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Robustness of “noncollective” rotational behavior for nuclei in the presence of random interactions
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We investigate the robustness of “noncollective” rotational behavior for nuclei with random two-body inter-
actions in the framework of nuclear shell model. The normal I (I + 1) behavior of average excitation energy
of yrast states is universal for both even-nucleon and odd-nucleon systems by two-body random ensemble. In
some special random samplings, especially the samplings with spin-Imax ground state, the inverse noncollective
rotational behavior is found for both even-nucleon and odd-nucleon systems in this paper. Interestingly, above
rotational behaviors are still robust in the presence of random two-body interactions plus realistic single-particle
energies.
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I. INTRODUCTION

In 1997, the dominance of the spin-zero ground state for
even-even nuclei in the presence of random interactions was
found [1]. This discovery provides us with a new clue to
study the low-lying states of quantum many-body systems
in the presence of random interactions (see the reviews in
Refs. [2–5]).

The two-body random ensemble (TBRE) model, i.e., the
embedded Gaussian orthogonal ensemble (EGOE) [6] of ran-
dom matrices with two-body interactions [7–9], is one of the
important approaches to study quantum many-body systems.
Many efforts have been made to understand the dominance
of the 0+ ground state and ordered yrast spectra via the TBRE
[10–21]. It has been found that the dominance of the spin-zero
ground state is attributed to some two-body matrix elements
(TBME) [10,11]. The dominance of the spin-zero ground state
is also explained by the geometric chaoticity of the spin cou-
pling of individual particles [15,16] and group symmetries of
the TBRE [13,14]. The phenomenon of positive-parity ground
states being dominant have been observed and explained by
the different dimensions of Hilbert spaces of either parity
[17,18]. For some simple systems, the probability of spin-I
to be the ground state is related to the geometry of the eigen-
values [12]. It is also found that the energy of yrast states is
related to the energy centroid and spectral widths [19–21].

In recent years, the structure of yrast states via the TBRE
Hamiltonian has been studied based on random samplings
with spin-zero ground state. For sd-boson systems, both vi-
brational and rotational band structures [22,23] are found in
the framework of the interacting boson model (IBM) [24].
However, for fermion systems, there is no obvious collective
behavior of vibration and rotation among the yrast states in
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the full space of the nuclear shell model [25]. Even in the
truncated space of the nucleon pair approximation of the
shell model, only in the Hamiltonian containing the strong
quadrupole-quadrupole components will there be a rotational
collectivity [26]. Another interesting phenomenon has been
found in the full shell-model space; that is, for even-even
nuclei, the energy of the yrast state by averaging over the
spin-zero ground state subset of the TBRE is approximately
proportional to I (I + 1) [1]. This I (I + 1) behavior is called
the “noncollective” rotation behavior in nuclear spectroscopy.

In the random samplings of TBRE, about 40%–70% of the
samples have a spin-zero ground state, and there are still many
samples with a spin-nonzero ground state. Recently, it was
observed that the yrast states are highly correlated in random
samplings with a spin-nonzero ground state for sd bosons in
the IBM model [27]. On the other hand, the probability that
the state with the maximum spin Imax is the ground state is
considerably large for identical-nucleon systems in a single- j
shell model [10,15]. It is therefore interesting to study whether
the noncollective rotational behavior is still right in random
samples where the spin-nonzero (or spin-Imax) state is the
ground state. We will prove in this paper that this noncollec-
tive rotational behavior is robust by using the TBRE in the
full shell-model space, regardless of whether the ground-state
spin is zero or not. In addition, we show that the average
energy of yrast state decreases with I (I + 1) for some special
random samplings of the TBRE, which is called the inverse
noncollective rotational behavior in this paper.

