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Forward doubly-virtual Compton scattering off an unpolarized
deuteron in pionless effective field theory
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We calculate the forward unpolarized doubly-virtual Compton scattering (VVCS) off the deuteron in the
framework of pionless effective field theory, up to next-to-next-to-next-to-leading order (N3LO) for the longi-
tudinal and next-to-leading order for the transverse amplitude. The charge elastic form factor of the deuteron,
obtained from the residue of the longitudinal VVCS amplitude, is used to extract the value of the single unknown
two-nucleon one-photon contact coupling that enters the longitudinal amplitude at N3LO. We also study the
lowest spin-independent generalized polarizabilities of the deuteron. The calculated unpolarized VVCS ampli-
tude provides a high-precision model-independent input for a future calculation of the two-photon-exchange
correction to the Lamb shift of muonic deuterium.
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I. INTRODUCTION

The deuteron is a fundamental source of information about
the emerging nuclear force and, in the absence of free neutron
targets, is often used to study the neutron structure. Re-
cent advances in muonic-atom spectroscopy, by the CREMA
collaboration at PSI, led to presently the most precise de-
termination of the charge radii of the proton [1,2], deuteron
[3], and helium-3 and -4. In case of the deuteron, the iso-
topic shift measurement also gives an accurate assessment
of a subleading nuclear structure contribution—the so-called
two-photon-exchange (TPE) correction. These accurate mea-
surements provide further challenges for the theoretical
description of the low-energy nuclear structure with system-
atically improvable precision.

While ab initio QCD calculations of these nuclear-structure
quantities are still out of reach, the method of choice for
systematic calculations of the nuclear-structure corrections
is effective field theories (EFTs) of the strong interaction.
Specifically, we employ the pionless EFT ( �πEFT) [4–11],
where the pions are heavy and hence the nucleon-nucleon
(NN) interaction is described by contact interactions or-
ganized in powers of nucleon three-momentum P. This
description is limited to momenta well below the pion mass,
P � mπ , which should be well suited for atomic calculations,
where the momenta are of the order of the inverse Bohr radius
αmr (with α the fine structure constant and mr the atomic
reduced mass). Thus, typical momenta in a light muonic atom,
such as muonic hydrogen (μH) or deuterium (μD), are below
1 MeV. The use of �πEFT is further motivated by its simplicity.
The contact interactions lead to separable NN potential, that
enables algebraic resummation, resulting in closed analytic
expressions for the nuclear force. Furthermore, it is strictly
renormalizable (in the EFT sense) and gauge invariant and

hence exactly fulfills low-energy theorems such as the Thom-
son limit.

The �πEFT has already been demonstrated to work very
well for low-energy properties of light nuclear systems, in
particular, deuteron polarizabilities, the electromagnetic form
factors of the deuteron, and the Compton scattering off the
deuteron (see, e.g., Refs. [7,12–18]). Here we shall com-
pute the forward doubly-virtual Compton scattering (VVCS)
amplitude, which contains the deuteron structure informa-
tion on the aforementioned TPE correction. This provides
an alternative route to assessing these corrections: the exist-
ing calculations employ the nuclear Hamiltonian approach
[19–24], or use the approach based on dispersion relations,
either data driven [25] or informed by EFT calculations of the
deuteron structure functions [26–28].

The predictive orders of �πEFT for the TPE corrections are
exhausted at next-to-next-to-next-to-leading order (N3LO),
motivating our choice of calculating at this high order. The
counting for the transverse contribution starts one order
higher, at the next-to-next-to-next-to-next-to-leading order
(N4LO), so the transverse amplitude can be neglected up
to N3LO in the calculation of the TPE corrections. This
consideration notwithstanding, a calculation of the transverse
contribution allows one to study the generalized deuteron
polarizabilities, such as the magnetic dipole polarizability and
the generalized Baldin sum rule. It also provides input for
verifying the smallness of the transverse contribution in the
context of the TPE.

We therefore calculate the longitudinal amplitude to
N3LO, and the transverse amplitude up to next-to-leading
order (NLO) in the so-called z-parametrization scheme [29].
Despite differing only at higher orders, this scheme has been
shown to converge better than the ρ-parametrization scheme,
in which one chooses to fit the effective range ρd at NLO,
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for those observables that are dominated by the long-range
properties of the deuteron wave function. This is achieved by
fitting the residue of the scattering amplitude at NLO in the
z parametrization, thus ensuring the correct reproduction of
the long-distance piece of the deuteron wave function starting
from NLO.

A recent next-to-next-to-leading-order (NNLO) �πEFT re-
sult for the longitudinal deuteron structure function [28] (see
also Refs. [20,26]) achieved a precision of about 5% for
the inelastic part of the TPE correction. The present N3LO
calculation of the longitudinal deuteron VVCS amplitude is
expected to further improve the theoretical uncertainty. With
the �πEFT expansion parameter P/mπ � γ /mπ � 1/3, where
γ � 45 MeV is the deuteron binding momentum, one expects
to achieve a relative precision of the order of (1/3)4 � 1%—
an estimate of the contributions of higher orders in the �πEFT
expansion, which is the dominant source of uncertainty. This
being compatible with other existing results, our paper pro-
vides an alternative high-precision and model-independent
handle on the TPE corrections in μD. A detailed study of these
corrections, making use of the �πEFT results for the deuteron
VVCS, will be presented elsewhere [30].

The paper is organized as follows. Section II concerns
the details of the �πEFT framework for the calculation of
the unpolarized deuteron VVCS amplitude. The results of
the calculation are presented, with a detailed description of
various contributions, and a discussion of the effect of the
NN contact terms entering the calculation, in Sec. III. Sec-
tion IV considers the deuteron charge form factor and fitting
the unknown N3LO contact term, using the deuteron charge
radius. A study of the generalized deuteron polarizabilities is
presented in Sec. V, with a summary following in Sec. VI.

II. EXPANSIONS AND POWER COUNTING
FOR THE DEUTERON VVCS AMPLITUDE

A. Unpolarized VVCS amplitudes

The main subject of study here is the forward VVCS on
the deuteron. We will consider only an unpolarized deuteron.
In this case, the general Lorentz decomposition of the VVCS
amplitude is the same for a target with any spin; i.e., just as for
the nucleon VVCS, it decomposes into two scalar amplitudes:

T μν (p, q) =
(

−gμν + qμqν

q2

)
T1(ν, Q2)

+ 1

M2
d

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
T2(ν, Q2),

(1)

where q and p are the photon and deuteron four-momenta, Md

is the deuteron mass, ν = p · q/Md is the photon energy in the
deuteron rest frame, and Q2 = −q2 is the photon virtuality.
For later use, it is convenient to introduce the longitudinal and
transverse amplitudes:

fL(ν, Q2) = −T1(ν, Q2) +
(

1 + ν2

Q2

)
T2(ν, Q2),

fT (ν, Q2) = T1(ν, Q2). (2)

Their interpretation becomes evident by contracting the
VVCS tensor with the initial and final photon polarization
vectors (assuming ε · q = ε′ · q = 0),

Tf i ≡ ε′∗
μ ε′∗

ν T μν= − T1(ν, Q2) ε · ε ′∗ + T2(ν, Q2)
p · ε p · ε ′∗

M2
d

,

(3)

and observing that for the purely longitudinal and transverse
photons the amplitude enters in, respectively, the fL and fT

combination. We perform the calculation of the VVCS ampli-
tude in the deuteron rest frame, and it is convenient to rewrite
it in terms of the time and space components of the photon
polarization vectors in that frame, ε = (ε0, ε), which results
in

Tf i = ε0 ε ′∗
0 fL(ν, Q2) + (ε · ε ′∗) fT (ν, Q2), (4)

where ε0 and ε are the following combinations of ε0 and ε

(and analogously for ε′
0 and ε′):

ε0 =
[
ε0 − ν

|q| (ε · q̂)

] |q|
Q

, ε = ε − q̂ (ε · q̂), (5)

with q and q̂ = q/|q| the photon three-momentum in the
deuteron rest frame and its unit vector. These definitions
ensure that ε0 and ε turn to zero if ε is substituted by q.
Accordingly, any other deuteron-spin independent structures
have to vanish in the sum of a gauge invariant subset of
Feynman graphs. This represents an important nontrivial con-
sistency check of our calculation.

The remaining generalities are also very much analogous
to the nucleon case (see, e.g., Refs. [31,32]). For example,
the VVCS amplitudes are split into the pole (or elastic)
and nonpole (or inelastic) parts. The former have a pole at
ν = ±Q2/(2Md ) and correspond to the VVCS process go-
ing through the deuteron in the intermediate state; they are
parametrized by the deuteron elastic electromagnetic form
factors. The latter admit an expansion in powers of the en-
ergies and momenta, and are parametrized by the deuteron
(generalized) polarizabilities, as shown below. In the rest of
this section, we briefly recap the essential details of the �πEFT
expansion, the power counting, and the Lagrangian needed to
compute the VVCS amplitudes.

