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Shell-model study of titanium isotopic chain with chiral two- and three-body forces
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The even-even Ti isotopic chain, from A = 42 to 70, has been studied within the nuclear shell-model
framework by employing an effective Hamiltonian which is derived by way of many-body perturbation theory
from a chiral potential with two- and three-body forces, and includes three-body contributions which account
for Pauli principle violations in nuclei with more than two valence particles. We consider 40Ca as a closed core
and a model space spanned by the neutron and proton 0 f 1p orbitals with the addition of the 0g9/2 orbital for
neutrons. Calculated two-neutron separation energies and excitation energies of the yrast 2+ states are reported
and compared with the experimental data, which are available up to 62Ti. The present study intends to investigate
the effects of the adopted effective interactions on the evolution of the shell structure.
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I. INTRODUCTION

In the last two decades or so, a large amount of data
provided by radioactive ion-beam facilities has refined our
vision of the nuclear shell structure. The existence of the
magic numbers associated with 2, 8, 20, 28, 50, 82 protons
or neutrons, and 126 neutrons has been the cornerstone of
the shell model for many years starting from its entry into
nuclear physics by Mayer and Jensen [1,2]. The new data have
put into evidence that magic numbers are not universal, but
they may change as a function of N and Z when going far
from the stability line. For instance, new shell gaps have been
identified at N = 32, 34 in neutron-rich nuclei with Z ≈ 20
and at N = 16 for O isotopes, while the disappearance or
weakening of canonical magic numbers has been observed
in lighter nuclei at N = 8, N = 20, and N = 28 (see, for
instance, Refs. [3–18]). Nowadays, great theoretical and ex-
perimental efforts are devoted to study the evolution of the
shell structure and, in particular, to identify the behavior of
shell gaps along isotopic chains as well as to understand the
role played by the different components of the nuclear force
in driving their modifications.

In particular, the Ca isotopic chain, with magic proton
number Z = 20, has attracted considerable interest, since it
exhibits two neutron shell closures at N = 32 [3,11,16] and
34 [17] in addition to the standard one at N = 28. Special
attention is presently focused on the very exotic 60Ca with
the aim to acquire information useful to investigate the shell
structure evolution at N = 40 and shed light on the possible
doubly magic nature of this nucleus. From the experimental
point of view the existence of 60Ca has been only recently

established [19], but no information is available on the ex-
citation energy of the yrast 2+ state. It is worth mentioning
also that the experimental location of the neutron drip line in
Ca isotopes is still unknown, and no clear indications emerge
from theory [20–26].

On the other hand, the shell closure at N = 40 observed
in 68Ni, which corresponds to the filling of the neutron 0 f 1p
and proton 0 f7/2 orbitals, rapidly disappears when removing
protons from 0 f7/2, as it is shown by the behavior of the
experimental excitation energies of the yrast Jπ = 2+ states
in iron and chromium neutron-rich isotopes.

In this context, also the chain of Ti isotopes (Z = 22)
represents a key piece to investigate the evolution of the shell
structure towards Z = 20. The properties of these nuclei, es-
pecially those for N ≈ 40, may provide a more sound testing
ground of nuclear models and of their predictions of the Ca
drip line.

Experimental data are now known for Ti isotopes from A =
42 to 62. The masses of 60,62Ti were determined for the first
time through the measurements reported in Ref. [27], while
the 2+

1 → 0+
gs and 4+

1 → 2+
1 transitions in 60Ti and 62Ti were

observed via one-proton stripping reactions from 61V and
63V, respectively, in Refs. [28,29]. These experiments show
an increase in the 2+

1 excitation energies of both nuclei as
compared with the corresponding Cr and Fe isotones, which
indicates a decrease in collectivity towards Z = 20. However,
the reduced size in the increase does not seem to support the
existence of a shell closure at N = 40 for 60Ca.

From the theoretical point of view, several shell-model
(SM) calculations have been carried out for Ti nuclei by con-
sidering various model spaces referred to both 40Ca or 48Ca as
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closed core and employing empirically corrected interactions
[9,28–34]. In Ref. [35], some of the present authors performed
a study of isotopic chains “north-east” of 48Ca, including
Ti isotopes, by employing two-body matrix elements of the
residual interaction derived from the high-precision CD-Bonn
free nucleon-nucleon potential.

