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Variational approximations to exact solutions in shell-model valence spaces:
Systematic calculations in the sd shell
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We study the ability of variational approaches based on self-consistent mean-field and beyond-mean-field
methods to reproduce exact energies and electromagnetic properties of the nuclei defined within the sd-shell
valence space using the nontrivial USD Hamiltonian. In particular, Hartree-Fock-Bogoliubov (HFB), variation
after particle-number projection (VAPNP), and projected generator coordinate methods (PGCM) are compared
to exact solutions obtained by the full diagonalization of the Hamiltonian. We analyze the role played by the
proton-neutron (pn) mixing as well as the quadrupole and pairing degrees of freedom (including both isoscalar
and isovector channels) in the description of the spectra of even-even, even-odd, and odd-odd nuclei in the whole

sd shell.
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I. INTRODUCTION

Self-consistent mean-field methods and their beyond-
mean-field extensions are among the most successful tech-
niques to study the structure of the atomic nucleus from a
microscopic point of view. They rely on the Ritz variational
principle to approach the exact solution of the nuclear quan-
tum many-body problem. Traditionally, these methods have
been mostly used in the context of phenomenological energy
density functionals and were applied to the study of vari-
ous nuclear phenomena [1-4]. More recently, these methods
have been considered as numerically convenient and phys-
ically sound approximations to the exact diagonalization in
valence-space calculations [5-8] as well as a powerful means
to include important static correlations in the reference states
of nuclear ab initio calculations [9-11].

The usual starting point of these methods is the definition
of a variational space made of product-like many-body wave
functions such as the Slater determinants or, better, the Bo-
goliubov quasiparticle vacua [12]. When using the latter, the
matrix elements of the underlying Bogoliubov transforma-
tions are used as variational parameters that are determined
by solving the Hartree-Fock-Bogoliubov (HFB) equations,
possibly with constraints. In general, the lowest variational
energy corresponds to a deformed product state, i.e., a product
state that breaks one or several symmetries of the nuclear
Hamiltonian. While not physical in a finite system such as the
nucleus, this spontaneous symmetry breaking phenomenon
is of great advantage to take into account important static
correlations (e.g., pairing or multipole deformations) while
conserving the simplicity of product states as working many-
body wave functions.

Next steps are subsequently taken to improve the wave
functions of the system such as symmetry restorations and
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configuration mixing. One of the most sophisticated tech-
niques of this kind is the so-called projected generator
coordinate method (PGCM) [12-14] where the trial wave
functions are defined as linear combinations of different
symmetry-projected quasiparticle vacua. These vacua are usu-
ally generated by solving multiple times the constrained HFB
equations and using the values of the constraints as generator
coordinates. The quality of the PGCM method with respect
to the exact solution of the nuclear Hamiltonian depends on
(i) the generality of the Bogoliubov transformations defining
the quasiparticle vacua (in particular their lack of symmetry
restrictions), (ii) the symmetry restorations performed, and
(iii) the variety of the quasiparticle vacua included in the mix-
ing. The Bogoliubov quasiparticle states used in our PGCM
calculations will be referred to hereafter as intrinsic states.
More specifically, while considering symmetry-
unrestricted trial quasiparticle vacua is a necessary condition
to obtain symmetry-broken intrinsic wave functions at the end
of the minimization process, it is not a sufficient condition.
Indeed, it is also necessary that the minimization favors
a symmetry-broken solution, which in turns depends on
the Hamiltonian and system considered. For example, the
presence of deformation/pairing correlations in the intrinsic
states describing a doubly open-shell system requires a
sufficient strength of the multipole/pairing parts of the nuclear
Hamiltonian at play. There are two complementary ways of
circumventing this problem and including those correlations
in the intrinsic states, and they are related to points (ii) and
(iii) above. On the one hand, the variation after projection
(VAP) method [12], that minimizes the symmetry-restored
energy instead of minimizing the mean-field energy, produces
intrinsic states that are not, in general, eigenstates of
the symmetry operators. However, the latter is costly
from the computational point of view and only a few
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implementations have been performed so far [15-23]. On
the other hand, the inclusion of constraints in the HFB or
VAP minimization functional allows the explicit exploration
of the selected collective degrees of freedom. Moreover,
this technique can be used to produce a set of intrinsic
wave functions that can be subsequently projected and
mixed, enriching the variational space and giving much
better approximations to the exact spectrum of the nuclear
Hamiltonian.

Recently, the PGCM method demonstrated its ability to
reproduce almost exact results in the pf shell Ca isotopes
[7]. Nevertheless, in those calculations only quadrupole de-
formations and neutron-neutron (nn) pairing were taken into
account due to the absence of protons in the valence space for
Ca isotopes. It is expected that having protons and neutrons
simultaneously interacting will lead us to an impoverishment
of the results compared with those where only one species
of nucleons was present. In this work, we seek further un-
derstanding of the collective behavior of the nuclei, exploring
how the inclusion of prn pairing affects the results when vari-
ational methods are performed.

The paper is organized as follows. First, in Sec. II, we
summarize the theoretical framework used in this work (see
Ref. [24] for more details). Then, in Sec. III, we show the per-
formance of several variational methods, starting from simple
unconstrained results and finishing with full-fledged PGCM
calculations. We use >*Ne (even-even), > Ne (even-odd), and
2Na (odd-odd) as examples to illustrate the methods. Then,
these calculations are extended to the full sd shell where
ground and excited state energies, as well as electromagnetic
transitions, are discussed. Finally, a summary is given in
Sec. IV.

II. THEORETICAL FRAMEWORK

In Refs. [7,24], we gave a detailed account of our theoreti-
cal framework. Therefore, we refer to these articles for details
and only discuss here the aspects that are the most important
for the present study. Also, from a general perspective, we
mention that the exact solutions and the PGCM approxima-
tions were obtained using the codes ANTOINE [25] and TAURUS
[24], respectively.

A. Model space and nuclear Hamiltonian

We consider a model space spanned by a set of spherical
harmonic oscillator single-particle basis states associated with
the annihilation/creation operators {c,; cj;} and characterized
by their principal quantum number n,, orbital angular momen-
tum /,, spin s, = 1/2, total angular momentum j, and its third
component m;,, and isospin #, = 1/2 and its third component
my,. We use as a convention m,, = —1/2 for proton single-
particle states and m; = 41/2 for neutron single-particle
states. For the sake of clarity, we use in the shorthand notation
a = (ng, ly, Sa, ja, mj,, ta, my,). In addition, the model space is
chosen such as to be invariant under both spatial and isospin
rotations.

More specifically, in this work we consider the sd-shell
valence space defined by the orbits 0ds/,, 1s1/2, and Od3,>. As

for the Hamiltonian, we use the well-known USD interaction
[26,27]. Note that because we work in a restricted model
space, electromagnetic transitions and moments are calculated
with the effective charge e, = 1.5 for protons and e, = 0.5 for
neutrons.

B. Nuclear many-body wave functions

Within our implementation of the PGCM, the nuclear states
are defined as

|\IJ£MNZT[) — Z‘f(}l;}‘;{]{vznﬁj{][(ﬁlvpzﬁn |q)(q))’ (1)
gK

where {|®(g))} are the so-called intrinsic states, assumed here
to be Bogoliubov quasiparticle states (see below), PN@ is
the projector onto good number of neutrons (protons), fA’AJM
is the angular momentum projection operator, and P” is the
parity projector [12,28]. To simplify the notation, we write the
set of quantum numbers with the label I' = (JMNZm ). The
coefficients f). gk are variational parameters that are obtained
through the minimization of the PGCM energy that leads to
the Hill-Wheeler-Griffin (HWG) equations [14]

Z (Hx yx — ES NI i) i = 0. )
7K
where
Hyx gxr = (P@IHPL . PYP7PT|D(q')), (3a)
Nokegrr = (@@L PNPPT|D(q)) (3b)

are the Hamiltonian and norm overlap matrices. The HWG
equations are solved to obtain the energies E! and wave
functions |W/MNZ7y that are used to compute other properties,
such as electromagnetic transition probabilities and moments.