B. EFT expansion and counting

To set up the counting for the deuteron VVCS, we recall
that the �πEFT expansion is organized in powers of the ratio
P/mπ , where P is the typical momentum scale in the system.
Typical energies are counted as E ∝ P2: the two-nucleon
system is considered as predominantly nonrelativistic, and
relativistic corrections are taken into account perturbatively.
Correspondingly, a nucleon propagator counts as 1/E ∝ P−2,
whereas a loop gives a factor of P5 corresponding to an inte-
gration over d4P = dE d3P. To assign a particular order to a
Feynman graph, one counts powers of momenta coming from
the interaction vertices, propagators, and loops, assuming that
all momenta are of the typical size P (and all energies are of
the size P2).
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To further arrive at the counting for the VVCS amplitude,
we turn to the nonpole part of the amplitude, and first con-
sider its low-energy and low-momenta expansion. The leading
terms of that expansion of the nonpole pieces of fL(ν, Q2)
and fT (ν, Q2) are given by the deuteron electric and magnetic
dipole polarizabilities αE1 and βM1 as [31]

fL(ν, Q2) = 4παE1Q2 + . . . , (6)

fT (ν, Q2) = − e2

Md
+ 4πβM1Q2

+ 4π (αE1 + βM1)ν2 + . . . , (7)

where the ellipses denote terms at least quartic in ν and Q,
and e is the proton charge; the first term in the expansion of
fT (ν, Q2)—the Thomson term—corresponds to the pointlike
deuteron. We neglect other terms generated by the expansion
of the nonpole pieces of the Born contributions, such as, e.g.,
the term e2R2

CQ2/(6M ), where RC and M = (Mn + Mp)/2 are
the deuteron charge radius and the average nucleon mass,
respectively, in the expansion of fT [33]; see also, e.g., the
related discussion in Ref. [34] for the case of a proton. One
can show that such terms are all demoted to higher orders
in the �πEFT counting than those we consider; in any case,
they give numerically negligible contributions to the VVCS
amplitude.

Note that we count the photon energy ν = O(P2) and mo-
mentum |q| = O(P). This counting would be questionable if
not obviously unsuitable for real photons; however, the case
of VVCS implies Q2 = q2 − ν2 � 0, which is consistent with
the assignment we use. Furthermore, this counting is well
suited for an evaluation of the generalized deuteron polariz-
abilities, where one takes the limit of ν → 0 keeping Q2 finite;
the generalized polarizabilities are obtained as Q2-dependent
coefficients of the expansion of the VVCS amplitudes in pow-
ers of ν2. Finally, this counting is compatible with the region
of (ν, Q2) relevant to the evaluation of the TPE correction in
μD; in other words, the typical energy transfer is considerably
less than the momentum transfer. This is evident in the elas-
tic TPE contributions where ν = ±Q2/(2Md ), and it is also
true for the inelastic part of the TPE correction (as another
reflection of the predominantly nonrelativistic character of the
deuteron).

Looking at the leading terms in the �πEFT expansion of αE1

and βM1 [16,29,35], one can see that they are, respectively,
O(P−4) and O(P−2):

αE1 = αM

32πγ 4
+ . . . , (8)

βM1 = − α

32Mγ 2

[
1 − 16

3
μ2

1 + 32

3
μ2

1
γ

γs − γ

]
+ . . . , (9)

where μ1 is the nucleon isovector magnetic moment (in nu-
cleon magneton units), and γs ≡ a−1

s = O(P) is the inverse
proton-neutron singlet scattering length.

Since Q2 = q2 − ν2 = O(P2) and ν2 = O(P4), we can see,
respectively, from Eqs. (6) and (7) that fL(ν, Q2) starts at
O(P−2), and fT (ν, Q2) starts two orders higher at O(P0) [to be
precise, all terms shown in Eq. (7) are O(P0), except the last
term ∝βM1ν

2, which is O(P2)]. This derivation applies to the

nonpole parts of the amplitudes. However, it is straightforward
to deduce that the same counting holds also for the respective
pole parts, which is evident from the expressions for the
residues of fL(ν, Q2) and fT (ν, Q2) considered in Sec. IV.

Furthermore, in the TPE correction to the deuterium Lamb
shift, one can notice that fT is weighted with another small
factor of O(P2) relative to fL in the integral for the TPE
correction [25,27]. In other words, fT starts to contribute
to the TPE correction only at N4LO relative to the leading
longitudinal contribution.

To identify the highest order in the �πEFT expansion where
one can still hope to obtain a predictive result for the TPE
correction, one can notice that the contribution of the polar-
izabilities of individual nucleons to fL ∝ αE1,N Q2 arises at
N4LO in the �πEFT counting. This term goes as Q2 at large
Q and thus leads to a divergent contribution to the TPE cor-
rection, which demands an unknown two-nucleon one-lepton
contact term at this order to regularize the divergence. Such a
contact term would be fitted to the TPE correction (or another
two-nucleon one-lepton observable—if such data were avail-
able). Consequently, the predictive power of �πEFT for the
TPE correction is lost beyond N3LO. In accordance with that,
we concentrate on the longitudinal amplitude and calculate
fL(ν, Q2) up to N3LO, or O(P). Taking the �πEFT expansion
parameter as γ /mπ ∼ 1/3, this leads to a naïvely expected rel-
ative uncertainty of the calculation of ≈(γ /mπ )4 � 1%. Note
that at N3LO there also appears a two-nucleon one-photon
coupling which requires input from inelastic processes. We
determine its value from the deuteron charge radius in Sec. IV,
preserving the predictability of the TPE correction results at
this order. One has to mention that the extraction of the charge
radius from experimental data uses the theoretical prediction
for the TPE correction as one of the inputs [3]; however, the
effect of the considered coupling on the extracted value of the
charge radius is rather small, and the undesirable correlation
is insignificant. It can be completely avoided if one uses the
hydrogen-deuterium isotope shift to extract the charge radius:
even though the TPE correction also contributes to the isotope
shift, its change due to the coupling in question is far below
the current level of precision (at any reasonable value of the
coupling constant). This issue is investigated in detail in our
subsequent publication [30].

This consideration indicates that the transverse amplitude
starts to enter the TPE correction one order higher, and only
the longitudinal amplitude is needed in case one is solely aim-
ing at an N3LO calculation of the TPE correction. However,
we in addition calculate fT (ν, Q2) up to O(P), or the respec-
tive NLO, in order to precisely quantify the smallness of its
contribution to the TPE correction, and also to investigate the
(generalized) deuteron magnetic polarizability βM1(Q2) and
the deuteron generalized Baldin sum rule (as well as its fourth-
order analog), associated with the transverse amplitude.

To conclude the discussion of the �πEFT counting and
expansion, we consider the NN T matrix in the spin-triplet
(deuteron) channel, given by

T (k) = −4π

M

1

−γ − ik+ 1
2ρd (k2+γ 2)+w2(k2 + γ 2)2 + . . .

,

(10)
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-1 = + + + · · ·-1 -1 -1 -1 -1 -1
.

FIG. 1. The LO NN T matrix for the spin-triplet channel. Here and below, big disk (square) vertices denote insertions of a NN T matrix
(NN potential), with the number inside a vertex showing the order of the vertex in the �πEFT counting. The LO T matrix in the spin-singlet
1S0 channel is obtained analogously.

where k is the NN relative momentum, ρd and w2 are the
deuteron effective range and shape parameter, and terms
of higher orders in (k2 + γ 2) are not shown explicitly.
Reference [29] notes that, while the more conventional ρ-
parametrization reproduces the deuteron effective range ρd at
NLO in the �πEFT expansion,

T (k) = −4π

M

[
1

−γ − ik︸ ︷︷ ︸
LO

+ γ ρd

−γ − ik
+ γ ρd

2γ︸ ︷︷ ︸
NLO

+ . . .

]
, (11)

one can use an alternative scheme, the z parametrization,
choosing instead to reproduce the residue of T (k) at the
deuteron pole k = iγ at NLO:

T (k) = −4π

M

[
1

−γ − ik︸ ︷︷ ︸
LO

+ Z − 1

−γ − ik
+ Z − 1

2γ︸ ︷︷ ︸
NLO

+ . . .

]
,

(12)

with the residue Z given by

Z = 1

1 − γ ρd
= 1 + γ ρd + (γ ρd )2 + . . . . (13)

Each scheme introduces a new O(P) small parameter: γ ρd ,
or Z − 1. The leading-order (LO) O(P−1) result is the same
in both schemes. In fact, they only start to differ at NNLO,
i.e., O(P). Furthermore, both schemes ensure that the deuteron
pole is located at k = iγ at all orders in the expansion, as
obtained by resummation of an infinite chain of diagrams
shown in Fig. 1.