In the present paper, the whole even-even titanium iso-
topic chain from A = 42 to 70 has been studied for the first
time within the realistic SM framework starting from up-to-
date two- and three-body forces derived in the framework of
chiral perturbation theory (ChPT). The SM effective Hamil-
tonian, consisting of the single-particle (SP) energies and
the two-body matrix elements (TBMEs), is built up using
the many-body perturbation theory [36,37], and includes the
effect of second-order three-body diagrams arising in nuclei
with more than two valence particles, which account for three-
body correlations induced by the interaction via the two-body
force of clusters of three-valence nucleons with core excita-
tions as well as with virtual intermediate nucleons scattered
above the model space.

This work follows two of our previous studies. In the first
one [38], we investigated the role played by genuine and effec-
tive chiral three-body forces in providing a reliable monopole
component of the SM effective Hamiltonian defined in the
0 f 1p model space. Results are discussed for Z = 20, 22, 24,
26, 28 with N from 22 to 40. In the second one [39], focused
only on Ca isotopes, the same approach was used in a larger
model space including the neutron 0g9/2 orbital to describe
isotopes beyond N = 40. Here, we move a step forward to test
our approach along an extensive isotopic chain, as Ti nuclei,
with both valence neutrons and protons.

It is worth mentioning that two- and three-body chiral
forces have been also used in some recent ab initio calcu-
lations for Ti isotopes. In Ref. [22], the authors investigated
50,54,56Ti by way of the coupled-cluster method including the
coupling to the particle continuum, while in Ref. [40] the
shell gap in 54Ti was analyzed in terms of valence-space in-
medium similarity renormalization group (VS-IMSRG). The
latter was also used in Ref. [41] to investigate the properties
of nuclei from helium to iron. Precision mass measurements
of 51−55Ti were performed in Ref. [42] and compared with the
predictions of multireference in-medium similarity renormal-
ization group (MR-IMSRG), VS-IMSRG, and self-consistent
Gorkov-Green’s function (GGF) calculations. Furthermore,
VS-IMSRG results are reported in Ref. [29] for the excitation
energies of the new observed 2+ and 4+ states in 62Ti, to-
gether with predictions of beyond mean-field and large-scale
SM calculations, the latter being based on the same model
space and effective interaction of Ref. [32]. The comparison
with experiment shows that only large-scale SM calculations
reproduce very accurately data for 62Ti, which are instead
largely overestimated by the other two approaches. The the-
oretical framework of Ref. [32] gives also a good description
of the experimental excitation energies of 60Ti, as shown in
Ref. [28].

In concluding this section, it has to be pointed out that,
similarly to our previous study on Ca isotopes [39], we do not
include in the model space the neutron 1d5/2 orbital, which
was shown to be of great importance to reproduce the onset

of the collectivity at N = 40 for isotopic chains “north-east”
of 48Ca, as first discussed in Ref. [43] and then confirmed in
Refs. [28,29,32,34,35].

In Ref. [44], the authors have identified the source of
this collective behavior as a consequence of the quasi-SU(3)
approximate symmetry, owing to the interplay between the
quadrupole-quadrupole component of the residual interaction
and the central field in the subspace spanned by the lowest
� j = 2 orbitals of a major shell.

In particular, in Ref. [32]—where the adopted model space
was based on a 48Ca core including the 1p0 f shell for pro-
tons and the 1p, 0 f5/2, 0g9/2, 1d5/2 orbitals for neutrons—the
deformation driving role of the neutron 1d5/2 orbital below
68Ni was assessed showing that the maximum deformation
develops in 64Cr and decreases towards Ca. Such a situa-
tion was, in fact, explained in terms of a reduction of the
neutron 0 f5/2-0g9/2 gap when protons are removed from the
0 f7/2 orbital, which is accompanied by an enhancement of
the quadrupole-quadrupole correlations between the neutron
0g9/2 and 1d5/2 orbitals. Similar results are shown in Ref. [35]
where the Ca, Ti, Fe Cr, Ni isotopic chains “north-east” of
48Ca were studied within the realistic SM framework, by
comparing the results for two model spaces differing for the
inclusion of the neutron 1d5/2 orbital.