C. Intrinsic states

One of the most important aspects of the PGCM method
is the choice of the intrinsic wave functions {|®(g))}. In the
present case, all of them are Bogoliubov quasiparticle wave
functions, i.e., they are vacua for a set of quasiparticle opera-
tors {B.(q); ﬂ; (q)} defined through unitary linear Bogoliubov
transformations

Bi@) = Uu(@)c) + Var(g)ca- )

The matrix elements of U(g) and V(q) are variational
parameters that are determined by minimizing the energy of
the system. Here, we minimize either the HFB energy or the
variation after particle-number projection (VAPNP) energy
with constraints on certain parameters labeled generically as
g (see below for details).

Due to computational reasons, it is customary to impose
some symmetry restrictions on the Bogoliubov vacua that
are self-consistently conserved (up to numerical accuracy)
throughout the minimization process if no symmetry-breaking
constraint is used. Examples of such intrinsic symmetries
are the axial symmetry, parity, or prohibiting proton-neutron
mixing. In this work, we only impose that the matrices U(q)

054306-2



VARIATIONAL APPROXIMATIONS TO EXACT SOLUTIONS ...

PHYSICAL REVIEW C 104, 054306 (2021)

and V (g) are real in the definition of the Bogoliubov transfor-
mations. In particular, the transformations include pn mixing
that allows the appearance of pn-pairing terms. Nevertheless,
because we work in the sd-shell valence space that contains
only positive-parity single-particle states, our intrinsic states
automatically inherit a good parity, and no parity projection is
required when building the PGCM wave functions.

While a general trial wave function is always better from a
pure variational point of view, the use of more restricted seed
wave functions can be of great interest to study the relevance
of the broken symmetries in the description of nuclear spectra
and other observables. In particular, in order to understand
better the importance of mixing protons and neutrons, we use
three types of initial wave functions in the HFB and VAPNP
calculations:

(i) real axially symmetric Bogoliubov vacua without pn
mixing, labeled as axial pn-no.
(i1) real general Bogoliubov vacua without pn mixing,
labeled as general pn-no.
(iii) real general Bogoliubov vacua with pn mixing, la-
beled as general pn-yes.

A quantitative way of checking that the HFB or VAPNP
intrinsic wave functions incorporate pn-pairing correlations
is the evaluation of the mean-field pp-, nn-, and pn-pairing
energies defined as [12]

Epair - EpaI:r + Eg;r + ZEPP;ry (5)
where
ElL = Z Aab kL, (6)
a,b ’

and the isospin (t = p/n) dependencies of the pairing density
and pairing field are written explicitly as

Kacb, = (P(Q)cp, o, |P(q)), (N
1
Aa,ht/ = E Xd: Uu,br reondon Kend o - (®
condon

Here, v 54 are the antisymmetrized two-body matrix elements
of the nuclear interaction in the working basis. It is important
to point out that E” ;ir = 0 for Bogoliubov transformations that
do not include pn mixing, i.e., with transformations of the
form Uy, p, = Up,p,8cv and Vi, = Vo, p, 8cv.

All Bogoliubov vacua, even the most general ones, al-
ways conserve the number-parity symmetry associated with
a subgroup of nucleon gauge rotations, and as such can be
characterized by their nucleon number-parity quantum num-
ber [28]. More specifically, there exist Bogoliubov vacua with
either an even or odd number parity. The former can be used
to described nuclear systems made of an even number of
particles whereas the latter describe systems made of an odd
number of particles. If the Bogoliubov transformations do
not allow for pn mixing, the nucleon number parity can be
factorized as the product of the number parity for protons
times the one for neutrons. When describing even-odd or odd-
odd systems, and assuming that one starts from a Bogoliubov
vacua with an even nucleon number parity, one has to be

careful about the quasiparticle one decides to block to obtain
a wave function with the correct structure. These issues will
be discussed later on.

Finally, we consider the selection of the collective coordi-
nates, g. These are imposed during the minimization by using
constraints on the expectation values of the operators Q asso-
ciated with the collective coordinates., i.e., (P(q)|0|®(q)) =
q, with the Lagrange multipliers Ay. Hence, the HFB and
VAPNP minimization functionals are defined respectively as

Efs[|®()] = (D(@IH — AN — 27Z — 1,0|P(q)),
)

(@(q)|HPNP?|D(q))
(@()IPVPZ| D (q))

—(D(q)|1,01P(q)).

(10)

D(g))] =

l
EVAPNP[|

Here, An(z) are also Lagrange multipliers that guarantee the
condition (®(q)|N(Z)|®(q)) = N(Z) at the HFB level. In the
end, the variational problem to solve at the HFB (VAPNP)
level is given by

S[EI/-IFB(VAPNP)] =0. (11

In this work, we explore both pairing and quadrupole de-
grees of freedom since they are the most important terms
in the multipole decomposition of realistic nuclear interac-
tions [29]. The former can be explored in a general way
with operators that couple pairs of nucleons in a given orbit,
a = (ng,ly, ja, Sas t4), to a good total isospin and total angular
momentum of the pair, J, 7, [30,31]:

Ty T
PT]MJFMI,; Z[P M,,Mr,
J,rTi
IZ\/zja ke, (12)

where the creation operators are J,T, coupled according to

ST =8 (— 1)
LT, i (—1) Z clel

(PR3
lez E]M_,],MT,, =

I +6,
mj,mj,
My My,
S 1
X (]amja]bmjh|JpMjp> Em,azm,h T,Mr, ).
13)

The isovector channel (J, = 0, T, = 1) can be used to explore
the usual pp-, nn-pairing correlations as well as a part of the
pn pairing. On the other hand, the isoscalar channel (J, =1,
T, = 0) is purely associated with pn pairing. More specifi-
cally, we define the parameters SI{,ZT’M as

p M Tp

5T,

P p1/rTr pi1/r Ty
Sty = {P@IPLY Ny, + [Py, 19(0)) (14)

that measures the amount of a certain type of pairing correla-
tions in the intrinsic wave function.
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Concerning quadrupole deformations, they can be explored
by imposing constraints on the average values of the mass
quadrupole operators

O = 1Yo, (6, ), (152)
420 = (D(q)| Q20| P(q)). (15b)
g1 = 3 (@(9)|021 — 0r-1|®(q)), (15¢)
422 = 3(®(@)020 + 022|P(g)), (15d)

where Y,,(6, ¢) is a spherical harmonics of degree 2 and
order w. In the present calculations, except told otherwise,
we always set go; = 0. In such a case, we can also define the
triaxial parameters f, and y as'

B = C\/ @50 + 243, (15¢)
2

y = arctan <@>, (151)
420

where C = 35‘%, ro = 1.2 fm, and A is the total mass number
0

(including core and valence space particles).