This paper is organized as follows: In Sec. II we intro-
duce briefly the theoretical framework of the TBRE in the
shell model, including the cases of the single- j shell and
the many- j shell. In Sec. III, we calculate energy levels of
both even-nucleon and odd-nucleon systems. We classify the
random samplings of the TBRE (without and with realistic
single-particle energies) into four different cases, and discuss
the noncollective rotational behavior and its inverse behavior
for the yrast states. In Sec. IV we summarize this paper.
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FIG. 1. Average excitation energy of yrdast states (the lowest
state for a given I) 〈EI〉 (in MeV) as a function of I (I + 1) for (a) four
fermions in j = 15/2 shell, (b) four fermions in j = 21/2 shell,
(c) four fermions in j = 31/2 shell and (d) six fermions in j = 17/2
shell. Results with Eg.s. = E0 < EImax (Case 1) and Eg.s. < E0 < EImax

(Case 2) are shown in blue triangles and red circles, respectively. The
lines are plotted by using linear fitting for different cases.

II. TWO-BODY RANDOM ENSEMBLE

In this paper, we carry out the shell-model calculations
using the shell-model code developed by the Kyushu group
[28–30] under the TBRE. For a single- j shell, the Hamiltonian
with angular moment I can be written as follows:

ĤI =
2 j−1∑

J=0,even

√
2J + 1GJ [AJ† × ÃJ ]0, (1)

where AJ† = 1√
2
[a†

j a
†
j ]

J and ÃJ = − 1√
2
[̃a jã j]J . The parame-

ters GJ are random values which follow the standard normal
distribution, i.e.,

ρ(GJ ) = 1√
2π

exp
(−G2

J/2
)
, J = 0, 2, . . . , 2 j − 1. (2)

The shell-model Hamiltonian with realistic interactions for
a multi- j shell consists of a one-body term and a two-
body-term, which are derived from the average shell-model
potential and the residual two-body interaction, respectively.
Its expression is

H =
∑
jmmt

ε jmt a
†
jm,mt

a jm,mt

+ 1

4

∑
j1 j2 j3 j4,JT

GJT ( j1 j2; j3 j4)A†( j1 j2)JT
MJ MT

A( j3 j4)JT
MJ MT

,

(3)

TABLE I. The probabilities P (in %) of four cases in the ran-
dom sampling of TBRE for different many-nucleon systems. The
subscripts 1, 2, 3, and 4 of the symbol P correspond to even-nucleon
systems, and the subscripts in parentheses (1′, 2′, 3′, and 4′) corre-
spond to odd-nucleon systems.

Single jn P1 P2 P3 P4

(15/2)4 48.51 33.13 11.99 6.37
(21/2)4 44.93 39.80 8.52 6.75
(31/2)4 27.47 58.35 6.36 7.83
(17/2)6 62.67 22.77 11.96 2.59
Even-even nuclei P1 P2 P3 P4

22Ne 34.84 62.03 0.77 2.36
26Si 51.45 46.18 0.74 1.63
44Ti 52.79 46.17 0.54 0.51
46Cr 37.28 62.17 0.11 0.44
Odd-mass nuclei P1′ P2′ P3′ P4′

23Mg 20.01 78.32 0.24 1.44
23Si 27.11 72.69 0.00 0.20
45Sc 21.00 78.59 0.04 0.37
45Ti 18.18 81.48 0.03 0.31

with

A†( j1 j2)JT
MJ MT

=
∑

m1m2mt1 mt2

( j1m1, j2m2|JMJ )

×
(

1

2
mt1 ,

1

2
mt2 |T MT

)
a†

j1m1,mt1
a†

j2m2,mt2
,

A( j3 j4)JT
MJ MT

= (
A†( j1 j2)JT

MJ MT

)†
. (4)

Here, ( j1m1, j2m2|JMJ ) is the Clebsch-Gordan coefficient.
The operators J and T denote the total spin and isospin for
one particle in the j1 orbit and another one in the j2 orbit.
The coefficient GJT ( j1 j2; j3 j4) refers to the two-body matrix
element (TBME).