A model space space starting from 40Ca as closed core and
including the neutron 1d5/2 makes calculations around N =
40 very cumbersome. Dimensions of the Hamiltonian matrix
reach about 1011 in the case of 62Ti, which represents the limit
of our computing power. Our choice to exclude the neutron
1d5/2 orbital is, therefore, related essentially to this reason.
We plan to overcome this limit by extending the so-called
double-step procedure introduced in Refs. [45,46] to reduce
the computational complexity of large-scale SM calculations,
which consists in deriving an effective Hamiltonian within a
manageable model space by means of a unitary transformation
of a large-scale Hamiltonian.

Nevertheless, the present study, in parallel with our pre-
vious one on Ca isotopes, intends to investigate the effects
of our SM effective interactions on the evolution of the shell
structure before tackling the problem in a larger model space
including the neutron 1d5/2 orbital.

In the following section, we give an outline of the theoret-
ical framework in which our SM calculations are performed.
Results for the excitation energies of the yrast 2+ states and
two-neutron separation energies of even-even Ti nuclei from
N = 20 to 48 are presented and compared with the available
experimental data in Sec. III. In this section, we also discuss
the sensitivity of these results with respect to the many-body
correlations and their impact on the effective-single-particle
energies. Section IV provides a summary and concluding re-
marks.

II. OUTLINE OF THE THEORETICAL FRAMEWORK

As mentioned in the Introduction, SM calculations for Ti
isotopes have been performed within the same approach as
Ref. [39], which we refer to for more details. Calculations are
performed by means of the SM code KSHELL [47] in the
model space spanned by the four proton 0 f7/2, 0 f5/2, 1p3/2,
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1p1/2 orbitals and the five neutron 0 f7/2, 0 f5/2, 1p3/2, 1p1/2,
0g9/2 orbitals outside the doubly magic 40Ca.

We start our calculation from the nucleon-nucleon (NN)
potential developed by Entem and Machleidt [48] within
chiral perturbation theory at next-to-next-to-next-to-leading
order (N3LO) and the chiral three-body (NNN) potential at
next-to-next-to-leading order (N2LO), which share the same
nonlocal regulator function. The low-energy constants (LECs)
appearing in both NN and NNN components, namely, c1, c3,
c4, are determined by the renormalization procedure described
in Ref. [49], while for the cD and cE LECs characterizing only
the NNN force we take the values of Ref. [50].

The matrix elements of the NN and NNN forces, with the
addition of the Coulomb one in the proton-proton channel, are
computed in the harmonic-oscillator basis with an oscillator
parameter h̄ω = 45A−1/3 − 25A−2/3 for A = 40. Details of
the calculation of matrix elements of the N2LO NNN poten-
tial are reported in Ref. [51].

These matrix elements are used as input to derive the SM
effective Hamiltonian Heff within the time-dependent pertur-
bation theory. Specifically, Heff is expressed by way of the
Kuo-Lee-Ratcliff folded-diagram expansion [36] in terms of
the Q̂-box vertex function, which is defined as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (1)

where H is the full nuclear Hamiltonian H = H0 + H1, H0

and H1 being the unperturbed and the interaction components,
respectively, and ε being an energy parameter called “starting
energy.”

Then, the Q̂-box may be calculated by expanding the term
1/(ε − QHQ) as a power series,

1

ε − QHQ
=

∞∑
n=0

1

ε − QH0Q

(
QH1Q

ε − QH0Q

)n

. (2)

This provides a perturbative expansion of the Q̂-box, and
its diagrammatic representation is given as a collection of
irreducible valence-linked Goldstone diagrams [36].

Once the Q̂-box is calculated, Heff is obtained by solving
nonlinear matrix equations by way of iterative techniques
such as the Kuo-Krenciglowa and Lee-Suzuki ones [52], or
graphical noniterative methods [53]. The latter is the method
we have employed in the present work, since it results in
a faster and more stable convergence to the solution of the
matrix equations.

We arrest the Q̂-box expansion of the one- and two-body
Goldstone diagrams at third order in the NN potential and at

c

ba

p

ff

a b

h

A B
dc

ee

d

FIG. 1. Second-order three-body diagrams. The sum over the
intermediate lines runs over particle and hole states outside the model
space, shown by A and B, respectively. We report only one of the
nine existing topologies which correspond to the permutations of the
external lines.

first order in the NNN one. It has to be pointed out that the
diagrams at first order in NNN potential—whose analytical
expressions are reported in Refs. [38,51]—are the coefficients
of the one-body and two-body terms arising from the normal-
ordering decomposition of the three-body component of a
many-body Hamiltonian [54].