The residue Z is connected to AS , the asymptotic normal-
ization factor of the deuteron S wave:

ψ (r) −−−→
r→∞

AS√
4π

e−γ r

r
=

√
γ Z

2π

e−γ r

r
. (14)

As argued in Ref. [29], the z parametrization is better suited
for quantities that receive mostly long-range contributions and
are hence sensitive to the correct description of the long-range
tail of the deuteron wave function, one example of such a
long-range quantity being the deuteron electric polarizability
αE1. We too adopt the z parametrization for our calculation.

C. Lagrangian and coupling constants

The Lagrangian needed for our calculation is constructed
along the usual lines formulated in, e.g, Refs. [4–7,29,36,37],
performing a nonrelativistic expansion in the one-nucleon sec-
tor and writing out the relevant two-nucleon interactions. The
relativistic corrections in both the single-nucleon and two-
nucleon sector count as O(P2/M2) = m2

π/M2 O(P2/m2
π ) and

are therefore more suppressed numerically than suggested by

counting powers of momenta. Even when generously counting
mπ/M ∼ P, as suggested in, e.g., Ref. [37], the relativistic
corrections start to appear at N4LO. We therefore neglect
them and define γ = √−MEd , where Ed is the deuteron
energy relative to the proton and neutron at rest.

We also neglect the isospin violation due to both the
proton-neutron mass difference and the isospin-violating
terms in the NN interaction, with the caveat that the NN
interactions in the singlet channel are fitted to the empirical
singlet pn scattering length and effective range and therefore
include some isospin-violating effects in that channel.

The one-nucleon Lagrangian needed for the present VVCS
calculation reads

LN = N†

[
iD0 + D2

2M

]
N + e

2M
N†μ̂(σ · B)N

+ e

6
N†r̂2

E N (∇ · E ). (15)

The gauge derivatives are defined as

D0N = (∂0 + ieQ̂A0)N, DN = (∇ − ieQ̂A)N (16)

with the electromagnetic potential (A0, A) and the nucleon
charge operator

Q̂ = 1
2 (1 + τ3). (17)

The electromagnetic field components are

B = ∇ × A, E = −∇A0 − ∂0A, (18)

and the nucleon magnetic moment and charge radius operators
are defined by

μ̂ = μ0 + μ1 τ3, r̂2
E = r2

0 + r2
1 τ3 (19)

where μκ = 1/2[μp + (−1)κμn] and r2
κ = 1/2[r2

p + 3/4M−2
p +

(−1)κ r2
n ] are the nucleon isoscalar (κ = 0) and isovector

(κ = 1) magnetic moments (in nuclear magneton units) and
charge radii squared, respectively. The proton charge radius
squared appearing here acquires the Darwin-Foldy correction
3/4M−2

p (see, e.g., Ref. [38] for a derivation).
Note that different parts of the minimal charge coupling

are of different orders in the �πEFT counting: the longitudinal
coupling is ∝ A0 = O(P0), whereas the transverse coupling
is ∝ ∇ · A = O(P), and the seagull term is ∝ A2 = O(P0).
Furthermore, while B = O(P), E contains two parts that are
of different orders, ∇A0 = O(P) and ∂0A = O(P2). The gauge
invariance thus mixes different orders in the �πEFT counting.
This is consistent with the transverse amplitude being sup-
pressed in relation to the longitudinal one.
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The Lagrangian describing NN interactions in the triplet S wave up to N3LO and in the singlet S wave up to NLO is given by

LNN
S = −C0 N†PiNc N†

c PiN − Cs
0 N†TaNc N†

c TaN

+ 1
2C2

[
N†PiNc N†

c O
(2)
i N + H.c.

] + 1
2Cs

2

[
N†TaNc N†

c O(2,s)
a N + H.c.

]
− C4N†O(2)

i Nc N†
c O

(2)
i N − 1

2C̃4
[
N†PiNc N†

c O
(4)
i N + H.c.

] + 1
2C6

[
N†O(2)

i Nc N†
c O

(4)
i N + H.c.

]
. (20)

Here, we defined the charge-conjugated nucleon field as

Nc = τ2 σ2(N†)T ; (21)

note that

DNc = (∇ + ieQ̂cA)Nc, (22)

with

Q̂c = τ2 Q τ2 = 1
2 (1 − τ3). (23)

The spin-triplet-isospin-singlet and spin-singlet-isospin-
triplet projectors P and T that select the corresponding NN
states are defined as

Pi = 1√
8
σi, Ta = 1√

8
τa, (24)

with the normalization

TrPiP†
j = 1

2δi j, TrTaT †
b = 1

2δab, TrPiT †
b = 0, (25)

where the trace is over both the spin and isospin indices. The
quadratic and quartic Galilean-invariant combinations of the
nucleon gauge derivatives and projectors are defined as

O(2)
i = 1

4 [
←−
D 2Pi − 2

←−
D jPi

−→
D j + Pi

−→
D 2], (26)

O(4)
i = 1

16 [
←−
D 4Pi − 4

←−
D 2←−D jPi

−→
D j

+ 4
←−
D j

←−
D kPi

−→
D k

−→
D j + 2

←−
D 2Pi

−→
D 2

− 4
←−
D jPi

−→
D j

−→
D 2 + Pi

−→
D 4] (27)

for the triplet NN channel, and

O(2,s)
i = 1

4 [
←−
D 2Ti − 2

←−
D jTi

−→
D j + Ti

−→
D 2] (28)

for the singlet NN channel. The arrows point in the direction
of operation of the corresponding derivative. Note that there
is a different definition of O(4)

i in literature; e.g., Refs. [36,37]

use

O(4)
i = 1

16 [
←−
D 4Pi − 4

←−
D 2←−D jPi

−→
D j + 6

←−
D 2Pi

−→
D 2

− 4
←−
D jPi

−→
D j

−→
D 2 + Pi

−→
D 4]. (29)

The latter expression, however, is potentially problematic,
because it does not produce the desirable Galilean-invariant
form of the matrix element:

〈p′
1 p′

2|N†PiNc N†
c O

(4)
i N |p1 p2〉 ∝ (p1 − p2)4. (30)

Indeed, it is straightforward to see that

(p1 − p2)4 = (
p2

1 − 2p1 · p2 + p2
2

)2

= p2
1 − 4p2

1 p1 · p2 + 4(p1 · p2)2

+ 2p2
1 p2

2 − 4p1 · p2 p2
2 + p4

2, (31)

showing that the operator in Eq. (27) produces the cor-
rect contractions of p1 and p2, whereas Eq. (29) produces
an expression that cannot be reduced to (p1 − p2)4 in the
general case. This issue appears to also affect the sixth-
power operator O(6)

i defined in Ref. [37] (this operator starts
contributing at N4LO and is therefore not relevant to our
calculation). One has to note that Eq. (29) gives the correct
result in the center-of-mass frame, and, since it is a rela-
tively high-order operator, the terms that spoil the Galilean
invariance are probably rather small in a typical calculation;
however, it is generally safer to use the expression given in
Eq. (27).

For the SD mixing NN interaction, we consider the as-
signment where the corresponding coupling is O(P−1) [7,37],
and, consequently, this interaction first appears at O(P) in
the NN potential, which corresponds to NNLO. However, the
SD mixing term being proportional to a D-wave NN operator
and there being no other D waves up to N3LO, one needs
two insertions of this term in order to receive a contribution
to unpolarized VVCS. This demotes the leading SD mixing
contribution to O(P3) in the NN potential, or N4LO, making
it irrelevant to the present calculation.

In addition to the S-wave interactions, we also include the spin-triplet-isospin-triplet interactions in a P wave, entering at
N3LO:

LNN
P = − 1

4

[
C3P0

δiaδ jb + C3P1
(δi jδab − δibδ ja) + 2C3P2

(
δi jδab + δibδ ja − 2

3δiaδ jb
)]

N†O(1,P)
ia Nc N†

c O
(1,P)
jb N, (32)

with

O(1,P)
ia = ←−

D iPaτ3 − τ3Pa
−→
D i. (33)

To complete the Lagrangian in the two-nucleon sector, one has to include two-nucleon contact interactions with the
electromagnetic fields, the couplings of which are not fixed by the NN interaction. The contact terms needed for our calculation
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TABLE I. Values of parameters entering the calculation of the VVCS amplitude. Unless referred to otherwise, the values are taken from
the Particle Data Group listing [41] (with the value of rp corresponding to the μH Lamb shift; note that we use Mp � 938.272 MeV, rather
than M, for the Darwin-Foldy correction). See the text for additional information, and also for the values of the two-nucleon electromagnetic
couplings.

α = e2/4π � 1/137.036 h̄c � 197.327 MeV fm mπ � 139.570 MeV

M � 938.919 MeV μp � 2.793 μn � −1.913
rp = 0.84087(39) fm r2

n = −0.1161(22) fm2 Md � 1875.613 MeV
Ed = −2.224575(9) MeV [39] Z = 1.6893(30) [39] w2 = 0.389 fm3 [36]
γs = −8.3208(15) MeV [40] rs = 2.750(18) fm [40] C3PJ

= −1.49 fm4 [36]

are
LNNγ = eLM1V

1 [N†PiNc N†
c T3N + H.c.] Bi − 2ieLM1S

2 εi jkN†PiNc N†
c P jN Bk

− e

2
LE1V

1

[
N†O(1,P)

i j Nc N†
c P jN + H.c.