III. RESULTS
A. Unconstrained calculations

We start by analyzing the absolute HFB and VAPNP min-
ima obtained with the different types of trial Bogoliubov
vacua considered in Sec. IIC. As an illustrative case, we
will study first the unconstrained solutions obtained for three
nuclei: the even-even (e-e) nucleus **Ne, the even-odd (e-0)
nucleus 2’Ne, and the odd-odd (0-0) nucleus 24Na. Then, we
will extend the calculations to the whole sd shell.

1. #Ne (e-e) case

Since the HFB and VAPNP equations are solved using a
first-order gradient method, the algorithm can lead to several
minima (if there exist) depending on the choice of the seed
wave function and on the energy surface of the system. A way
to bypass this problem and ensure that the absolute energy
minimum is reached is to repeat the calculation several times
starting from different random seed wave functions. The re-
sults obtained by performing 650 runs of the HFB and VAPNP
calculations are shown in Figs. 1 and 2, respectively. In addi-
tion to the HFB/VAPNP energies, we show the expectation
values of the pairing and quadrupole operators that are useful
to interpret the results. In particular, for these calculations, ¢,
is not constrained to zero. In the HFB case, we observe that the
absolute minimum does not depend on the choice of structure
for the seed wave function, i.e., the axial and the two general
seeds lead to the same variational energy. In fact, the solutions
display neither pn pairing (isoscalar and isovector) nor pp

'We use the notation B, to distinguish the deformations calcu-
lated in a valence space, but without using effective charges in the
definition of the quadrupole operators, from the regular 8, values
used in no-core calculations where all the nucleons contribute to the
deformation of the nucleus.
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FIG. 1. Total HFB energy (first row), isoscalar (second row), and
isovector (third row) pairing amplitudes, and quadrupole moments
(fourth row) obtained in 650 solutions of the unconstrained HFB
equations with (a)-(d) random axial pr-no seeds, (e)—(h) random
general pn-no seeds, and (i)—(1) random general pn-yes seeds. The
nucleus considered is >*Ne (Z = 2 and N = 6 in the valence space)
and was calculated using the USD interaction.

pairing, even when the variational space would allow for the
inclusion of some (or all) of these correlations. Only nn-

.. . J,=0;T,=1
pairing correlations (8, oy, 4y
P > r—
In addition, we observe that, when using an axial seed, one

obtains both the absolute prolate solution (g9 > 0) and also

) are different from zero.
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FIG. 2. Same as Fig. 1 but for the VAPNP method.
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another local minimum with an oblate deformation (g9 < 0).
Obviously, because of the axial symmetry (along the z axis)
we have g», = 0 for © = 1, 2 in both cases. By contrast, using
the general pn-no and pn-yes seeds is more efficient in finding
the global minimum although the quadrupole parameters ¢,
oscillate [Figs. 1(h)—1(1)]. But this oscillation only reflects that
the energy does not depend on the orientation of the deformed
nucleus with respect to the coordinate system.

Considering now the VAPNP calculations, the minimiza-
tions without the possibility of exploring the proton-neutron
mixing [Figs. 2(a)-2(h)] give again the same lowest energy
with the same amount of pairing correlations. Contrary to
the HFB case, here both pp- and nn-pairing correlations
are obtained thanks to the superior variational scheme that
minimizes the particle-number-projected energy. Using axial
seeds, the minimum corresponds to a prolate state and a
secondary minimum appears at an oblate configuration. The
prolate deformed state is also obtained with the general pn-no
solutions but the quadrupole parameters are rearranged due
to the arbitrary orientation of the wave function previously
discussed. The main differences with the HFB calculations are
observed whenever a general seed that allows for pn mixing
is used [Figs. 2(i)-2(1)]. First, these calculations provide us
with the absolute energy minimum of all calculations. Sec-
ond, in this case not only pp and nn isovector but also pn
isoscalar pairing correlations are present in the intrinsic wave
function. We also see two additional energy minima very close
to the absolute one. Finally, both the quadrupole deformation
(g2,) and isoscalar pairing (J, = 1, T, = 0, M;,) parameters
change due to the arbitrary orientation of the state, but again
the total energy remains constant.

We can now analyze in more detail the consequences of
having pairing correlations in the wave functions by decom-
posing them in terms of eigenstates of the proton and neutron
number operators. This decomposition is obtained by comput-
ing the particle number projected norm overlap, (®|PZPN|®),
for all possible values of (Z, N) [28]. Furthermore, there exists
the sum rule ZZN(¢|ﬁZﬁN|¢) = 1 due to the normalization
of the intrinsic wave function. In Fig. 3, we show such dis-
tributions. In all cases, the maximum of the distribution is
obtained at the values of the targeted nucleus **Ne [(Zy, Ny) =
(2, 6) in the valence space]. The rest of the distribution de-
pends on the functional that is minimized. For this nucleus we
see that the HFB results [Figs. 3(a)-3(c)] are independent of
the type of seed used in the calculation. Due to the absence
of pp-pairing correlations, only eigenstates with Z = 2 are
present in these cases. In addition, eigenstates with 6 + 2 and
6 & 4 neutrons are also found but with significantly smaller
weights. Concerning the VAPNP results [Figs. 3(d)-3(f)],
we see a wider distributions of components, which can be
related to the fact that both pp- and nn-pairing correlations
are present. The distributions obtained with the seeds that do
not mix protons and neutrons are the same because the abso-
lute minimum is axially symmetric. Moreover, since there are
no pn-pairing correlations in this case, only eigenstates with
(Z = even, N = even) are obtained. The weights decrease
almost like a binomial distribution around the maximum value
at (Z, N) = (2, 6), which can be justified theoretically [32]
and was also recently exemplified in Ref. [28]. More interest-

N 12
410 (@) (b) (c)

S s 0.4 0.4 0.4
5 6

§ 4 0.2 0.2 0.2
o 2 | | | |

©

>0 to.0 to.0 to.0
N 12 0.2
g10 (d) jo3 (e) JO3 ()
=l

S 0.2 0.2

a 6 0.1
[0

g 4 0.1 0.1

o 2 L | L | H N

@

>0 0.0

“0.0
0246 81012
Valence neutrons, N

0.0
0246 81012
Valence neutrons, N

0246 81012
Valence neutrons, N

FIG. 3. Distribution in eigenstates of the proton and neutron
number operators of the intrinsic wave functions (D|PZPY D))
obtained from minimizing HFB/VAPNP energy functionals with
different seed wave functions: (a) HFB axial pn-no, (b) HFB
general pn-no, (c) HFB general pn-yes, (d) VAPNP axial pn-no,
(e) VAPNP general pn-no, and (f) VAPNP general pn-yes. The
nucleus considered is >*Ne (Z = 2 and N = 6 in the valence space)
and was calculated using the USD Hamiltonian.

ingly, the presence of pn-pairing correlations in the VAPNP
solution obtained from the seed general pn-yes [Fig. 3(f)]
produce a distribution where both (Z = even, N = even)
and (Z = odd, N = odd) eigenstates are found. Although the
contributions of the latter are slightly smaller than the one of
the e-e neighbors, they are not negligible. As we will see in
subsequent sections, this fact opens the possibility of studying
odd-odd nuclei without blocking two quasiparticles explicitly.