Since our goal is the study of the Ti isotopic chain up to
70Ti, we are going to diagonalize the SM Hamiltonian for
systems up to thirty valence nucleons. This means that the
derivation of the SM effective Hamiltonian needs to resolve
the progressive filling of the model space orbitals, especially
in the calculation of the irreducible valence-linked diagrams
of the Q̂-box.

This should be achieved by including in the Q̂-box many-
body diagrams which account for the interaction via the
two-body force of the valence nucleons with configurations
outside the model space, leading to a dependence of Heff on
the number of valence nucleons. We arrest the cluster ex-
pansion to the leading term, namely, second-order three-body
diagrams, which, for those nuclei with more than two valence
nucleons, account for the interaction of the valence nucleons
with core excitations as well as with virtual intermediate
nucleons scattered above the model space. These diagrams
are reported in Fig. 1 and their explicit expressions, DA and
DB, are

〈[( ja jb)Jab, je]J |DA|[( jc jd )Jcd , j f ]J〉 =
∑
Jbe

∑
p

(−1)b+e+ f +p ˆJab ˆJcd ˆJbe
2
{

ja jb Jab

je J Jbe

}{
ja jp Jcd

j f J Jbe

}

×〈b, e; Jbe|VNN |p, f ; Jbe〉〈a, p; Jcd |VNN |c, d; Jcd〉
[ε0 − (εa + ε f + εp)]

, (3)

〈[( ja jb)Jab, je]J |DB|[( jc jd )Jcd , j f ]J〉 =
∑
Jbe

∑
h

(−1)b+e+ f +h+1 ˆJab ˆJcd ˆJbe
2
{

ja jb Jab

je J Jbe

}

×
{

ja jh Jcd

j f J Jbe

} 〈b, e; Jbe|VNN |h, f ; Jbe〉〈a, h; Jcd |VNN |c, d; Jcd〉
[ε0 − (εa + εb + εd + ε f − εh)]

, (4)
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α
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J

J
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m

J
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FIG. 2. Density-dependent two-body contribution that is derived
from a three-body one. α is obtained by summing over one incoming
and outgoing particle of the three-body graphs A, B reported in Fig. 1.

where the indices a, b, c, d , e, f , p, h refer to the quantum
numbers of the incoming, outcoming, and intermediate single-
particle states, εm denotes the unperturbed single-particle
energy of the orbital jm, ε0 is the so-called starting energy,
namely, the unperturbed energy of the incoming particles
ε0 = εc + εd + ε f .

From now on, we dub these contributions “3-b
correlations.”

We also point out that for each topology reported in Fig. 1,
there are nine diagrams, corresponding to the possible permu-
tations of the external lines [55].

Diagrams A and B include the effects of the Pauli blocking
due to the filling of the valence particle lines in the second-
order ladder and core-polarization diagrams [56], respectively,
quenching the contribution of these two-body terms.

Nevertheless, the KSHELL SM code, which we employ
for the calculations, cannot perform the diagonalization of
a three-body Heff , so we derive density-dependent two-body
terms (α) from the corresponding second-order three-body
diagrams (A, B), as shown in Fig. 2.

We then calculate, for each A, B topology, nine one-loop
diagrams, namely, the graph (α) in Fig. 2. Their explicit form,
in terms of the three-body graphs A, B, is

〈( ja jb)J |V α|( jc jd )J〉 =
∑
m,J ′

ρm
Ĵ ′2

Ĵ2
〈[( ja jb)J , jm]J ′ |V A,B|

× [( jc jd )J , jm]J ′ 〉, (5)

where the summation over the m-index runs in the model
space, and ρm is the unperturbed occupation density of the
orbital m according to the number of valence nucleons.

Following the above procedure, the perturbative expansion
of the Q̂-box contains one- and two-body diagrams up to third
order in VNN , and a density-dependent two-body contribution
which accounts for three-body second-order diagrams A, B.

It should be stressed that the latter term depends on the
number of valence protons and neutrons, thus we derive spe-
cific effective SM Hamiltonians for any nuclear system under

TABLE I. Proton επ
b and neutron εν

b single-particle energies (in
MeV).

b επ
b εν

b

0 f7/2 −1.1 −8.4
0 f5/2 6.2 −0.2
1p3/2 1.4 −5.2
1p1/2 3.3 −3.1
0g9/2 1.5

consideration, Hamiltonians that differ only for the two-body
matrix elements.