]
Ei + e

2
LE1V

3

[
N†O(1,P)

i j Nc N†
c O

(2)
j N + H.c.

]
Ei

+ eLC0S
1 N†PiNc N†

c PiN (∇ · E ) − e

2
LC0S

3

[
N†PiNc N†

c O
(2)
i N + H.c.

]
(∇ · E ). (34)

The first two magnetic interactions contribute to fT at O(P),
or NLO, whereas the four electric contact terms contribute to
fL also at O(P), or respective N3LO. Note that the convention
in literature is to add to the LM1S

2 piece its Hermitian conjugate
term, which, however, just gives the factor of 2 that we write
out explicitly. The coupling constants of the single-nucleon
sector are well known, and we show their values in Table I,
which also contains the values of the NN parameters used by
us. Most of the parameters taken from the Particle Data Group
listing [41] are shown rounded and without the corresponding
uncertainties, as the latter are negligibly small compared to
the projected N3LO precision of ≈1%. The two exceptions
here are the values of rp and r2

n ; we take their uncertainties
into account, e.g., in the extraction of lC0S

1 in Sec. IV, even
though the corresponding effect is small. The empirical values
of Ed and Z are taken from the recent review [39], with Z
calculated from the S-wave asymptotic normalization factor.
While the value of Z appears the most important source of
uncertainty due to the input parameters, its quoted uncertainty
is below 0.2% and can thus also be neglected in the final
error estimate, the dominant source of which is the omitted
higher-order terms in the �πEFT expansion. The values of w2

and C3PJ , taken by us from Ref. [36], are given there without
uncertainties; however, the effect of these constants is very
small, so even an uncertainty of the order of 100% would not
noticeably change the numerical results we present.

The S-wave NN coupling constants are fixed by reproduc-
ing the expansion of the NN T matrix in the triplet and singlet
channels in �πEFT. Throughout our calculation, we use the
dimensional regularization and the power divergence subtrac-
tion (PDS) scheme [5,6] to regularize divergent loop integrals.
This introduces a regularization scale dependence into the
calculation; for instance, the loop function that corresponds
to a single loop in Fig. 1 in this scheme is

I0(E ) = i
∫

d4l

(2π )4

1[
l0 − l2

2M + i0
][

E − l0 − l2

2M + i0
] PDS−−→

− M

4π

(
μ − √−ME − i0

)
, (35)

where E is the relative motion energy of the NN pair, and
μ is the regularization scale. The NN coupling constants also
depend on μ in such a way that the T matrix is μ independent.
Up to the order we are working at, the NN coupling constants
are expressed in terms of μ, γ , (Z − 1), and w2 in the triplet
channel, and μ, γs, and the singlet effective range rs in the
singlet channel. Note that the constants in the triplet channel
are expanded in powers of the expansion parameter as well:

C0 = C(−1)
0 + C(0)

0 + C(1)
0 + C(2)

0 + . . . , (36)

and analogously for the other constants. This expansion is
needed in order to keep the position of the deuteron pole and
the value of the residue unchanged as higher-order corrections
are included. We provide the expressions for the constants
entering Eq. (20) below for the sake of completeness. The
triplet couplings read

C(−1)
0 = −4π

M

1

μ − γ
, C(0)

0 = 2π

M

(Z − 1)γ

(μ − γ )2
,

C(1)
0 = π

M

(Z − 1)2γ (γ − 2μ)

(μ − γ )3
,

C(2)
0 = π

2M

(Z − 1)3γ (γ − 2μ)2

(μ − γ )4
+ 4π

M

w2γ
4

(μ − γ )2
,

C(−2)
2 = 2π

M

(Z − 1)

γ (μ − γ )2
, C(−1)

2 = −2π

M

(Z − 1)2μ

γ (μ − γ )3
,

C(0)
2 = − π

2M

(Z − 1)3(γ 2 − 4μ2)

γ (μ − γ )4
+ 8π

M

w2γ
2

(μ − γ )2
,

-10-1

FIG. 2. Examples of diagrams that have an external loop attached
via an insertion of the LO triplet NN T matrix. Such diagrams are
not included in the four-point function. The crossed vertex denotes
the leading-order O(P0) NNd coupling.
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C(−3)
4 = − π

M

(Z − 1)2

γ 2(μ − γ )3
,

S(−2)
4 = − π

2M

(Z − 1)3(γ − 4μ)

γ 2(μ − γ )4
+ 4π

M

w2

(μ − γ )2
,

C(−4)
6 = π

2M

(Z − 1)3

γ 3(μ − γ )4
. (37)

Here, S(−2)
4 = C(−2)

4 + C̃(−2)
4 is the only linear combination of

C(−2)
4 and C̃(−2)

4 that contributes to NN scattering. We note that
for the following consideration it is convenient to eliminate
the coupling C(−2)

4 , expressing it via S(−2)
4 and C̃(−2)

4 . The LO,
NLO, and NNLO couplings given here coincide with those
given in Ref. [29]; however, we are not aware of any of the
N3LO couplings explicitly appearing in the literature. Finally,
the singlet couplings are

Cs
0 = −4π

M

1

μ − γs
, Cs

2 = 2π

M

rs

(μ − γs)2
, (38)

and the P-wave couplings contribute in a single linear combi-
nation

C3PJ
= C3P0

+ 2C3P1
+ 20

3
C3P2

, (39)

the value of which, extracted in Ref. [36] from the Nijmegen
partial-wave analysis [42,43], is shown in Table I.

The couplings of the contact terms entering LNNγ can-
not be inferred from the parameters of the NN scattering
amplitude; these contact terms, however, are crucial in com-
pensating the μ dependence of the VVCS amplitude, and
information on their couplings can be obtained from the
renormalization group (RG) equations and from processes
involving external electromagnetic probes. We discuss the role
played by these contact terms as well as their determination in
detail below in Sec. III.

D. Lehmann-Symanzik-Zimmermann reduction

In order to calculate the VVCS amplitude, we follow the
Lehmann-Symanzik-Zimmermann reduction procedure along
the lines described in, e.g., Ref. [44] for the deuteron elec-
tromagnetic form factors. We introduce the coupling of the
NN system to an interpolating deuteron field that has the
appropriate quantum numbers:

δLNNd = N†PiNc Ei + H.c., (40)

where Ei are the spatial components of the deuteron po-
larization vector (the zeroth component of which vanishes
in the deuteron rest frame). The VVCS amplitude is ex-
pressed via the sum of all four-point (γ d → γ d) functions
M(q, p, q′, p′) divided by the derivative of the deuteron self-
energy �(E ) taken at the deuteron pole:

Tf i = M(q, p, q′, p′)
�′(Ed )

. (41)

Diagrams that contribute to the four-point functions M are
selected similarly to the calculation of the deuteron form
factors, namely, only diagrams that do not have any external
(incoming or outgoing) NN loops attached via an insertion of
the LO triplet NN potential (or, equivalently, the LO triplet
NN T matrix, see Fig. 1) contribute to M. Diagrams that
do have such external NN loops attached, on the other hand,
contribute to the dressing of the NNd vertex, and are taken
into account by the factor [�′(Ed )]−1 in Eq. (41). Examples of
such VVCS diagrams are shown in Fig. 2. The self-energy, in
turn, is defined as the sum of all deuteron-deuteron two-point
functions without any insertions of the LO NN T matrix. Note
that by virtue of Eq. (41) the normalization of the interpolating
deuteron field in δLNNd is arbitrary. To obtain the order-by-
order results, both M and �′(Ed ) have to be expanded, and
their ratio has to be expanded after that as well:

ML(ν, Q2) = M(−3)
L + M(−2)

L + . . . , (42)

MT (ν, Q2) = M(−1)
T + M(0)

T + . . . , (43)

�′(Ed ) = �′(−1) + �′(0) + . . . , (44)

fL(ν, Q2) = M(−3)
L

�′(−1)︸ ︷︷ ︸
O(P−2 )

+ M(−2)
L

�′(−1)
− M(−3)

L �′(0)

[�′(−1)]2︸ ︷︷ ︸
O(P−1 )

+ . . . , (45)

fT (ν, Q2) = M(−1)
T

�′(−1)︸ ︷︷ ︸
O(P0 )

+ M(0)
T

�′(−1)
− M(−1)

T �′(0)

[�′(−1)]2︸ ︷︷ ︸
O(P1 )

+ . . . , (46)

where ML,T (ν, Q2) denote the terms in M contributing to
fL,T (ν, Q2).

III. DIAGRAMS AND PERTINENT RESULTS,
ORDER BY ORDER

In this section, we provide details of the order-by-order
amplitudes necessary for the extraction of the observables.