2. BNe (e-0) case

As mentioned in Sec. II, even-odd and odd-even nuclei
must be described by intrinsic wave functions that have an
odd number parity. Hence, this case introduces another factor
apart from the choice of the energy functional and seed wave
function, i.e., the selection of the initial blocked state. We
first discuss the influence of the initial blocked state on the
final HFB/VAPNP energies for the different seeds. These
initial states are defined as |®¢ ,) = ,B&a|d>0), where |®g) is
an even-even seed of the same type as those used for **Ne
(axial and general pn-no, general pn-yes), and ﬂg,a is a quasi-
particle creation operator [33-35]. For >’Ne in the sd shell,
we have 12 possible choices for the initial neutron blocked
state. In addition, when starting from an axially symmetric
|®y), the even-odd wave function can be characterized by its
angular-momentum component along the z axis, i.e., J.|®,) =
K,|®,). As in the e-e case (see Figs. 1 and 2), we performed a
series of HFB/VAPNP calculations (650 runs) with different
seeds for the 12 possibilities of the initial blocked state. The
results (not shown) are similar to those obtained for 2*Ne and
we will not discuss them further. Taking only the absolute
minima in each case, we represent in Fig. 4 those energies as
a function of the initial blocked state. Here, we notice that the
VAPNP energy is below the HFB energy when considering
the same type of seed. We also see that the solution based on
general pn-yes seeds is below the solution based on general
pn-no seeds, the latter being itself below the energy obtained
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K, of the initial blocked state
Ao o
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=73

1234567 89101112
initial blocked state label

1234567 89101112
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FIG. 4. (a) HFB and (b) VAPNP energies calculated with axial
pn-no (red bullets), general pn-no (blue squares), and general pn-
yes (black diamonds) seeds as a function of the label of the initial
blocked neutron level in the sd shell (from left to right: 0ds/,, Ods ),
Lsy/» orbits). The nucleus considered is ’Ne (Z =2 and N = 7 in
the valence space) and was calculated using the USD Hamiltonian.

with the more restricted axial pn-no seeds. This is because
of the extra pn-pairing correlations included in the wave
functions thanks to the fact that pn mixing is allowed in the
Bogoliubov transformations. More interestingly, we observe
that only in the axial case there is a strong dependence of the
energy on the initial blocked state. In such cases, not only
the initial but also the final states have a good K, quantum
number and we find the same energies for the same initial |K,,|
value. In fact, for this particular nucleus, the lowest energy
within the axial approximation is found at |K,| = 1/2, which
is the expected total angular momentum for the ground state
of *Ne in the naive shell model picture. Therefore, using
general seeds simplifies the calculations because we do not
have to worry (in most of the cases) about the choice of
the initial blocked level. We now analyze the decomposi-
tion of the HFB/VAPNP unconstrained solutions in terms of
eigenstates of the particle number operators. In Fig. 5, we
show the results obtained for the different seeds. In general,
only eigenstates with N + Z = odd contribute to the intrinsic
wave function because the number parity in this case is odd.
Moreover, the largest contribution corresponds to the targeted
nucleus Ne (Zy = 2 and Ny = 7 in the valence space). In the
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FIG. 5. Same as Fig. 3 but for the »’Ne nucleus (Z = 2 and N =
7 in the valence space).

decomposition of the HFB solutions based on seeds without
pn mixing [Figs. 5(a) and 5(b)] we find only eigenstates
with N = 7 since the blocking of a neutron state results in
vanishing neutron pairing correlations at the mean-field level.
We also see small components with Z = Z; £2. By con-
trast, if the pn mixing is allowed, the HFB solution acquires
a small isoscalar pairing correlation, but no isovector one.
This internal configuration produces the distribution shown
in Fig. 5(c). Similarly to the results shown in 2*Ne, richer
structures are obtained when using the VAPNP method be-
cause pairing correlations are better explored. Using seeds
without pn mixing, the wave functions are distributed among
Z =Zy=£2m and N = Ny £ 2n eigenstates, m and n being
integers. Additionally, the inclusion of prn-mixing in the seed
wave function leads to a solution with pp-, nn-, and pn- (both
T, =0 and 1) pairing correlations at the same time. This is
nicely reflected in Fig. 5(f) where the wave function can be
decomposed into a large variety of e-o and o-e nuclei around
25 Ne, with their weights decreasing as one moves away from
the physical components Zy and Ny.

3. ¥Na (0-0) case

Finally, we describe the calculations of the most involved
case for HFB-based theories, i.e., the case of a nucleus with
an odd number of both protons and neutrons. As in the two
previous sections, we perform HFB /VAPNP calculations with
different seeds and all possible blocking structures. The latter
can be done because of the small dimensionality of the sd
shell (12 x 12 = 144 possibilities). Hence, the first step is
the blocking of one proton and one neutron quasiparticle to
obtain a formally two-quasiparticle intrinsic wave function,
[Po,q,6,) = ﬂ&ap ﬁg, by |®y), with a global even number parity.
If protons and neutrons are kept separate, the state has an odd
number parity for protons and neutrons separately. Moreover,
if one starts from an axially symmetric |®g), one can label
the blocking structure by its initial K, = Ko, + Kb, value. Of
course, the same value of K,;, can be obtained in several ways,
eg, K=43=1/2,+5/2,=5/2,+1/2, =3/2,+3/2,.
As in the previous e-e and e-o cases, we performed a series
of calculations with random seeds (300 runs) for each combi-
nation of (a) HFB/VAPNP, (b) type of seed, and (c) blocking
structure, to determine better the absolute minimum for each
set. Similar results to those discussed for the e-e case have
been obtained (not shown). We show in Figs. 6(a) and 6(b)
the HFB and VAPNP minimum energies as a function of the
different blocking combinations and for different structures
of the seed wave functions. For the sake of simplicity in the
labeling of the x axis, we have grouped the 144 possibilities
as if the axial symmetry were preserved. That means that
the label i corresponds to the same (a,;b,) initial blocking
columns in the (U, V') matrices that produce, in the axial case,
a state with K.

The general observations discussed above for the e-e and
e-o cases also hold in the o-o case, i.e., VAPNP energies
are lower than HFB energies, and the general seeds with pn
mixing provide the lowest energies whereas the axially sym-
metric ones provide the highest energies. Moreover, the results
are once again independent of the choice of the blocking
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FIG. 6. (a) HFB and (b) VAPNP energies calculated with axial
pn-no (red bullets), general pn-no (blue squares), and general pn-
yes (black diamonds) seeds as a function of the label of the initial
blocking levels (protons and neutrons) in the sd shell. The nucleus
considered is >*Na (Z = 3 and N = 5 in the valence space) and was
calculated with the USD Hamiltonian.

structure in the case of general seeds whereas they are strongly
dependent on the value of the initial K,; in the axial case.
More precisely, in the latter case the results are symmetric
with respect to £K,;, and, similarly to the e-o case, they only
depend upon the K,y = K, + K, combination. Finally, it is
also interesting to note that the lowest energy obtained with
axial blocked seeds is found at |K| =4 which is precisely
the total angular momentum of the exact (and experimental)
ground state for >*Na. For the sake of completeness, we rep-
resent in Fig. 7 the distribution in terms of eigenstates of the
N and Z operators for the different minima discussed above.
The main differences with the previous analyses are observed
in the HFB method. First of all, seeds without pn mixing
are not able to spontaneously break the particle-number in-
variance and produce solutions without any kind of pairing
correlations. More interestingly, the HFB solution obtained
with general pn-yes seeds is in fact a fake odd-odd vacuum.
Indeed, it does not contain any eigenstates with an odd number
of protons or neutrons but the largest contributions correspond
to even-even nuclei with Z =7y £+ 1 and N = Ny = 1 [with
(Zo, Ny) = (3, 5) for **Nal. It is important to remark that only
the nucleon number parity is enforced by the Bogoliubov
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FIG. 7. Same as Fig. 3 but for the **Na (Z = 3 and N = 5 in the
valence space).

transformations in this case. Therefore, the HFB minimization
produces a wave function with global even number parity
and that is fully paired (without fully occupied single-particle
states). In this sense, the HFB method with general seeds and
with pn mixing is useless to describe o0-o nuclei. Additional
constraints on the pairing content of the intrinsic states im-
posed during the minimization procedure could help to bypass
this problem.