In the TBRE, the single-particle energies ε jmt are set to
be zero, and the two-body matrix elements GJT ( j1 j2; j3 j4)
belong to Gaussian orthogonal ensemble (GOE) and satisfy
the following condition:

ρ(GJT ( j1 j2; j3 j4)) = 1√
2πσ

exp

(
−GJT ( j1 j2; j3 j4)2

2σ 2

)
,

(5)

where σ is equal to 1 for diagonal two-body matrix elements
and

√
1/2 for off-diagonal ones, i.e.,

σ 2 = 1
2 (1 + δ j1 j2; j3 j4 ). (6)

III. RESULTS AND DISCUSSIONS

In this section, based on the TBRE in the full shell-model
space, we study the yrast band structure of many-nucleon
systems. The many-nucleon systems studied in this paper
include the even-nucleon systems of single- j shell (that is,
four fermions in the j = 15/2, j = 21/2, and j = 31/2 shell,
and six fermions in the j = 17/2 shell), the even-even nuclei
(22Ne, 26Si, 44Ti, and 46Cr) and the odd-mass nuclei (23Mg,
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FIG. 2. Same as Fig. 1 except for even-even nuclei (a)22Ne,
(b)26Si, (c)44Ti, and (d)46Cr.

23Si, 45Sc, and 45Ti) in the sd and p f shell. We perform more
than 10 000 sets of a TBRE Hamiltonian for each many-
nucleon system.

The energy of yrast states monotonically increases with
spin for the noncollective rotational behavior on average,
which means normal ordering of spin in the yrast band [31].
Based on this point, we classify the random samplings of the
TBRE of even-nucleon system (or odd-nucleon system) into
four different cases: in Case 1 (1′), the ground-state energy
Eg.s., the lowest energy of the spin-zero (or spin- 1

2 ) state E0

(E 1
2
), and the lowest energy of spin-Imax state satisfy the fol-

lowing relationship: Eg.s. = E0 < EImax (Eg.s. = E 1
2

< EImax );
in Case 2 (2′), Eg.s. < E0 < EImax (Eg.s. < E 1

2
< EImax ); in Case

3 (3′), Eg.s. = EImax < E0 (Eg.s. = EImax < E 1
2
); and in Case
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FIG. 3. Same as Fig. 1 except for odd-mass nuclei (a)23Mg,
(b)23Si, (c)45Sc, and (d)45Ti. Results with Eg.s. =E 1

2
< EImax (Case 1′)

and Eg.s. < E 1
2

< EImax (Case 2′) are shown in blue and red,
respectively.
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FIG. 4. The probability density distribution of R for (a) four
fermions in j = 31/2 shell, (b) six fermions in j = 17/2 shell,
(c)22Ne, (d)46Cr, (e)23Mg, and (f)45Sc in Case 1 (1′) and Case 2 (2′),
respectively.

4 (4′), Eg.s. < EImax < E0 (Eg.s. < EImax < E 1
2
). The probabil-

ity of these cases in the random samplings of the TBRE is
denoted by P1(1′ ), P2(2′ ), P3(3′ ), and P4(4′ ), respectively. And
their values are summarized in Table I for the even-nucleon
systems of single- j shell and realistic nuclei of a multi- j
shell. One can see in this table that the sum of P1(1′ ) and
P2(2′ ) is greater than 81% for single- j shell systems (e.g.,
P1 + P2 = 81.64% for four fermions in the j = 15/2 shell)
and 96% for the realistic nuclei (e.g., P1 + P2 = 96.87% for
22Ne and P1′ + P2′ = 98.33% for 23Mg). This indicates that
the random samplings with E0( 1

2 ) < EImax [i.e., Case 1 (1′)
and Case 2 (2′)] are dominant for all the many-nucleon sys-
tems. The probability of random samplings with E0( 1

2 ) > EImax
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FIG. 5. Same as Fig. 1 except for the random samplings based
on Case 3 (in blue) and Case 4 (in red).