A. Deuteron self-energy

To make the graphical representation of the matrix elements relevant for the calculation of the self-energy �(E ) and
the four-point function M(ν, Q2) more compact, it is convenient to define certain subgraphs: the order-by-order corrections

k = ++ +k k -1 k-1 k-1 -1

FIG. 3. Correction to the NN T -matrix vertex at order k � 0, defined in terms of the dressed potential at that order (denoted by the square
with the primed index k′). Only the triplet channel is shown. The dressed potentials at the orders we are considering are shown in Fig. 4.
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=0 0

+ -10 0 0

+ -10 0

+ 0 0-10

0-1

+ +

=2 2 +1+ 0

=1 1 +0+ 0

-10 1

-10 0

0 0001 + -11 0

FIG. 4. Dressed potential at O(P0), O(P), and O(P2). Only the triplet channel is shown.

to the NN T matrix, shown in Fig. 3 and expressed via the dressed potentials that include all possible insertions of the
LO NN T matrix in an intermediate state, shown in Fig. 4; as well as the order-by-order corrections to the NNd vertex,
which are shown in Fig. 5. Note that the T matrix always appears in full off-shell kinematics. With these definitions,
one obtains the very compact graphical form for �(E ) shown in Fig. 6. The resulting expression for �(E ) up to N3LO
reads

�(E ) = M

4π

[
μ + ik + (Z − 1)(γ 2 + k2)(k − iμ)2

2γ (γ − μ)2

+ (Z − 1)2(γ 2 + k2)(μ + ik)2[γ (γ 2 − 2γμ + 2μ2) + ik3 − k2(γ − 2μ) + iγ 2k]

4γ 2(γ − μ)4

− (Z − 1)3(γ 2 + k2)(k − iμ)2[−iγ (γ 2 − 2γμ + 2μ2) + k3 + ik2(γ − 2μ) + γ 2k]
2

8γ 3(γ − μ)6
+ w2(γ 2 + k2)2(k − iμ)2

(γ − μ)2
+ . . .

]
,

(47)

+=

2 0 1 1 0

0 0 0

3 += +

+

2 1 0 0

1 = 0

FIG. 5. Corrections to the NNd vertex at O(P), O(P2), and O(P3), with the numbers denoting the order of the correction. Not to be
confused with the NN T matrices defined in Figs. 1 and 3, which are denoted by bigger discs and have four external legs.
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iΣ(E) = + + +1 2 3

FIG. 6. Graphical expression for i�(E ) up to N3LO.

where k = i
√−ME , and the N3LO result occupies the last two lines. The factors E · E ′∗ that correspond to the unpolarized

deuteron are omitted. Even though �(E ) depends on μ, its derivative at the deuteron pole, �′(Ed ), is μ independent, and the
order-by-order expression for it is very compact,

�′(Ed ) = M2

8πγ
[1 − (Z − 1) + (Z − 1)2 − (Z − 1)3 + . . . ], (48)

giving an even simpler expression for the inverse quantity:

[�′(Ed )]−1 = 8πγ

M2
[1 + (Z − 1) + 0 + 0 + . . . ]. (49)

As one could expect, the Z factor in the residue is restored at NLO, and there are no corrections at higher orders.

B. Four-point function

Here, we present the order-by-order results for the four-point function M.

1. LO

The diagrams contributing to iM at LO are shown in Fig. 7, resulting in

M(−3)
L = e2M3

π

Q2

q2

[
1

2γ [q2 + 4(γ + λd )2]
− φ2(ν, q2)

q2(γ − λd )

]
+ (ν → −ν), (50)

M(−1)
T = e2M

π

[
− 16γ (γ − λd )(γ + λd )2 + 4q2

(
2γ 2 + γ λd + λ2

d

) − (
4μ2

1 + 4μ2
0 − 1

)
q4

16γ q2[q2 + 4(γ + λd )2]

+
( |q|(μ2

0 − μ2
1

)
12Mν

+ 4γ 2 − 4λ2
d + q2

8|q|3
)

φ(ν, q2) − 1

3

(
2μ2

0

γ − λd
+ μ2

1

γs − λd

)
φ2(ν, q2)

]
+ (ν → −ν), (51)

where the kinematic functions are defined as

λd =
√

γ 2 − Mν + q2

4
, φ(ν, q2) = arctan

|q|
2(γ + λd )

. (52)

These expressions (as well as those at higher orders shown below) include the pole parts, with the elastic poles shifted due to
the nonrelativistic expansion and located at ν = ±q2/(4M ). One can also note that all loop integrals at LO are convergent, so
no μ dependence emerges at this step. Another important remark regarding the set of graphs in Fig. 7 is that, together with the
respective crossed graphs (not shown in the figure), the contribution of this set to the four-point function (and, correspondingly,
to the VVCS amplitude) is gauge invariant. This pattern is followed by the higher-order contributions presented below, where
each figure shows a set of graphs that, together with the respective crossed counterparts, gives a gauge-invariant result. Note that
some of the graphs shown may only serve to recover the gauge invariance and give a zero contribution to M; however, we do
not show graphs the contribution of which vanishes identically (due to, e.g., isospin or dimensional regularization factors).

-1-1

FIG. 7. Diagrams contributing to M at LO, i.e., O(P−3) for ML and O(P−1) for MT . Dotted vertices are the sum of the charge and
the magnetic moment couplings from the single-nucleon Lagrangian; the big gray disk denotes the LO NN T matrix in the singlet channel.
Crossed graphs are not shown.
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1 1 1 1 1 1

00 0

-1 1 -11 0

0-11-1 1

FIG. 8. Contributions to M at NLO, i.e., O(P−2) for ML and O(P0) for MT , due to NLO corrections in the NN interaction. The notation
is as in Fig. 7. Crossed graphs are not shown.

2. NLO

The NLO contributions to M come from diagrams shown in Figs. 8 and 9. While the contributions to M(−2)
L only come from

the graphs in Fig. 8, and their sum is μ independent, M(0)
T also receives contributions from the two magnetic contact terms in

LNNγ , corresponding to the graphs in Fig. 9. The renormalization scale dependence of the coupling constants LM1V
1 and LM1S

2
has to cancel out the μ dependence of the total NLO contribution to MT . We find the following RG equations for these two
couplings:

μ
d

dμ

[
(μ − γ )(μ − γs)

(
LM1V

1 − μ1

2

{
C(−2)

2 + C(−2,s)
2

})]
= 0, (53)

μ
d

dμ

[
LM1S

2

C(−2)
2

]
= 0. (54)

This is consistent with the results obtained in Refs. [16,36,37]. The first of these coupling constants, LM1V
1 , contributes to the

deuteron βM1. The value of the RG-invariant quantity in Eq. (53) can be fitted to, e.g., data on np → dγ ; we use the result from

-1 -1

-1 -1

FIG. 9. Contributions to M at NLO due to the magnetic contact terms LM1V
1 and LM1S

2 (shown as diamonds). The rest of the notation is as
in Fig. 7. These graphs give an O(P0) contribution to MT only. Crossed graphs are not shown.
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Ref. [37] that found, also in the z parametrization,

(μ − γ )(μ − γs)
(

LM1V
1 − μ1

2

{
C(−2)

2 + C(−2,s)
2

}) = −9.039(27) fm2. (55)

The value of LM1S
2 is fitted to the deuteron magnetic moment, obtaining [7,44]

LM1S
2

∣∣
μ=mπ

= −0.149 fm4; (56)

this result is the same at NLO both in the z and in the ρ parametrization. To make the expression for M(0)
T more compact, we

introduce dimensionless μ-independent couplings lM1V
1 and lM1S

2 according to

LM1V
1 = μ1

2

(
C(−2)

2 + C(−2,s)
2

) + π (Z − 1)

Mγ

lM1V
1

(μ − γ )(μ − γs)
, (57)

LM1S
2 = lM1S

2 C(−2)
2 . (58)

The resulting expressions for ML and MT read

M(−2)
L = e2M3

π

Q2

q2

(Z − 1)

2γ

φ(ν, q2)[|q| − (γ + λd )φ(ν, q2)]

q2(γ − λd )
+ (ν → −ν), (59)

M(0)
T = e2M

π

[
Z − 1

32γ
− (Z − 1)

12γ
|q|

(
μ1 lM1V

1

γs − λd
− 4μ0(μ0 − 2lM1S

2 )

γ − λd

)
φ(ν, q2)

+ 1

6

(
μ2

1 rs λ2
d

(γs − λd )2
− 2(Z − 1)μ2

0(γ + λd )

γ (γ − λd )

)
φ2(ν, q2)

]
+ (ν → −ν). (60)

The values of the coupling constants lM1V
1 and lM1S

2 , obtained using the values in Eqs. (55) and (56), are

lM1V
1 = −4.596(14), lM1S

2 = −8.58 × 10−3. (61)

While lM1V
1 could be considered as being of a natural size, lM1S

2 is numerically small due to the LO contribution already coming
very close to the empirical value of the deuteron magnetic moment, as pointed out in Refs. [7,44].