Fortunately, the VAPNP method is able to describe o0-o0
nuclei both without and with pn mixing. In the first case, odd
number parity both for protons and neutrons separately are
safely defined. Here, pp and nn correlations are present [see
Figs. 7(d) and 7(e)] and, apart from the largest contribution at
(Zy, Np), we also see some components in (Zy £ 2, Ny & 2).
Finally, we obtain pairing correlations of all kinds (isoscalar
and isovector) when considering the most general transforma-
tion. As in the e-o case, this is reflected in the appearance of
all possible types of eigenstates in the intrinsic wave function
around the maximum at (Zy, Ny).

4. Systematic calculations of the ground-state energies

We extend the unconstrained calculations performed for
24Ne, P Ne, and **Na to all even-even, even-odd, and odd-odd
nuclei in the sd shell. Because of the isospin invariance of
the interaction, mirror nuclei give the same results and they
are not, in general, computed. Unless indicated otherwise,
the energies will be always subtracted by the exact ground
state energies obtained from the full diagonalization of the
problem, i.e., we will discuss the energy differences

AE = Eapprox — Eexact- (16)
These energy differences are displayed for the various isotopic
chains in the sd shell in Fig. 8 (even-even and even-odd
nuclei) and Fig. 9 (odd-odd nuclei) for the general pn-no and
pn-yes seeds and for both HFB and VAPNP minimizations.
For odd-odd nuclei, we cannot compute the nuclei within the
HFB approach with pn mixing because minimizing the energy
without forcing the number parity for protons and neutrons to
be odd separately produces fake odd-odd quasiparticle vacua
that are in reality made of particle-number eigenstates with an
even number of particles for both proton and neutron species
[see Fig. 7(c)]. As a general comment on this global cal-
culation, we always obtain positive energy differences. This
is not surprising because these approximations miss some
correlations contained in the exact eigenstates and because
the VAPNP is strictly variational with respect to the space
of many-body states with the correct number of particles. In
fact, we observe that the VAPNP method always provides a
closer solution to the exact value than the HFB approximation
if we use the same kind of trial wave function. The largest
differences with the exact solution are found in mid-shell
nuclei where the effects of additional symmetry restorations
(e.g., angular momentum) and configuration mixing become
more important, as will be illustrated later on. Furthermore,
we observe an even-odd staggering superimposed to such a
global trend, with the even-odd isotopes being closer to the
exact solutions than their even-even neighbors (see Fig. 8).
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unconstrained HFB (red symbols) and VAPNP (black symbols) cal-

culations for even-even and even-odd nuclei in the sd shell and the

USD interaction. Two different choices of Bogoliubov transforma-

tions are used: general pn-no (boxes and bullets) and general pn-yes
(circles and filled boxes).

Comparing now the solutions with and without including
the pn mixing in the variational space, we see a different
behavior between the HFB and VAPNP approaches. Looking
first at the HFB case, the differences between those solutions
are very small in the even-odd isotopes and even nonexistent
in the even-even isotopes. If we analyze closely the pairing
energies of the even-odd nuclei in the HFB approximation, we
observe that in our results all the general pn-no solutions have
E. = 0 (except for '*2'0) and EL% = 0 (except for *>*'Ne,
21.31Mg, 232584, 258, and 2"?%37 Ar). By contrast, all the gen-
eral pn-yes solutions have EJ # 0 (except for the O chain
whose solutions are obviously the same as the general pn-no
ones, and >*Ne, Mg, and ?-'Si), and E:;i’r/"" = 0, showing
that the nn/pp- and pn-pairing phases are not mixed in the
unconstrained self-consistent mean-field solutions [36].
The situation is more extreme in the even-even isotopes where
the general pn-no and and pn-yes solutions are the same
because E”. = 0 is obtained for all nuclei. In particular, in the
HFB approximation all N = Z nuclei collapse to HF solutions
with no pairing of any kind.
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FIG. 9. Same as Fig. 8 but for odd-odd isotopes. The HFB results
only contains general pn-no seeds.

The analysis of VAPNP results leads to different con-
clusions. Here, a clear difference is observed depending on
whether or not one allows the possibility for protons and
neutrons to mix. In particular, the trial wave functions pn-yes
always give the solution with the lowest energy, except in
those cases where there is no proton or neutron in the valence
space. It has to be noted that the VAPNP method, which
minimizes the particle-number projected energy, always pro-
duced paired solutions, i.e., with Ep,i; # 0. More remarkably,
the pn-yes wave functions always contain at the same time
nonvanishing pp-, nn-, and np-pairing correlations, and that
applies for all nuclei (whether e-e, e-0, or 0-o systems). This
result clearly shows the superiority of the VAPNP approxima-
tion that is able to capture more complicated correlations and,
therefore, can be used to build better approximations to the
eigenstates of the nuclear Hamiltonian.

B. Constrained calculations
1. Preliminary study of **Ne

We have analyzed in Sec. III A the ability of the plain HFB
and VAPNP methods, which are based on a single intrinsic
wave function, to approximate the exact solutions. It is clear
from the global calculations shown in Figs. 8 and 9 that
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non-negligible correlations are still missing. As we will show,
most of those correlations can be accounted for by simultane-
ously restoring the rotational invariance and mixing different
quasiparticle states within the PGCM formalism discussed
in Sec. II. Moreover, this framework permits the calculation
of excited states and electromagnetic properties (transition
probabilities and moments).

One of the critical aspects of the method is the selection of
the generator coordinates and the natural choices dictated by
the nuclear interaction are the quadrupole and pairing degrees
of freedom [29]. As an example, we analyze the HFB /VAPNP
energy as a function of the quadrupole deformation param-
eters, (B,,y), and the VAPNP energy as a function of the

quadrupole and pairing parameters, (5,, 81{,§JT”MT ), for the nu-
™ Tp

cleus **Ne. These total energy surfaces (TES) are obtained
by solving the HFB/VAPNP equations with constraints (see
Sec. II).

We observe in Fig. 10 that the minima of the TES are found
at axial prolate deformations in this isotope both for HFB
and VAPNP solutions, and the surfaces are softer along the
y degree of freedom than in the B, direction. We also note
that the increase of pairing correlations, from HFB to VAPNP
pn-no and VAPNP pn-yes, tends to decrease the deforma-
tion. Consistently with the unconstrained results, the VAPNP
pn-yes method provides the solution with the lowest energy.
Concerning the dependence of the energy on both quadrupole
and pairing, we present in Fig. 11 the TES calculated with
the VAPNP method exploring explicitly the isoscalar (J, =
1, T, = 0) and isovector (J, = 0, T, = 1) pairing degrees of
freedom. We point out that increasing the value of § in a given
channel produces an increase of the corresponding pairing
energy, e.g., 5,{;:1{;;‘[7:71 measures the amount of pp-pairing
energy in the intrinsic wave function [7,37]. We obtain in all
cases two minima (prolate and oblate) in the TES, the prolate
minimum being the absolute one. This is consistent with the
triaxial TES discussed above where the oblate minimum is the
point with the lowest energy at y = 60° in Fig. 10. The TES
along the pairing content, both isoscalar and isovector, are
rather soft in the § direction around the minima. Additionally,
these minima are found at values with § # 0, showing the
ability of the VAPNP method to include any kind of pairing in
the intrinsic wave function.