054319-3



J. J. SHEN, H. JIANG, AND G. J. FU PHYSICAL REVIEW C 104, 054319 (2021)

TABLE II. The Pearson product-moment correlation coefficients
(denoted by C) of Case 1 (1′) and Case 2 (2′) in the random sam-
pling of TBRE for different many-nucleon systems. The subscripts
1 and 2 of the symbol C correspond to even-nucleon systems, and
the subscripts in parentheses (1′ and 2′) correspond to odd-nucleon
systems.

Single- jn C1 C2

(15/2)4 0.966 0.964
(21/2)4 0.974 0.953
(31/2)4 0.970 0.940
(17/2)6 0.991 0.992
Even-even nuclei C1 C2

22Ne 0.986 0.961
26Si 0.998 0.979
44Ti 0.986 0.960
46Cr 0.982 0.964
Odd-mass nuclei C1′ C2′

23Mg 0.984 0.969
23Si 0.986 0.962
45Sc 0.986 0.972
45Ti 0.980 0.962

[i.e., Case 3 (3′) and Case 4 (4′)] is small. And, as we will
see later, since Case 3 (3′) and Case 4 (4′) do not satisfy the
normal ordering of spins, they do not satisfy the noncollective
rotational behavior.

Below we first discuss the robustness of noncollective ro-
tational behavior based on the random samplings of Case 1
(1′) and Case 2 (2′). Then we go to discuss the inverse noncol-
lective rotational behavior based on the random samplings of
Case 3 (3′) and Case 4 (4′). Finally, we discuss the robustness
of above rotational behavior in the framework of the TBRE
with realistic single-particle energies.

A. The noncollective rotational behavior

In Ref. [1], the noncollective rotational behavior of the
yrast band was studied in the TBRE of even-even nuclei with
spin-zero ground state. In this section, we study the robust-
ness of this behavior for both even-nucleon and odd-nucleon
systems, based on the random samplings of ground states
with the lowest spin [i.e., Case 1 (1′)] and the nonlowest spin
[Case 2 (2′)]. Here, for even-nucleon system, the lowest spin
is 0; for odd-nucleon system, the lowest spin is 1

2 .
The average energies 〈EI〉 of the yrast states as a function

of I (I + 1) for even-nucleon systems in the single- j shell,
even-even nuclei, and odd-mass nuclei are shown in Figs. 1–3,
respectively. The blue and red lines in the figures are linear fit-
ting lines for different cases. It can be seen that 〈EI〉 increases
with the increase of I (I + 1) and has a good linear correlation
for both Case 1 (1′) and Case 2 (2′). The line of Case 1 (1′)
lies overall above that of Case 2 (2′). This indicates that the
average energy of Case 1 (1′) is generally higher for the same
spin state.

To investigate the degree of linear dependence between
〈EI〉 and I (I + 1), we calculate their Pearson product-moment

TABLE III. The average ground-state gaps [�E1 (�E1′ ) and �E2

(�E2′ ) in MeV] of different many-nucleon systems. The subscripts
1 and 2 of the symbol �E correspond to even-nucleon systems, and
the subscripts in parentheses (1′ and 2′) correspond to odd-nucleon
systems.

Single- jn �E1 �E2

(15/2)4 0.720 0.251
(21/2)4 0.678 0.219
(31/2)4 0.601 0.199
(17/2)6 0.863 0.248
Even-even nuclei �E1 �E2

22Ne 0.792 0.571
26Si 0.836 0.523
44Ti 0.656 0.432
46Cr 0.542 0.386
Odd-mass nuclei �E1′ �E2′