3. NNLO

From this point on, we only keep track of those interactions that contribute to fL and, as a check, also include contributions
to M that are needed to satisfy the electromagnetic gauge invariance. In practice this means taking into account the minimal
coupling, both in the single-nucleon and in the two-nucleon Lagrangian. Incidentally, this allows one to also check that the
Thomson term is recovered at NNLO and N3LO. The corresponding diagrams that appear at NNLO are shown in Figs. 10 and
11. At this order, one is still getting a μ-independent contribution to ML from loops with NNLO corrections to NN interactions,
Fig. 10. The resulting contribution to the longitudinal part of the four-point function is

M(−1)
L = e2M3

π

Q2

q2

(Z − 1)2

4γ 2

[
− 1

4(γ − λd )
− φ(ν, q2)

|q| + (γ + λd )φ2(ν, q2)

q2

]
+ (ν → −ν). (62)

In addition, corrections arise due to the nucleon charge radius operator, shown in Fig. 11. Their contribution is

δM(−1)
L = − e2M3

6π

Q2

q2

[ (
r2

0 + r2
1

)
q2

γ [q2 + 4(γ + λd )2]
+

(
r2

0 − r2
1

)|q|φ(ν, q2)

Mν
− 4r2

0 φ2(ν, q2)

γ − λd

]
+ (ν → −ν). (63)
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2 2 2 1

111

2

1 0 01 1 1

0 0 0 01 1

FIG. 10. Diagrams that contribute to ML at NNLO, i.e., O(P−1), due to NNLO terms in the NN interaction. The nucleon-photon vertex is
exclusively the minimal coupling. In addition to diagrams that actually contribute to fL , we also show those that are necessary in order to keep
the electromagnetic gauge invariance. The vertical double dashed lines indicate possible insertions of a LO NN T matrix in the spin-triplet
channel. Crossed graphs are not shown.

4. N3LO

Finally, the N3LO contribution to ML comes from three
types of diagrams: those with insertions of the N3LO NN
interactions, shown in Fig. 12; diagrams with an insertion of
a gauge-invariant electric contact term, shown in Fig. 13; and
corrections generated by one insertion of the nucleon charge
radii coupling in the NLO graphs, as shown in Fig. 14. The
diagrams in Fig. 12 produce a μ-dependent result, and all four
electric contact terms are needed in order to render the total
result RG invariant. The couplings of these contact terms con-
tribute to M(0)

L in the following μ-independent combinations
with the NN couplings:

μ
d

dμ

[
LE1V

1 − 1
2 M C̃(−2)

4

C(−1)
0

]
= 0,

μ
d

dμ

[
LE1V

3 − 1
2 M C(−4)

6

C(−1)
0

]
= 0, (64)

FIG. 11. Correction to ML due to the photon coupling pro-
portional to r̂2

E , denoted by the black cross vertex, contributing at
O(P−1). The rest of the notation is as in Fig. 10. Crossed graphs are
not shown.

μ
d

dμ

[
LC0S

1 + 1
4 M C̃(−2)

4[
C(−1)

0

]2

]
= 0,

μ
d

dμ

[
LC0S

3 + 1
4 M C(−4)

6[
C(−1)

0

]2

]
= 0. (65)

The first two equations have been previously obtained in
Ref. [36]; our version, however, contains an additional factor
1/2 in front of the nucleon mass in both equations, at variance
with this reference. The second pair of equations is new, to the
best of our knowledge.

Considering the μ running of the quantities entering these
RG equations at high momentum scales μ � mπ , one can
conclude that

LE1V
1 − 1

2 M C̃(−2)
4 = O(P−1), LE1V

3 − 1
2 M C(−4)

6 = O(P−1),
(66)

LC0S
1 + 1

4 M C̃(−2)
4 = O(P−2), LC0S

3 + 1
4 M C(−4)

6 = O(P−2).
(67)

The first two combinations, being O(P−1) instead of the
naïvely expected O(P−2) and O(P−4), are thus demoted to at
least N4LO and N6LO, respectively. The same happens with
the fourth combination, which is O(P−2) instead of O(P−4)
and is demoted to N5LO. The only combination that gives
a contribution at N3LO is the one that involves LC0S

1 . As we
show in Sec. IV, its value can be found from a fit to the
deuteron charge form factor.
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FIG. 12. Diagrams that contribute to ML at N3LO, i.e., O(P0), due to N3LO terms in the NN interaction. In addition to diagrams that
actually contribute to fL , we also show those that are necessary in order to keep the electromagnetic gauge invariance. Gray squares marked
by “P” show insertions of the P-wave NN interactions. The rest of the notation is as in Fig. 10. Crossed graphs are not shown.

Note that the cancellations between the contributions of
the contact terms and those of the NN couplings are in fact
more intricate than given by these RG equations. The NN

FIG. 13. Contributions to ML at N3LO due to the electric con-
tact terms (shown as crossed diamonds). The rest of the notation is
as in Fig. 10. Crossed graphs are not shown.

coupling constants—all apart from C̃(−2)
4 —conspire to remove

the poles from the N3LO correction to the NN T matrix. The
instances of C(−4)

6 appearing in the RG equations are in fact
combinations of all the NN constants appearing at this order,
so a statement that LE1V

3 and LC0S
3 cancel the contribution of

C(−4)
6 might be somewhat imprecise. The constant C̃(−2)

4 , on
the other hand, is singled out from the other NN constants, so
its cancellations with the contact terms show a more transpar-
ent pattern. In particular, the cancellation is complete at N3LO
in the transverse amplitude, consistent with what was shown
previously in Refs. [36,37] (even though our RG equations do
not completely coincide with those references).
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FIG. 14. Correction to ML due to the photon coupling propor-
tional to r̂2

E , contributing at O(P0). The rest of the notation is as in
Figs. 10 and 11. Crossed graphs are not shown.

As before, we write

LC0S
1 = −1

4
M C̃(−2)

4 + π (Z − 1)3

γ 3(μ − γ )2
lC0S
1 , (68)

getting the following result for the total N3LO contribution of
the diagrams in Figs. 12 and 13:

M(0)
L

= e2M3

π

Q2

q2

(Z − 1)3

γ 3

[
3γ − λd

2(γ − λd )

+ 2lC0S
1 q2 + (γ − λd )2

8|q|(γ − λd )
φ(ν, q2) − γ 2 − λ2

d

8γ 3q2
φ2(ν, q2)

]

− e2M3

π

Q2

q2

w2[|q| − 2(γ + λd )φ(ν, q2)]
2

4q2
+ e2M3

π

× Q2

q2

M C3PJ

[
2|q|(γ − λd )−(

4γ 2−4λ2
d + q2

)
φ(ν, q2)

]2

192πq4

+ (ν → −ν). (69)

The nucleon charge radii corrections at this order, coming
from the graphs in Fig. 14, yield

δM(0)
L

= −e2M3

3π

Q2

q2

r2
0 (Z−1)

γ

φ(ν, q2)[|q| − (γ + λd )φ(ν, q2)]

γ−λd

+ (ν → −ν). (70)

Having established the order-by-order ingredients for the
deuteron VVCS calculation throughout this section, we can
now proceed with the extraction of the observables, form
factors, and generalized polarizabilities, in the following sec-
tions.

IV. DEUTERON CHARGE FORM FACTOR
AT N3LO: FITTING lC0S

1

In order to extract the deuteron form factors, we use
the residues of the pole parts of the VVCS amplitude.
Using, e.g., the elastic structure functions [25], one can

obtain

Res fL(ν, Q2)|ν=Q2/(2Md )

= −e2(1 + τd )

[
G2

C (Q2) + 8

9
τd G2

Q(Q2)

]
, (71)

Res fT (ν, Q2)|ν=Q2/(2Md ) = −2

3
e2τd (1 + τd )G2

M (Q2), (72)

where GC (Q2), GM (Q2), and GQ(Q2) are the deuteron charge,
magnetic, and quadrupole form factors, and τd = Q2/(4M2

d ).
At the order at which we are working, 1 + τd = 1, and
GQ(Q2) = 0. The shift of the elastic poles, which appear at
ν = ±q2/(4M ), is also a relativistic correction that can be
neglected at this order, allowing one to replace q2 → Q2 in
the amplitudes when taking the residues. This results in

Res fL(ν, Q2)|ν=Q2/(4M ) = −e2 G2
C (Q2), (73)

Res fT (ν, Q2)|ν=Q2/(4M ) = − e2

24

Q2

M2
G2

M (Q2). (74)

Evaluating the residues and expanding the square root of
G2

C (Q2) and G2
M (Q2) order by order gives

GC (Q2) = 4γ

Q
arctan

Q

4γ

− (Z − 1)

(
1 − 4γ

Q
arctan

Q

4γ

)

− 4

3
r2

0 γ Q arctan
Q

4γ

+ 1

3
(Z − 1) r2

0 Q2

(
1 − 4γ

Q
arctan

Q

4γ

)

− (Z − 1)3 lC0S
1

2γ 2
Q2, (75)

e

2Md
GM (Q2) = e

2M

[
(μn + μp)

4γ

Q
arctan

Q

4γ

− (μn + μp)(Z − 1)

(
1 − 4γ

Q
arctan

Q

4γ

)

+ 2

π
MLM1S

2 γ (μ − γ )2

]
, (76)

at N3LO for GC (Q2) and at NLO for GM (Q2). The expres-
sion for GM (Q2) coincides with that obtained in Ref. [7]
[where the γ ρd factor in the NLO term has to be replaced
by (Z − 1) to account for the difference between the z- and
ρ-parametrization schemes]. The charge form factor has been
previously calculated up to NNLO in the z parametrization in
Ref. [29], the results of which we also reproduce here. Our
expression for GC (Q2) is also very similar to the result of
Ref. [15] that studied the deuteron form factor in the dibaryon
formalism [13]. Note, however, that Ref. [15] appears to omit
the Darwin-Foldy term.