The softness of the TES shown in Figs. 10 and 11 suggests
that the configuration mixing may play an important role in
the final results. Therefore, the next step is the calculation of
the spectrum of the nucleus >*Ne within the PGCM frame-
work using the different sets of intrinsic wave functions that
define the TES discussed above. The results are represented in
Fig. 12 where we observe a general good agreement between
the variational approaches and the exact results. Ground state
energies are 1% above the exact energy at most, and the best
approximations correspond to the PGCM calculations that
explore both deformation and pairing explicitly with intrinsic
wave functions generated through a VAPNP minimization.
We see in Fig. 12(a) that the inclusion of intrinsic states
with pn mixing compresses the spectrum compared to the
two other approaches where the intrinsic states are direct
products of separate protons’ and neutrons’ wave functions
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FIG. 10. Total energy surfaces as a function of the triaxial defor-
mations (8,, y) calculated for **Ne within the following approaches:
(a) HFB pn-no, (b) VAPNP pn-no, and (c) VAPNP pn-yes. Contour
lines are separated by intervals of 0.25 MeV and the scale of the color
code is different for each plot.

(HFB and VAPNP prn-no). Nevertheless, we notice that the
configuration mixing of HFB states produces good results
despite the larger differences found in unconstrained calcula-
tions. Concerning the PGCM with deformation and pairing,
we observe in Fig. 12(b) rather similar results for most of
the energies, specially if we compare the results with pn
pairing (8y,,—0) and the results with pp/nn pairing (8p;,==+1)
among themselves. These similarities are also observed in
the evaluation of the electric quadrupole transition proba-
bilities and moments shown in Table I. We have used the
standard effective charges, i.e., 1.5 and 0.5 for protons and
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neutrons, respectively. The PGCM approaches are in a very
good agreement with the exact values. For example, all of
them are able to reproduce the large [small] B(E?2, 2;“ — O]L)
[B(E2, 23’ — OT )] value, and the sign and magnitudes of the
spectroscopic quadrupole moments. Here, the states with a
negative spectroscopic moment would be dominated by the
prolate configurations shown in the TES above.

2. Systematic PGCM calculations

The results shown above for *Ne suggest that any PGCM
used to compute the spectrum of this nucleus gives a very
good agreement with the full diagonalization of the Hamil-
tonian. Of course, the degrees of freedom are very limited
in this valence space and we expect larger differences be-
tween the different PGCM approximations in larger valence
spaces or in no-core calculations. Nevertheless, we want to
analyze the performance of the method in a more global
calculation. Therefore, we compute the energies and electro-
magnetic properties of the whole sd shell with three PGCM
methods whose intrinsic wave functions are obtained either
with the HFB or the VAPNP approach using (85, y) as the
generating coordinates (PGCM(EN)). Since we are particu-
larly interested in the role played by pn mixing, these methods
differ in the inclusion or exclusion of the pn mixing in
the intrinsic states. Hence, HFB-PGCM and VAPNP-PGCM
pn-no calculations do not include pn mixing while VAPNP-
PGCM pn-yes method includes such intrinsic-symmetry
breaking.

We analyze first the ground state energies obtained after
solving the corresponding HWG equations. The results are
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FIG. 12. PGCM and exact energies of the yrast states for *Ne
calculated with the USD interaction. (a) PGCM exploring triaxial
(B,,y) deformations, and (b) PGCM exploring deformation and

pairing (B,, 8,{,}’12",”7” ) degrees of freedom.

shown in Figs. 13 and 14. We observe a significant gain in
correlation energy with respect to the unconstrained results
due to the angular-momentum projection and configuration

TABLE 1. Electric quadrupole transition probabilities [B(E2)
in €2 fm*] and moments [Q(J7) in e fm?] calculated with different
PGCM approximations and with full diagonalization for **Ne.

Approx. 2F =0 25—>0 2f 25 47

(B2 ¥ JHEB prono 533 1.0 —54 +65 —172
(Bas ¥ IVAPNP prono 54.1 2.1 -38 +48 -168
(Bos ¥V )varNppyes 549 23 —42 451 -166
(B, 830 53.7 24 -37 +24 -—153
(B>, 810 53.4 1.9 —4.1 436 145
(85,8 52.9 1.4 -3.8 +53 -154
(B2, 819 54.5 2.0 —51 +40 —155
Exact 52.3 0.6 -36 +55 —154
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FIG. 13. Energy difference with respect to the exact solution
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with VAPNP minimization, and general pn-no seeds (red bullets)
with HFB minimization.

mixing (see Figs. 8 and 9). Although it is not shown in
the plots, the angular momentum of the exact ground state
wave functions are reproduced in all even-odd and odd-odd
nuclei except for **Cl for VAPNP-PGCM approaches. In this
particular case, the exact 0] ground state is almost degen-
erated with the ST excited state whereas, in the variational
approaches, the latter is found to be the ground state and
the Of state is poorly reproduced including only quadrupole
collective coordinates. We will come back to that below. On
the other hand, the HFB-PGCM implementation is not able to
reproduce the correct angular momentum of the ground states
of 26F (26C1), 28Na (28K), 32A1 (BZK), 34CL and 34P (34K) odd-
odd isotopes. Nevertheless, the results represented in Fig. 14
are evaluated using the states with the same angular momen-
tum of the exact ground state (g.s.) even though they could
not correspond to the lowest energy obtained with variational
approaches.

We see in Figs. 13 and 14 that the PGCM approach with the
states that minimize the HFB energy is generally worse than
the PGCM with VAPNP approaches. Moreover, the VAPNP-
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FIG. 14. Same as Fig. 13 but for odd-odd isotopes. The HFB

result only contains general pn-no seeds. The magenta crosses show

the VAPNP-PGCM results including My, = 0 pairing degrees of
freedom apart from (8,, y) (see text for details).

PGCM method with pn mixing is always closer to the exact
solution than the VAPNP-PGCM without pn mixing. In the
former case, the deviations with respect to the exact g.s.
energies are, in general, less than 1 MeV. Similarly to the
unconstrained results, these discrepancies are larger for mid-
shell nuclei, and the degree of agreement with the exact values
is similar for even-even, even-odd, and odd-odd isotopes. We
also see that even-odd staggering is more suppressed by per-
forming the configuration mixing, except for the S isotopes
within the HFB-PGCM implementation. The differences be-
tween the PGCM calculations are smaller than those found
in the unconstrained calculations, although, in certain nuclei,
such differences could be rather large (e.g., 3*3*S). But they
indicate that including both the VAPNP correlations and the
pn mixing in the intrinsic states can help to better reproduce
the ground-state energies. Additionally, it is interesting to
note that both VAPNP-PGCM approaches perform similarly
well regarding the description of the ground state energies of
the N = Z nuclei. However, the HFB-PGCM method shows
good results for 2°Ne and **Mg but large differences for 23Si,
328, and ®Ar. The origin of these deviations is the presence
(absence) of pn pairing in the set of intrinsic wave functions
for 2’Ne and **Mg (**Si, 323, and *°Ar).
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TABLE II. Root-mean-square energy deviation (in MeV) of the PGCM variational approaches (HFB, and VAPNP with and without pn
mixing) with respect to the exact results for even-even, even-odd, and odd-odd nuclei. For the excited states, the left and right numbers indicate
the deviation with respect to the values of the absolute energy and the excitation energy, respectively.