23Mg 0.424 0.646
23Si 0.650 0.629
45Sc 0.323 0.348
45Ti 0.312 0.297

correlation coefficients [32] (denoted by C), shown in Table II.
The absolute value of C ranges from 0 to 1, where 0.8–1.0 is a
very strong correlation, 0.6–0.8 is a strong correlation, 0.4–0.6
is a moderate correlation, and 0.2–0.4 is a weak correlation.
According to our calculations in Table II, C values between
〈EI〉 and I (I + 1) are close to 1 for both Case 1 (1′) and
Case 2 (2′). This demonstrates that the very strong linear
correlation (that is, the robustness of noncollective rotational
behavior) between 〈EI〉 and I (I + 1) for both even-nucleon
and odd-nucleon systems, based on the random samplings of
ground states with the lowest spin [i.e., Case 1 (1′)] and the
nonlowest spin [Case 2 (2′)]. It is interesting that C1 (C1′ ) is
always a little bigger than C2 (C2′), which is attributed to the
disordering of spin for ground state in Case 2 (2′).

In Table III, we compare the average ground-state gaps
of the first-excited state of Case 1 (1′) and Case 2 (2′) in
the random sampling of TBRE for different many-nucleon
systems, which are denoted �E1 (�E1′) and �E2 (�E2′).
One sees that the gaps with spin-zero ground state (�E1)
are always larger than the gaps with spin-nonzero ground
state (�E2) for even-nucleon systems, which is in accordance
with the result of Ref. [1]. However, the relationship of the
average ground-state gaps is unstable for �E1′ and �E2′ of
odd-nucleon systems.

For fermion systems, it is reported in the literature [25] that
there is no obvious collective behavior of vibration and rota-
tion among the yrast states in the nuclear shell model, by using
the traditional energy-level ratio R42 = (E4 − Eg.s.)/(E2 −
Eg.s.). The value of R42 is sensitive to the spin of the ground
state and the ground-state gap. According to Figs. 2 and 3 and
Table III, one can see that there is a slight difference in the
slope between the blue lines [Case 1 (1′)] and the red lines
[Case 2 (2′)], which is mainly due to the difference in the
ground-state gap and ground-state spin. This indicates that the
yrast structures of these cases are different for low-spin states
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TABLE IV. Same as Table II except for the random samplings
based on Case 3 (3′) and Case 4 (4′).

Single- jn C3 C4

(15/2)4 −0.960 −0.381
(21/2)4 −0.925 −0.732
(31/2)4 −0.845 −0.615
(17/2)6 −0.985 −0.658
Even-even nuclei C3 C4

22Ne −0.990 −0.592
26Si −0.995 −0.635
44Ti −0.899 −0.568
46Cr −0.993 −0.683
Odd-mass nuclei C3′ C4′

23Mg −0.990 −0.698
23Si −0.961 −0.570
45Sc −0.987 −0.458
45Ti −0.886 −0.731

and similar for high-spin states. Therefore, we define a new
kind of energy-level ratio R here as an indicator to study the
yrast structure of high-spin states as follows:

R = EImax − Eg.s.

EImax−2 − Eg.s.
. (7)

The probability density distribution of R for both even-
nucleon and odd-nucleon systems are presented and compared
in Fig. 4. As you can see, the distribution peaks of random
sampling in Case 1 (1′) almost coincide with those in Case
2 (2′). This indicates that high-spin states in Case 1 (1′) and
Case 2 (2′) have similar yrast structures. Therefore, the results
in Fig. 4 show the robustness of noncollective rotational be-
havior from another perspective.

B. The inverse noncollective rotational behavior

The probability of random samplings with EImax < E0

(EImax < E 1
2
) [i.e., Eg.s. = EImax < E0 (Eg.s. = EImax < E 1

2
) in

Case 3 (3′) and Eg.s. < EImax < E0 (Eg.s. < EImax < E 1
2
) in Case

TABLE V. The Pearson product-moment correlation coefficients
(denoted by C) of Case 1 (1′), Case 2 (2′), Case 3 (3′), and Case 4
(4′) in the random sampling of TBRE with realistic single-particle
energies.

