2). The σ (β3) values also exhibit a significant variation for
54 � N � 62. The behavior of the σ (β3) fluctuations reflect
a considerable degree of octupole mixing and an enhanced
octupole collectivity.

VI. SUMMARY

The quadrupole-octupole coupling in the low-lying states
of neutron-deficient Xe, Ba, Ce, and Nd nuclei has been
studied within the mapped sdf -IBM framework. The strength
parameters for the sdf -IBM Hamiltonian have been obtained
via the mapping of the (microscopic) axially symmetric
(β2, β3)-PESs, obtained from constrained Gogny-D1M HFB
calculations, onto the expectation value of the IBM Hamil-
tonian in the condensate state of the s, d , and f bosons.
Excitation spectra and electric transition probabilities have
been obtained by the diagonalization of the mapped Hamil-
tonian.

The Gogny-D1M SCMF-PESs for nuclei near the neutron
octupole “magic number” N = 56 are notably soft along the
β3 direction. An octupole-deformed mean-field ground state
has been obtained for 110Ba, 112Ba, 114Ba, and 114Ce. Be-
yond the HFB level, the systematic of the properties of the
positive parity states points towards an increased quadrupole
collectivity with increasing neutron number. A notable change
is found in Xe and Ba isotopes with N = 58 and 60. The
negative parity yrast states exhibit a parabolic behavior as
functions of N with a minimum around N = 56. More-
over, the predicted π = ±1 yrast bands form an approximate
alternating-parity doublet for most of the Xe isotopes as
well as Ba and Ce nuclei in the vicinity of N = 56. An-
other signature of octupole correlations can be associated
with the large fluctuations of the effective β3 deformation
around N = 56.

We have further assessed the predictive power of the
mapped sdf -IBM to describe spectroscopic properties in the
N ≈ Z mass region. The excitation energies of the π = ±1
yrast bands agree reasonably well with the available ex-
perimental data for Xe and Ba nuclei. However, nonyrast
π = +1 bands have been predicted much higher in energy
than the experimental ones. This indicates that certain exten-
sions of the model are required to improve the description
of nonyrast bands in regions of the nuclear chart where oc-
tupolarity plays a role. A reasonable approach to address
this problem is to identify whether the deficiency in the
model description of the nonyrast π = +1 bands is due to
the deficiencies of the chosen EDF for the mass region un-
der study, or that the employed sdf -IBM Hamiltonian lacks
important degrees of freedom, or a combination of the two.
Work along these lines is in progress and will be reported
elsewhere.
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