The single-nucleon contributions can in principle be
summed into the isoscalar nucleon form factors G(p+n)

E ,M , re-
sulting in the following compact expressions for the deuteron
form factors, valid up to N3LO for GC (Q2) and up to NLO for
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GM (Q2):

GC (Q2) = G(p+n)
E (Q2)√
1 + Q2

4M2
p

[
Z

4γ

Q
arctan

Q

4γ
− (Z − 1)

]

− (Z − 1)3 lC0S
1

2γ 2
Q2, (77)

GM (Q2) = Md

M
G(p+n)

M (Q2)

[
Z

4γ

Q
arctan

Q

4γ
− (Z − 1)

]

+ 4
Md

M
(Z − 1)lM1S

2 . (78)

The square root in the denominator of Eq. (77) recovers the
Darwin-Foldy term. The order-by-order expression for the
deuteron charge radius reads

R2
C ≡ 〈r2〉C = −6

dGC (Q2)

dQ2

∣∣∣∣
Q2=0

= 1

8γ 2
+ Z − 1

8γ 2
+ 2r2

0 + 3(Z − 1)3

γ 2
lC0S
1

= [
2.3303 + 1.6063 + 0.6241 + 18.3166 lC0S

1

]
fm2.

(79)

One has to note that the NNLO result R2
C = 4.5607(76) fm2 is

already very close to the experimentally measured values, for
instance; μD spectroscopy gives R2

C = 4.5183(33) fm2 [3].
Using this value for fitting results in a tiny value of the lC0S

1
coupling,

lC0S
1 = −2.32(18)(37) × 10−3, (80)

similar to what happens with lM1S
2 . The uncertainty in the

first bracket is calculated using the quoted experimental er-
ror of the μD result. Considering other empirical values of
R2

C , e.g., the smaller value R2
C = 4.3608 fm2 of the empiri-

cal parametrization of Abbott et al. [45], will significantly
increase the uncertainty, albeit leaving lC0S

1 at a level of at
most 10−2. The value in the second bracket is largely due to
the uncertainty of the value of Z , shown in Table I; one can
see that the small relative uncertainty of Z is amplified in the
small subleading coupling lC0S

1 . A small contribution to that
value comes from the uncertainty of r2

0 ; taken separately, the
effects from Z and from r2

0 are, respectively, 0.35 × 10−3 and
0.13 × 10−3, and they are added in quadrature.

Figure 15 shows the deuteron charge form factor at the
different orders, compared with the result of the recent chiral
EFT (χEFT) fit of Ref. [46] (see also Ref. [47]). A conserva-
tive estimate for an error band at N3LO due to the higher-order
terms could be obtained along the lines suggested in, e.g.,
Ref. [48]:

δGC (Q2) = max
{
ξ 4�GLO

C (Q2), ξ 3�GNLO
C (Q2),

ξ 2�GNNLO
C (Q2), ξ�GN3LO

C (Q2)
}
, (81)

where ξ = γ /mπ and �GC (Q2) are the contributions to
GC (Q2) at the respective orders, with terms ∝Q0, Q2 removed
to account for the fact that GC (0) = 1, and G′

C (0) = −1/6R2
C

is also fixed at N3LO (the latter up to the small experimental
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FIG. 15. Deuteron charge form factor at LO (dash-dot-dotted
black), NLO (dash-dotted blue), NNLO (dashed green), and N3LO
(solid red, with the band showing the uncertainty due to higher-order
terms). The result of the χEFT fit [46] is shown by the purple dotted
curve.

error). The resulting band is rather narrow, its width being
about the difference between the �πEFT and χEFT results. An
analogous band due to the uncertainty of Z would in this scale
be narrower than the widths of individual curves. We also do
not show the theoretical uncertainty of the χEFT result; the
corresponding band is roughly three times narrower than the
�πEFT one and would not be visible in this scale. One can see
that the shapes of the charge form factor resulting from �πEFT
and from χEFT agree very well even at values of Q beyond
the formal range of validity of �πEFT Q � mπ , up to photon
virtualities Q � 200 MeV. This can be attributed to the fact
that the slope and, to a lesser extent, the second derivative are
by far the only important coefficients in the low-momentum
expansion of GC (Q2) in this range of Q, and they are well
reproduced at N3LO in �πEFT.

The observed agreement between �πEFT and χEFT at low
Q2 is very important. As low-energy effective field theories,
both would be expected to provide a good description of the
deuteron form factors at low Q2 (at sufficiently high order in
the respective expansion). This agreement vindicates the use
of either theory as a tool to study the deuteron charge form fac-
tor at low Q2. In practice, the simple analytic form of GC (Q2)
given in Eq. (75) could be conveniently used to benchmark
empirical parametrizations at low Q2. One should nevertheless
remember that the domain of validity of χEFT is considerably
wider than that of �πEFT, and that the χEFT calculation also
has a considerably smaller theoretical uncertainty.

The recent empirical parametrizations of the charge form
factor, such as those derived in Refs. [45,49], would lie in
Fig. 15 roughly within a line thickness from the χEFT fit
(or the N3LO �πEFT result), despite the numerical differences
between the form factors [such as GC (Q2) of Abbott et al.
[45] having a smaller value of R2

C]. We therefore do not show
them here, either. Note, however, that these superficially small
effects can have a rather sizable influence on the values of
the elastic contribution to the μD Lamb shift. This enhanced
sensitivity can be used to judge the quality of the empirical
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form factor parametrizations. One can also note that, since
the value of the N3LO contact term lC0S

1 affects, through the
value of R2

C , the general shape of the deuteron charge form
factor, one can deduce correlations between the value of R2

C
and the elastic corrections. We shall consider these effects
and compare the different variants of the deuteron charge form
factor in detail in a dedicated publication [30].

V. DEUTERON (GENERALIZED) POLARIZABILITIES

Having determined lC0S
1 , we turn to the corresponding pre-

diction for the deuteron polarizabilities. We start from the
electric and magnetic dipole polarizabilities, αE1 and βM1,
which can be read off from fL(ν, Q2) and fT (ν, Q2) using
Eqs. (6) and (7), respectively. The results are order-by-order
given by

αE1 = αM

32γ 4

[
1 + (Z − 1) + 0 + Mγ 3

6π
C3PJ

]
= [0.3771 + 0.2599 + 0 − 0.0018] fm3

= 0.6353 fm3, (82)

βM1 = α

32Mγ 2

[
−1 + 16

3
μ2

1 − 32

3
μ2

1
γ

γs − γ

+ Z − 1

3

(
16μ2

1 − 3
) − 32(Z−1)

3
μ1

(
μ1+lM1V

1

)
× γ

γs−γ
+ 16

3
μ2

1rs
γ 3

(γs − γ )2

]
= [0.0701 + 0.0003] fm3 = 0.0704 fm3, (83)

at N3LO for αE1 and NLO for βM1. The expression for αE1

reproduces the N3LO result obtained in Ref. [29] using the
np → γ d cross section calculated in Ref. [37]; however, our
P-wave contribution is a factor of 2 smaller. As a cross-check,
we calculated the P-wave contribution to the np → dγ cross
section, also getting a result twice smaller than obtained in
Ref. [37]. The P-wave term, in any case, is very small nu-
merically, making this disagreement insignificant in practice.
The numerical value is in agreement with, e.g., the recent
evaluation of Ref. [27] that obtained αE1 = 0.626(18) fm3

at N3LO in χEFT, as well as the calculation of Ref. [23]
that used a selection of χEFT potentials with various cutoffs,
along with the AV18 model potential [50].