Even-even nuclei C1 C2 C3 C4

22Ne 0.952 0.898 −0.996 −0.507
26Si 0.983 0.973 −0.994 −0.637
44Ti 0.989 0.949 −0.979 −0.552
46Cr 0.950 0.908 −0.984 −0.619
Odd-mass nuclei C1′ C2′ C3′ C4′

23Mg 0.939 0.906 −0.989 −0.642
23Si 0.971 0.952 −0.943 −0.572
45Sc 0.953 0.901 −0.900 −0.356
45Ti 0.944 0.875 −0.926 −0.667
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FIG. 6. Same as Fig. 2 except for the random samplings based
on Case 3 (in blue) and Case 4 (in red).

4 (4′)] is small (see Table I). However, the average energy
〈EI〉 based on these random samples presents another inter-
esting phenomenon with respect to I (I + 1). Our results of
even-nucleon systems in single- j shell, even-even nuclei and
odd-mass nuclei are presented in Fig. 5, Figs. 6 and 7, respec-
tively. As you can see, 〈EI〉 decreases as I (I + 1) increases
in general. This behavior is called the inverse noncollective
rotational behavior in this paper. The corresponding Pear-
son coefficients C are shown in Table IV. One sees that the
Pearson correlation coefficients C3 (C3′ ) are around −0.84 to
−0.99 in Case 3 (3′). This indicates a very strong negative
linear correlation (i.e., the inverse noncollective rotational be-
havior) between 〈EI〉 and I (I + 1) for both even-nucleon and
odd-nucleon systems in Case 3 (3′). However, in Case 4 (4′),
this linear correlation is unstable, with coefficients C4 (C4′)
ranging from −0.38 to −0.73. Since the ground-state spin of
Case 4 (4′) is between the maximum and minimum, the lowest
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FIG. 7. Same as Fig. 3 except for the random samplings based
on Case 3′ (in blue) and Case 4′ (in red).
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FIG. 8. Same as Figs. 2 and 3 except for the results of the TBRE with realistic single-particle energies. Here, panels (a)22Ne, (b)26Si,
(c)44Ti, and (d)46Cr present results of Case 1 (in blue) and Case 2 (in red); panels (a′) 23Mg, (b′) 23Si, (c′) 45Sc, and (d′) 45Ti correspond to Case
1′ (in blue) and Case 2′ (in red).

value of 〈EI〉 usually occurs in the state with medium spin.
From Figs. 5–7, the inverse noncollective rotational behavior
for Case 4 (4′) is robust from low spin state to medium spin
state.

C. The rotational behaviors in the presence of the two-body
random ensemble plus realistic single-particle energies

In the above calculations of the TBRE, the single-particle
energies are set to zero. Then, are the noncollective rotational
behavior and its inverse behavior still robust under the TBRE
plus realistic single-particle energies? To answer this question,
we recalculate the average energies 〈EI〉 of the yrast states
as a function of I (I + 1) for even-even nuclei and odd-mass
nuclei by using the realistic single-particle energies of USDB
[33] interactions for the sd shell nuclei and the GXPF1 [34]
interactions for the p f shell nuclei. Our results of random
samplings in Case 1 (1′) and Case 2 (2′) are shown in Fig. 8,
and those in Case 3 (3′) and Case 4 (4′) are in Fig. 9. One sees
that the I (I + 1) regularities are still robust in the presence of
realistic single-particle energies plus random two-body inter-
actions. The corresponding linear dependence between 〈EI〉
and I (I + 1) are quite good in Case 1 (1′), Case 2 (2′), and
Case 3 (3′) (see the Pearson coefficients C in Table V).