It is worth mentioning that, as done in Ref. [39] for Ca, we
have checked the effect of the spurious center-of-mass motion.
In line with the previous outcome, we have found that results
are only marginally affected by spurious components.

In the Supplemental Material [57] we report the TBMEs of
the interaction calculated without including three-body corre-
lations as well as those of the density dependent interaction
for A = 62. Neutron and proton SP energies are shown in
Table I. It is worth mentioning that the proton and neutron
SP spacings obtained from the theory are shifted to reproduce
the experimental ground-state energies of 41Sc and 41Ca with
respect to 40Ca. This is because, as discussed in Ref. [39], our
derivation of the effective Hamiltonian with Nmax = 18 does
not provide convergent spectra for the one-valence systems.

III. RESULTS

We start focusing on the two-neutron separation energies,
whose calculated values from 44Ti to 70Ti are shown in Fig. 3
together with the available experimental data.

We see that the calculated two-neutron separation energies
(S2n), with (magenta squares) and without (blue diamonds) 3-
b correlations, are in a good agreement with the experimental
data (red crosses) up to N = 32. Actually, both calculations

22 24 26 28 30 32 34 36 38 40 42 44 46 48
N

0

5

10

15

20

25

30

S
2n

(M
eV

)

H
eff

 3-b correlations

H
eff

 no 3-b correlations

Expt

FIG. 3. Theoretical two-neutron separation energies for even-
even Ti isotopes from N = 22 to 48, with and without the 3-b
correlations, are compared with the experimental data from Ref. [27]
for N = 40 and from AME2020 [58] for the other isotopes.
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FIG. 4. Theoretical 2+
1 excitation energies for even-even Ti iso-

topes from N = 20 to 48, with and without the 3-b correlations, are
compared with the experimental data from Ref. [29] for N = 40 and
from Ref. [59] for the other isotopes.

provide the observed shell closures at N = 28 and N = 32,
which manifest as a sudden drop of S2n at N = 30 and N =
34. However, starting from N = 34 the effect of 3-b corre-
lations becomes rather large and, as expected, grows with
increasing neutron number in analogy with the results ob-
tained for Ca isotopes [39]. It turns out that their contribution
increases the calculated S2n and leads to a good agreement
with the measured values in 56–62Ti, which are significantly
underestimated when 3-b correlations are omitted. Never-
theless, in both calculations all Ti isotopes up to 70Ti are
predicted to be bound.

The experimental excitation energies of the yrast 2+ state
are compared with the calculated values obtained with and
without 3-b correlations in Fig. 4. Up to N = 38, the results
of the two calculations are very similar and do not differ
significantly from those reported in Ref. [38], where the model
space was limited to the neutron and proton 1 f 1p orbitals. It
can be seen that both calculations are in quite good agree-
ment with experimental data up to N = 34, and in particular
predict the observed shell closures in 50Ti and 52Ti. How-
ever, from N = 36 on, the theoretical curves start to climb
towards N = 40, at variance with the observed behavior of
the yrast 2+ excitation energies that does not exhibit such a
raise. This deficiency in our calculations may be ascribed to
the inadequacy of the adopted model space, which does not
include the neutron 1d5/2 orbital. In fact, as mentioned in the
Introduction, the interaction between neutron 1d5/2 and 0g9/2

orbitals ignites a quadrupole collectivity that is responsible
for the disappearance of the N = 40 shell closure in isotopic
chains “north-east” of 48Ca, especially in chromium and iron
isotopes [28,29,32,34,35,43].

Despite this unsatisfactory result, it is worth pointing out
that differences emerge in the two theoretical curves starting
from N = 40 to 48. As a matter of fact, they evince that the
contribution of 3-b correlations reduces the excitation energy
of the 2+

1 state, leading to the disappearance of the shell gap
in 62Ti, in agreement with experiment [29].

We have found that 3-b correlations also influence the
calculation of the yrast 4+ states. The predicted behavior of

their excitation energies, obtained by omitting these corre-
lations, exhibits a positive slope from 60Ti to 62Ti that is
not experimentally observed. On the other hand, the exper-
imental behavior is reproduced when 3-b correlations are
included, although the calculated excitation energies under-
estimate the measured values by about 500 KeV along the
whole chain, except for 42Ti where a larger discrepancy is
noticed.