Nuclei Mixing g.s. 0F 2f 4t

e-¢ HFB 1.375 1.912 (0.645) 1.176 (0.251) 1.379 (0.315)
pn-no 0.853 1.366 (0.631) 0.759 (0.148) 0.831 (0.294)
pn-yes 0.628 1.277 (0.746) 0.537 (0.137) 0.610 (0.178)

Nuclei Mixing g.s. First exc. Second exc. Third exc.

e-0 HFB 0.979 0.951 (0.231) 0.826 (0.234) 0.865 (0.580)
pn-no 0.793 0.751 (0.144) 0.690 (0.191) 0.716 (0.211)
pn-yes 0.564 0.571 (0.106) 0.604 (0.123) 0.565 (0.128)

0-0 HFB 1.139 1.156 (0.542) 1.260 (0.487) 1.067 (0.446)
pn-no 0.945 1.123 (0.744) 1.237 (0.718) 1.074 (0.729)
pn-yes 0.637 0.805 (0.508) 1.114 (0.752) 1.005 (0.748)

A more global and quantitative way of evaluating the
ability of the present PGCM methods to reproduce the
exact ground state energies is to compute the root-mean-
square deviation (RMSD) between the approximate and exact
ground-state energies. Such a quantity is displayed in the third
column of Table II, separately for e-e, e-o, and o0-o nuclei
and for the HFB-PGCM and VAPNP-PGCM (pn-yes and pn-
no) calculations. In particular, we see that the best approach
is VAPNP-PGCM with pn-mixing, then the VAPNP-PGCM
without pn-mixing, and finally the HFB-PGCM. The largest
RMSD obtained for the different approaches are 637, 945,
and 1375 keV, respectively, that indicates a very good approx-
imation to the exact results, specially for the VAPNP-PGCM
pn-yes case. Additionally, the deviations in the ground state
energies are similar for e-e, e-o, and 0-o nuclei for the
VAPNP-PGCM approaches, and the performance of the HFB-
PGCM method is worse in e-e nuclei than in 0-o and e-o
nuclei, showing that pairing correlations are not fully taken
into account in the latter approach.

We now study the capacity of the PGCM methods to re-
produce the excitation energies. We present the results for
the lowest excited states in even-even, even-odd, and odd-odd
nuclei in Figs. 15, 16, and 17, respectively. Concerning the
even-even isotopes, we observe an excellent reproduction of
the exact results for the 2| and 4] excitation energies in all
nuclei. The agreement is slightly worse for the 0] excitation
energies although the qualitative behavior of this quantity is
overall well reproduced, with the exception of the isotopes
Mg, 285, *°Si and *°S, where the largest disagreements are
observed. In these cases, the explicit exploration of all pair-
ing degrees of freedom and/or the inclusion of quasiparticle
excitations in the set of intrinsic states considered would be
needed [37-40]. In the last three columns of Table II, we
display the RMSD of the total and excitation energies for the
07, 21, and 4] states. Overall, the pn-yes VAPNP-PGCM
calculation performs better than the other two PGCM cal-
culations for the total energies as well as for the excitation
energies. The only exceptions are the excitation energies of
the 0;’ states, which are slightly worse, but this is because the
inclusion of pn-pairing correlations lowers the ground-state
energies to a greater extent than the total energies of the

second 07 states. From a more general perspective, we also
see that the excitation energies are better reproduced (smaller
RMSD values) than the total energies, as expected for these
relative quantities. We also observe a very good agreement
with the exact results for even-odd isotopes (Fig. 16). In this
case, we display the excitation energies of the three lowest
states obtained from the exact diagonalizations. We have to
point out that the values of the angular momentum of the exact
excited states are also well reproduced with the variational
approaches. As can been seen in Table II, the RMSD for the
total and excitation energies of the first three excited states are
slightly smaller when taking into account the pn mixing. This
overall better agreement of the pn-yes PGCM calculations is
consistent with the results obtained for the e-e nuclei, and the
RMSD of the excitation energies of the three lowest excited
states are of the order of 100 keV in this case, which is very
good. The main differences are found when looking at the
odd-odd isotopes. Concerning the reproduction of the angular
momentum of the g.s. and first excited states by the variational
approaches, we note that the VAPNP-PGCM methods are
superior to the HFB-PGCM calculations. As stated above, the
former methods are able to reproduce the angular momentum
of the exact g.s. in all nuclei except for the 3*Cl nucleus
while the HFB-PGCM implementation have problems in *F
(*°CI), 2Na (3K), 2 Al (2K), *Cl, and *P (*K) isotopes.
Additionally, we also observe a mismatch between the angular
momentum of the exact and approximate calculations for the
first excited state in the following nuclei: 26Na %°p), 26 A1, and
31 for all PGCM methods, Na (*3Cl) for VAPNP-PGCM
calculations, 2>Na for VAPNP-PGCM without pn-mixing and
HFB-PGCM calculations, and, finally, ’°Na (*°K) for HFB-
PGCM results. In most of the cases, the excited state with
the same quantum numbers as the exact first excited state
appears very close in energy to the first excited state found
with variational approaches. However, there are some excep-
tions concerning the 0] states of N = Z nuclei that are the
isobaric analog states with M7 = 0 of the T = 1 triplet. The
variational methods implemented in this work are not able to
provide a good description of such states, in particular, the
ground state of **Cl, the first excited state of 2°Al, and the
second excited state of **P.
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FIG. 15. 05 (top panel), 2 (middle panel), and 4] (bottom panel) excitation energies for the even-even isotopes in the sd-shell nuclei
calculated exactly (black diamonds) and using VAPNP-PGCM with pn mixing (red dots), VAPNP-PGCM without pn mixing (blue squares),

and HFB-PGCM (green pentagons) techniques.

In Fig. 17, we present the energies of the first excited state
obtained with the exact calculations and their corresponding
PGCM counterparts. The wrong reproduction of the angular
momentum of the exact ground state discussed above is shown
in this figure as a “negative” excitation energy (white sym-
bols). We clearly see that the HFB-PGCM method is the worst
method in this respect. Nevertheless the overall performance
of the variational approaches is rather good (see also Table II)
and the largest deviations are observed in those N = Z nuclei
where the isobaric analog 07 state is involved, i.e., 3y, 20A1,
and the second excited state of °P (not shown).

In order to improve the PGCM description of these prob-
lematic states, we have performed exploratory calculations

including in the set of intrinsic states both those obtained
— J,=0:T,=1 J,=1,T,=0 .
along (fB,,y) and along (3MJP:O;MT,,:0’ (SM,,,:O;MT,,:O) direc-

tions. These calculations have been carried out for the isotopes
where the largest deviations with the exact excitation ener-
gies are found, i.e., 2?Na, %°Al, **Cl, Na and *Cl. The
ground state energy gained by adding these pairing degrees
of freedom, shown in Fig. 9 as magenta crosses, is almost
negligible, except for **Cl where around &~ 0.6 MeV is at-
tained. A larger effect is observed in the description of the
excitation energies (see Fig. 17). For ’Na, *®Na, and %Cl
the new results are now very close to the exact excitation
energies. In these cases, the ground and first excited states
are 3, 17) and (2, 1]) for the former and the latter two,
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FIG. 16. First (top panel), second (middle panel), and third (bottom panel) excitation energies for the even-odd isotopes in the sd-shell
nuclei calculated exactly (black diamonds) and using VAPNP-PGCM with pn mixing (red dots), VAPNP-PGCM without pn mixing (blue

squares), and HFB-PGCM (green pentagons) techniques.
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FIG. 17. Excitation energies for the first excited states in odd-odd
isotopes in the sd-shell nuclei calculated exactly (black diamonds)
and using PGCM with HFB-PGCM (green pentagons) and VAPNP-
PGCM with pn mixing (red dots) and without prn mixing (blue
squares) techniques. The angular momenta used as g.s. and first
excited states are those of the exact calculation even though they
could not correspond to the g.s. and first excited states obtained with
the variational approaches. Empty symbols represent a wrong assign-
ment of the exact g.s. angular momentum. The magenta crosses show
the results for PGCM including M7, = 0 pairing degrees of freedom
apart from (Ez, y) (see text for details).