IV. SUMMARY

To summarize, in this paper we study the noncollective
rotational behavior and its inverse behavior of the yrast bands
via the TBRE Hamiltonian in the full shell-model space
(without and with realistic single-particle energies) for both
even-nucleon and odd-nucleon systems. We classify the ran-
dom samplings of the TBRE into four different cases: In
Case 1 (1′), Eg.s. = E0 < EImax (Eg.s. = E 1

2
< EImax ); in Case

2 (2′), Eg.s. < E0 < EImax (Eg.s. < E 1
2

< EImax ); in Case 3 (3′),
Eg.s. = EImax < E0 (Eg.s. = EImax < E 1

2
); and in Case 4 (4′),

Eg.s. < EImax < E0 (Eg.s. < EImax < E 1
2
).

The random samplings with E0 < EImax (E 1
2

< EImax ) [i.e.,
Case 1 (1′) and Case 2 (2′)] are dominant for all the many-
nucleon systems. Based on random sampling of these two
cases, it is found that there is a very strong positive linear
correlation between 〈EI〉 and I (I + 1) for both even-nucleon
and odd-nucleon systems. That is to say, the noncollective
rotation behavior is robust regardless of whether the ground-
state spin is the lowest angular momentum. We define a new
kind of energy-level ratio R and compare its probability den-
sity distribution between Case 1 (1′) and Case 2 (2′). It can
be seen from the distribution peaks of random sampling that

0 50 100

0

2

4 (a)

0 50 100 150
-1
0
1
2
3 (b)

0 50 100 150

0

1

2 (c)

0 100 200

0

2

4
(d)

0 200 400

0

2

4 (a')

0 100 200 300

 I(I+1)

0

1

2

3 (b')

0 200 400 600

0

2

4 (c')

0 200 400 600 800

0

2

4

6 (d')

FIG. 9. Same as Fig. 8 except for the random samplings based on Case 3 (3′) (in blue) and Case 4 (4′) (in red).
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the high-spin states in Case 1 (1′) and Case 2 (2′) have similar
yrast structures.

Case 3 (3′) and Case 4 (4′) with E0 > EImax (E 1
2

> EImax ) do
not satisfy the normal ordering of spins. The probability of
random samplings in these two cases is small. It is interesting
that the average excitation energies of yrast states 〈EI〉 in these
two cases basically decrease with the increase of I (I + 1). In
particular, 〈EI〉 and I (I + 1) have a very strong negative linear

correlation in Case 3 (3′). We call this behavior the inverse
noncollective rotational behavior.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of
China under Grants No. 11875188 and No. 12075169. Discus-
sions with Professor Y.M. Zhao are gratefully acknowledged.

[1] C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev. Lett.
80, 2749 (1998).

[2] Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rep. 400, 1
(2004).

[3] V. K. B. Kota, Phys. Rep. 347, 223 (2001).
[4] V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).
[5] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81,

539 (2009).
[6] E. P. Wigner, Ann. Math. 67, 325 (1958).
[7] J. B. French and S. S. M. Wong, Phys. Lett. B 33, 449 (1970);

S. S. M. Wong and J. B. French, Nucl. Phys. A 198, 188 (1972).
[8] O. Bohigas and J. Flores, Phys. Lett. B 34, 261 (1971); 35, 383

(1971).
[9] K. F. Mon and J. B. French, Ann. Phys. (NY) 95, 90 (1975).

[10] Y. M. Zhao and A. Arima, Phys. Rev. C 64, 041301(R) (2001).
[11] Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev. C 66,

064322 (2002).
[12] P. C. Huu-Tai, A. Frank, N. A. Smirnova, and P. VanIsacker,

Phys. Rev. C 66, 061302(R) (2002).
[13] V. K. B. Kota and K. Kar, Phys. Rev. E 65, 026130 (2002).
[14] V. K. B. Kota, Chin. Phys. C 28, 1307 (2004).
[15] D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett. 85,

4016 (2000).
[16] D. Mulhall, A. Volya, and V. Zelevinsky, Nucl. Phys. A 682,

229c (2001).
[17] Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga,

and O. Scholten, Phys. Rev. C 70, 054322 (2004).
[18] T. Papenbrock and H. A. Weidenmüller, Phys. Rev. C 78,

054305 (2008).