The results shown above evince the effects produced on
the shell structure of Ti isotopes when the evolution the SM
Hamiltonian, as a function of the number of valence nucleons,
is microscopically taken into account. We are confident that
the combination of these correlations with the enlargement of
the model space including the neutron 1d5/2 orbital is the key
to reproduce the observed degree of collectivity in N ≈ 40
nuclei “north-east” of 48Ca.

The shell evolution can be analyzed by studying the behav-
ior of the effective single-particle energies (ESPEs) along the
isotopic chain, and thus we have found it interesting to see
how they are influenced by 3-b correlations.

The ESPEs are defined as

ESPE(aτ ) = ετ
a +

∑
bτ ′

V̄ ττ ′
ab nτ ′

b , (6)

where τ , τ ′ stand for neutron or proton index and a, b run
over all the valence orbitals. The quantities ετ

a and nτ
a denote

the SP energy and the ground-state occupation number of
the aτ level, while V̄ ττ ′

ab is the monopole component of the
two-body effective interaction (Veff ) obtained by averaging
on the projection of the total angular momentum and can be
written as

V̄ ττ ′
ab =

∑
J (2J + 1)〈aτ , bτ ′ | Veff | aτ , bτ ′ 〉J∑

J (2J + 1)
, (7)

where J runs over Pauli allowed values.
The proton ESPEs are not significantly affected by 3-b

correlations. In both calculations, the proton 0 f π
7/2 orbital is

well separated from the other ones, and the 1pπ
3/2-0 f π

7/2 gap
increases towards neutron-rich Ti isotopes, which indicates
the stability of the shell closure at Z = 28. The other SP states
are close each other with the inversion of 1pπ

1/2 and 0 f π
5/2

orbitals in correspondence of N = 40.
More interesting is the behavior of the ESPEs for neutrons.

Figure 5(a), presenting the neutron ESPEs obtained by omit-
ting 3-b correlations, shows some similarities with Fig. 5(b),
where these correlations are included. In both calculations, the
neutron 0 f7/2 orbital is well isolated from the others along
all the isotopic chain, and a fairly large spacing is observed
between the 1p3/2 and 1p1/2 orbitals up to N = 44, which
gives rise to the subshell closure at N = 28 and N = 32,
respectively. No shell closure is instead predicted at N = 34,
corresponding to the filling of the 1pν

1/2 orbital, whose sepa-
ration energy from the 0 f ν

5/2 orbital decreases with increasing
neutron number. In spite of these similarities, however, we
note that 3-b correlations introduce appreciable changes in
the neutron ESPEs, which explain the differences in the two-
neutron separation energies and in the 2+

1 excitation energies
discussed above. In particular, we see that all the neutron
ESPEs show a more rapid and almost continuous decrease as
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FIG. 5. ESPE for neutrons in even-even Ti isotopes from N =
20 to 48 resulting from calculations (a) without and (b) with 3-b
correlations.

a function of N when 3-b correlations are taken into account,
while the neglect of these correlations leads to a more flat
behavior or even to an increasing trend for the 1pν

3/2, 1pν
1/2,

and 0 f ν
5/2 orbitals from N = 30 or 34 to 40. This explains

the strong negative slope of the S2n curve when calculations
are performed without including 3-b correlations. Moreover,
the 0gν

9/2-0 f ν
5/2 gap is affected by 3-b correlations which re-

duce its value by ≈400 keV at N = 40. The larger gap we
find when 3-b correlations are neglected leads to the increase
in energy of the 2+

1 state from 60Ti to 62Ti we predict in such a
case.

The different behavior of the neutron ESPEs with and with-
out 3-b correlations is related to the changes these correlations
produce in the monopole part of the neutron-neutron inter-
action. Actually, the neutron-proton monopole components,
which also enter in the neutron ESPE definition, are not sig-
nificantly affected by 3-b correlations, and, additionally, they
do not play a relevant role since their contribution is limited
by the reduced number of valence protons. As concerns the
neutron-neutron monopole components, we find that 3-b cor-
relations induce on the overall a larger attractiveness which
explains the difference in the behavior of the neutron ESPEs
shown in Figs. 5(a) and 5(b). As an example, we compare in
Fig. 6 the monopole matrix elements of the neutron-neutron
effective interaction without 3-b correlations with those of the
density-dependent interaction at N = 40. It can be seen that
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FIG. 6. Neutron-neutron monopole matrix elements, V̄ νν′
ab , of the

effective interactions with and without 3-b correlations (see text for
details).

the only matrix element that acquire a repulsive component is
V̄ νν

1p1/21p1/2
.