respectively. Hence, the isobaric analog states are not involved
here. For the rest of the N = Z nuclei we also see a significant
improvement of the PGCM excitation energies, but the results
are still far away from the exact data and further correlations
should be included. These correlations could be obtained by
exploring explicitly quasiparticle excitations. However, since
these O states are T = 1 states and the USD interaction is
isospin conserving, it is very likely that the isospin projection
would be the more straightforward way of reproducing these
isobaric analog states. PGCM approximations including such
a symmetry restoration will be explored in the future but are
beyond the scope of the present work. Finally, looking at the
RMSD of the total and excitation energies for the three lowest
excited states in the 0-0 nuclei, shown in Table II, we see that
the performance of the PGCM method without pn mixing is
again worse than the PGCM with pn-mixing.

Lastly, we look at the description of the electromag-
netic properties and take the Ne isotopic chain as an
illustrative example. In Fig. 18, we show the B(E2, ZT —
07) and B(M1,3] — 27) for the even isotopes and the
B(E2,J oo — Jgi) and p(JF) for the odd ones. These
quantities are calculated with the usual effective charges (1.5
and 0.5 for protons and neutrons, respectively) and bare nu-
cleon g factors. Similarly to the excitation energies discussed
above, the agreement of the PGCM approaches with the exact
values is very good, especially for the odd isotopes. We do not

(b)jfst exc _’J; s.

IERR
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FIG. 18. Electromagnetic properties calculated with HFB-
PGCM (green pentagons), VAPNP-PGCM with (red bullets) and
without (blue squares) pn-mixing, and the exact values (black dia-
monds) for selected states in Ne isotopes: (a) B(E2,2{ — 0f) in
even-even isotopes, (b) B(E?2, Jltl e, > Jgf&) in even-odd isotopes,
(c) B(M1,3] — 2}) in even-even isotopes, and (d) magnetic dipole
moment for the ground state in even-odd isotopes.

find large differences between the results obtained including
or excluding the pn mixing, except for the B(M1) where the
VAPNP-PGCM with pn mixing is better and the HFB-PGCM
is not able to give good results due to a poor description of the
37 state. The trends of the exact results are well reproduced
although the PGCM values are systematically larger [smaller]
for the B(E2) [B(M1)]. These discrepancies could be reduced
by describing better the excited state through the inclusion of
additional degrees of freedom on top of the triaxial deforma-
tions (32, y) (e.g., cranking [28,41]).

IV. SUMMARY

In this article, we evaluated the merits of several varia-
tional methods by systematically comparing their results to
the exact ones across the sd-shell valence space. In particular,
we studied not only even-even isotopes but also even-odd
and odd-odd nuclei, the latter two being often neglected in
variational approximations based on the use of Bogoliubov
vacua. For this study, we considered the well-known USD
nuclear interaction [27] that has the double advantage of being
highly nontrivial and reproducing well experimental data. The
advanced variational calculations were performed with the
solver TAURUS [24] whereas the exact results were obtained
by using the shell model code ANTOINE [25].

To better understand the role of the various correlations
at play in nuclear systems, we considered a diverse set of
variational methods ranging from the plain HFB approach
to the better VAPNP scheme to several variants of the more
elaborate PGCM that includes beyond-mean-fields correla-
tions through the restoration of the broken symmetries and the
mixing of configurations. Also, in each case we considered
several types of trial Bogoliubov vacua that differ in their
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conserved intrinsic symmetries. In particular, we compared
the differences between results using vacua coming from the
minimization of HFB/VAPNP energies and that include or
exclude a mixing of the proton and neutron single-particle
states. To determine the importance of the pn mixing could be
of great interest to improve the variational approaches based
on an energy density functional, as this degree of freedom is
almost always neglected in this context. Finally, we want to
stress that the even and odd number parity Bogoliubov vacua
were treated on the same footing, i.e., with a self-consistent
solving of the appropriate HFB and VAPNP equations.

The main conclusions that we can draw from this study are
the following:

(1) In addition to being better from a variational point of
view, general Bogoliubov vacua that break all possi-
ble symmetries have the immense practical advantage
that they converge much more frequently towards the
absolute minimum. This greatly simplifies the work
of the practitioner as the calculations are much easier
to carry out.

(i) The Bogoliubov vacua that include pn mixing can
be used to describe odd-odd systems at the VAPNP
level without the need to perform an explicit blocking
of two quasiparticles. By contrast, HFB calculations
of odd-odd nuclei with pn mixing produced fake
odd-odd quasiparticle vacua, i.e., vacua that con-
tain only even-even particle-number eigenstates when
projected onto good N and Z, and thus were not
considered.

(iii) One of the advantage of the VAPNP scheme is its
much better treatment of the pairing correlations with-
out the need to perform additional constraint during
the minimization procedure. Importantly, the VAPNP
prevents the collapse of the pairing correlations of-
ten observed in HFB calculations in situations where
the effective pairing interaction is small (e.g., shell
closures or in odd systems). Also, when allowing the
mixing of protons and neutrons, the VAPNP scheme
is able to include simultaneously isovector (pp, nn,
and pn) and isoscalar (pn) pairing correlations in the
intrinsic states. By contrast, in (unconstrained) HFB
calculations only one type of pairing correlation sur-
vives in the solution.

(iv) The variational methods relying on the VAPNP min-
imization and exploring the space of Bogoliubov
vacua with pn mixing give the best results for the
ground-state and excited-state energies as well as for

the electromagnetic properties. In particular, the best
variational method in this study was the PGCM using
the triaxial deformations as collective coordinates and
intrinsic states with pn mixing. We note, however, that
the effect of including pn mixing in the description is
less important in the PGCM calculations than in the
pure VAPNP calculations based on a single intrinsic
state.

(v) The PGCM is able to reproduce very well the exact
results even in the cases of mid-shell nuclei where
the Hilbert space of the interacting particles has a
larger dimension. This good agreement is observed
for the ground-state and excited-state energies as well
as for the electromagnetic properties, specially when
VAPNP states with pn mixing are used. Neverthe-
less some discrepancies appear for some energies
and transitions and for certain N = Z odd-odd nu-
clei. Concerning the latter, one major problem is the
poor description of the 0} isobaric analog states. Ex-
ploratory calculations using the pairing channels as
generator coordinates show an improvement in the
description of those nuclei. But since these are pure
T = 1 states, we expect that including a full isospin
projection in the construction of the PGCM states will
provide us with a better approximation to those states,
and some work along this line is in progress.

Overall, this study shows the ability of sophisticated vari-
ational methods to reproduce exact results of a realistic
Hamiltonian in a small valence space, namely, the USD inter-
action in the sd shell. Nevertheless, some discrepancies exist
for specific states or nuclei. This motivates us to considering
even more advanced variational calculations that include, e.g.,
quasiparticle excitations, cranking, or isospin projection.
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