[19] T. Papenbrock and H. A. Weidenmüller, Phys. Rev. Lett. 93,
132503 (2004).

[20] N. Yoshinaga, A. Arima, and Y. M. Zhao, Phys. Rev. C 73,
017303 (2006).

[21] J. J. Shen, Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev.
C 77, 054312 (2008).

[22] R. Bijker and A. Frank, Phys. Rev. Lett. 84, 420 (2000).
[23] R. Bijker and A. Frank, Phys. Rev. C 62, 014303 (2000).
[24] F. Iachello and A. Arima, The Interacting Boson Model (Cam-

bridge University Press, Cambridge, 1987).
[25] C. W. Johnson et al., Rev. Mex. Fis. 45(Suppl. 2), 25 (1999);

52(Suppl. 4), 44 (2006).
[26] Y. M. Zhao, S. Pittel, R. Bijker, A. Frank, and A. Arima,

Phys. Rev. C 66, 041301(R) (2002).
[27] Y. Lu, Y. M. Zhao, N. Yoshida, and A. Arima, Phys. Rev. C 90,

064313 (2014).
[28] K. Takada, M. Sato, and S. Yasumoto, Prog. Theor. Phys. 104,

173 (2000).
[29] S. Yasumoto, Yoshifumi R. Shimizu, and K. Takada,

Prog. Theor. Phys. 110, 1037 (2000).
[30] S. Yasumoto, Yoshifumi R. Shimizu, and K. Takada,

Prog. Theor. Phys. 116, 107 (2006).
[31] A. Cortes, R. U. Haq, and A. P. Zuker, Phys. Lett. B 115, 1

(1982).
[32] K. Pearson, Proc. R. Soc. London 58, 240 (1895).
[33] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315

(2006).
[34] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki,

Phys. Rev. C 69, 034335 (2004).

054319-7

https://doi.org/10.1103/PhysRevLett.80.2749
https://doi.org/10.1016/j.physrep.2004.07.004
https://doi.org/10.1016/S0370-1573(00)00113-7
https://doi.org/10.1016/j.physrep.2003.10.008
https://doi.org/10.1103/RevModPhys.81.539
https://doi.org/10.2307/1970008
https://doi.org/10.1016/0370-2693(70)90213-3
https://doi.org/10.1016/0375-9474(72)90779-8
https://doi.org/10.1016/0370-2693(71)90598-3
https://doi.org/10.1016/0370-2693(71)90399-6
https://doi.org/10.1016/0003-4916(75)90045-7
https://doi.org/10.1103/PhysRevC.64.041301
https://doi.org/10.1103/PhysRevC.66.064322
https://doi.org/10.1103/PhysRevC.66.061302
https://doi.org/10.1103/PhysRevE.65.026130
https://doi.org/10.1103/PhysRevLett.85.4016
https://doi.org/10.1016/S0375-9474(00)00644-8
https://doi.org/10.1103/PhysRevC.70.054322
https://doi.org/10.1103/PhysRevC.78.054305
https://doi.org/10.1103/PhysRevLett.93.132503
https://doi.org/10.1103/PhysRevC.73.017303
https://doi.org/10.1103/PhysRevC.77.054312
https://doi.org/10.1103/PhysRevLett.84.420
https://doi.org/10.1103/PhysRevC.62.014303
https://doi.org/10.1103/PhysRevC.66.041301
https://doi.org/10.1103/PhysRevC.90.064313
https://doi.org/10.1143/PTP.104.173
https://doi.org/10.1143/PTP.110.1037
https://doi.org/10.1143/PTP.116.107
https://doi.org/10.1016/0370-2693(82)90502-0
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.69.034335