Furthermore, the size of changes induced by 3-b correla-
tions is orbital dependent, which leads to modifications of the
ESPE spacings. In particular, V̄ νν

0g9/2b receive a larger attractive

contribution with respect to V̄ νν
0 f5/2b for any value of b, except

for b = 0g9/2. This gives rise to the reduced gap between the
09/2 and 0 f5/2 ESPEs we find at N = 40 when 3-b correlations
are taken into account.

To better assess the role of the monopole contributions
arising from 3-b correlations we have investigated the inter-
play of monopole and multipole components. To this end, we
have built a modified effective interaction for each Ti isotope
starting from the Hamiltonian without 3-b correlations and
replacing its monopole component with that arising from the
density-dependent Hamiltonian derived for the same nucleus.
The obtained results are very close to those of the original
density-dependent Hamiltonians, showing, in particular, that
the behavior of the two-neutron separation energies and of
the 2+

1 excitation energies is essentially determined by the
monopole component.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the even-even Ti isotopic
chain from A = 42 to 70 within the realistic SM framework
starting from up-to-date two- and three-body forces derived
from ChPT. The one and two-body matrix components of
the SM effective Hamiltonian are derived by means of the
many-body perturbation in a model space spanned by the pro-
ton and neutron 0 f 1p orbitals plus the neutron 0g9/2 orbital.
Three-body contributions are also included through density-
dependent TBME consistently derived within a microscopic
approach from chiral forces. These correlations are essential
to account for the Pauli blocking effect due to the progressive
filling of the model space orbitals in nuclei with more than
two valence nucleons.

As in our previous paper [39], we have compared the
calculated two-neutron separation energies and the excitation
energies of the yrast 2+ state with the available experimental
data.

We have found that 3-b correlations have a tiny impact
on the two-neutron separation energies up to N = 32 but,
starting from N = 34 on, their role becomes more relevant
with the increasing number of valence neutrons. This results
in an upshift of the two-neutron separation energies that be-
come very close to the experimental ones up 62Ti beyond
which no experimental information is available. This makes
us confident in our predictions for the heaviest Ti isotopes,
which we found to be bound up to A = 70. In Ref. [39], we
have shown that 3-b correlations are relevant also to determine
the drip line in Ca isotopes. In fact, without the inclusions of
these correlations the drip line of calcium isotopes is located
at N = 40, while their attractive contribution shifts the last
bound nucleus at least to 68Ca.

As concerns the excitation energies of the yrast 2+ states,
we do not obtain a satisfactory agreement with experiment
from N = 36 on, despite the inclusion of 3-b correlations. As
a matter of fact, the decreasing trend observed from N = 36

to 40 is not reproduced even if correlations are taken into
account. This may be related to the omission of the neutron
1d5/2 orbital, which, as discussed above, is fundamental to re-
produce the collectivity of nuclei “north-east” of 48Ca around
N = 40, especially of 64Cr and 62Fe. Nevertheless, our calcu-
lations evince that contributions arising from 3-b correlations
affect the neutron-neutron monopole components leading to
a reduction of the excitation energy of the 2+

1 state and in
particular of the shell gap at 62Ti. A similar result was found
for the excitation energy of 2+

1 state in 60Ca, whose value is
reduced by their inclusion from ≈2.3 to 1.7 MeV, which is
quite small when compared with the gaps observed in 52Ca
and 48Ca, namely ≈2.5 and ≈4.0 MeV.

Despite the missing contribution coming from the neu-
tron 1d5/2 orbital, interesting conclusions can be drawn. In
fact, the present study shows that starting from N = 34 the
attractive contribution arising from 3-b correlations impacts
significantly on the shell structure evolution.

We plan in a near future to overcome the computational
complexity related to the large model by including the neutron
1d5/2 orbital so as to perform large-scale SM calculations to
study the collective behavior at N = 40 starting from chiral
two- and three-body forces and employing single-particle en-
ergies and two-body matrix elements derived from many-body
perturbation theory.
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