The LO expression for βM1 reproduces the result of
Ref. [16], and the NLO result is new to the best of our
knowledge. The numerical value is also in a very good
agreement with the N3LO χEFT result of Ref. [27], βM1 =
0.0715(15) fm3; this agreement is remarkable, given that this
is a relatively low-order calculation. One can notice that the
contribution of the lM1V

1 contact term is individually rather
sizable, � −0.06 fm3, and that it cancels almost completely
with the remaining NLO terms. This cancellation, giving es-
sentially a zero NLO contribution to βM1, appears even more
surprising. While the agreement of βM1 with the χEFT result
is achieved already at LO and could be regarded as accidental,
a very small NLO contribution could be attributed to the
procedure used in Ref. [37] to fit the value of lM1V

1 to repro-
duce the np → dγ cross section at NLO. Indeed, if this cross

section is well described in �πEFT, one should also expect a
good description of the transverse response function of the
deuteron at small nonzero Q2. This, by virtue of the sum rule
for βM1 derived in Ref. [33], should be sufficient to reproduce
the value of βM1 at NLO, explaining at the same time the
vanishing NLO contribution. This explanation, however, may
imply that the description of the response function (or, more
precisely, of its slope as a function of Q2 at Q2 = 0) has to
remain satisfactory up to relatively high energies outside the
validity of �πEFT; while this may be the case, investigating it
in further detail is outside of the scope of this paper. Never-
theless, the fact that the magnetic polarizability is reproduced
accurately in �πEFT using input from np → dγ is a nice
illustration of the working principles of an EFT, as well as
a demonstration of the predictive power of the theory.

The generalization of αE1 and βM1 to finite Q2 is defined in
the usual way:

αE1(Q2) = fL(0, Q2)

4πQ2
, βM1(Q2) = f̄T (0, Q2)

4πQ2
, (84)

where fL(0, Q2) is understood as the nonpole part of fL, and
f̄T stands for the nonpole part of fT with the Thomson term
subtracted as well. The resulting curves are shown in Fig. 16.
One can see that the patterns shown in the static values repeat
in the generalized polarizabilities: the bulk of αE1(Q2) comes
from the LO and NLO contributions (with a small but visible
NNLO contribution that is mostly due to the nucleon charge
radii corrections and vanishes at Q = 0), whereas the NLO
contribution to βM1(Q2) is small at Q = 0 as well as at finite
virtualities.

The bands that estimate the contribution of higher orders
are obtained analogously to Eq. (81), with the obvious mod-
ification for the NLO results. The N3LO band on the αE1

curve is almost too narrow to be noticed, while the NLO
band on βM1 is expectedly much wider. This, in fact, might
be an overestimation, especially at low values of Q, in view
of the agreement between the NLO �πEFT result for βM1 and
the respective N3LO χEFT result. One can expect that the
NLO value of βM1 is therefore already close to its “true”
value and will not change that much at higher orders. Indeed,
according to Ref. [37], one can fit the subleading contribution
to LM1V

1 (appearing at NNLO) so as to keep describing the
np → dγ cross section at NNLO (which would correspond
to NNLO in βM1). Extending the argument regarding the
agreement of βM1 with the χEFT result, one can expect the
magnetic polarizability to keep its value at NNLO (up to
possible small corrections, e.g., �0.7 × 10−3 fm3 stemming
from the single-nucleon magnetic polarizabilities). A more
detailed investigation of this issue is, however, also outside
of the scope of this paper.

It is also interesting to consider two further generalized
polarizabilities, namely, the longitudinal polarizability αL(Q2)
and the generalized Baldin sum rule [αE1 + βM1](Q2), defined
via the nonpole parts of the amplitudes as

αL(Q2) = 1

4πQ2

dfL(ν, Q2)

dν2

∣∣∣∣
ν=0

, [αE1 + βM1](Q2)
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FIG. 16. Generalized deuteron polarizabilities: (a) αE1(Q2) and (b) βM1(Q2). The LO, NLO, NNLO, and N3LO results for αE1(Q2) in the
left panel are coded as in Fig. 15. In the right panel, the LO and NLO results for βM1(Q2) are shown, respectively, by the black dashed and the
red solid curve, with the band showing the estimate of higher-order contributions.

= 1

4π

dfT (ν, Q2)

dν2

∣∣∣∣
ν=0

. (85)

The Q2 = 0 value of αL is given by

αL = 7αM3

768γ 8

[
1 + (Z − 1) + 0 + 11Mγ 3

126π
C3PJ

]
= [0.865 + 0.597 + 0 − 0.002] × 103 fm5

= 1.460 × 103 fm5. (86)

For the sake of simplicity, this result is obtained by substitut-
ing |q| → Q in the expressions for fL obtained above and thus
neglects relativistic corrections of a relative size of roughly
0.2%. One can see that higher deuteron moments, such as αL,
are numerically enhanced, unlike what happens in the case of
the nucleon (see, e.g, Ref. [51]).

The Q2 = 0 value of the Baldin sum rule coincides with
the NLO result for αE1 + βM1 given above. Strictly speaking,
this includes corrections beyond NLO, because βM1 starts two
orders higher than αE1; however, the explicit gauge invariance
allows one to recover βM1 by substituting |q| =

√
Q2 + ν2

instead of neglecting ν. Using q = Q, on the other hand,
changes the value of [αE1 + βM1](Q2) by about 10% at Q2 =
0 (by dropping the static value of βM1). The difference quickly
decreases with growing Q and becomes negligible already at
Q � 20 MeV.

The curves for αL(Q2) and [αE1 + βM1](Q2) are shown in
Fig. 17. One can see that the longitudinal polarizability shares
the general features of the previously considered αE1(Q2)
and βM1(Q2), with a somewhat quicker falloff with grow-
ing Q. The generalized Baldin sum rule, on the other hand,
demonstrates a sharp increase peaking around Q = 60 MeV;
this enhancement is due to the magnetic interaction in the
singlet channel and is analogous to what has been seen, e.g.,
in the generalized spin-forward deuteron polarizability γ0(Q2)
[52]. The estimate of higher-order corrections to αL(Q2) and
[αE1 + βM1](Q2), shown by the bands, is constructed analo-
gously to, respectively, αE1 and βM1. Similarly to those, the
N3LO band on the longitudinal polarizability is very narrow,

while the NLO band on the Baldin sum rule is significantly
wider. In the latter case, one can, again, argue that the effects
of higher orders might be overestimated towards Q = 0 (even
though the band is barely visible there in this scale), since we
know that the dominant αE1 contribution is well reproduced
already at NLO (see also the discussion regarding βM1 above);
however, this is not any longer the case at larger finite virtu-
alities, where more sizable contributions could be expected,
especially from higher-order magnetic couplings.

Finally, we consider the fourth-order generalized Baldin
sum rule, defined in terms of the transverse amplitude as [53]

[αE1,ν + βM1,ν+1/12(αE2+βM2)](Q2) = 1

8π

d2 fT (ν, Q2)

d (ν2)2

∣∣∣∣
ν=0

.

(87)

The static limit value of that sum rule gives the correspond-
ing linear combination of the dispersive (αE1,ν , βM1,ν) and
quadrupole (αE2, βM2) electric and magnetic polarizabilities
of the deuteron, defined as in Refs. [54,55].1 Analogously to
the Baldin sum rule considered above, using the exact formula
|q| =

√
ν2 + Q2 should allow one to recover the subleading

polarizabilities here as well. Expanding the value at Q = 0 up
to N3LO, we get, order by order,

αE1,ν + βM1,ν + 1/12(αE2 + βM2)

= [0.865 + 0.597 + 0.345 + 0.007] × 103 fm5

= 1.814 × 103 fm5. (88)

We refrain from showing here the analytic expression due to
its length. The plot of the fourth-order generalized Baldin sum
rule is shown in Fig. 18. One can see that it shares the features
with the Baldin sum rule, sharply rising from the static limit
and peaking at finite values of Q, and also getting a rather

1The quadrupole polarizabilities (spin independent) are not to be
confused with the tensor polarizabilities of the deuteron defined in,
e.g., Refs. [16,35].
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FIG. 17. Generalized deuteron polarizabilities: (a) αL (Q2) and (b) [αE1 + βM1](Q2). The curves are coded as in the left and right panel
of Fig. 16, respectively. The curves for [αE1 + βM1](Q2) are obtained using the exact expression |q| =

√
ν2 + Q2 and reproduce at Q = 0 the

static values of αE1 + βM1 at the respective order (see the text for details).

small NLO contribution at finite virtualities. It has to be noted
that such a rapid growth of the subleading coefficients in the
expansion of fT (ν, Q2) in powers of ν2, i.e., the Baldin sum
rule and its fourth-order analog, at finite Q can be of some
concern in the context of a calculation of the TPE correction
in μD, and it is important to verify that the transverse contri-
bution is small (according to what is given by the counting,
this is indeed seen in dispersive calculations [26,27]).

VI. CONCLUSION

We have calculated the unpolarized deuteron VVCS ampli-
tudes in the framework of �πEFT, using the z parametrization.
Our results are at N3LO in the �πEFT expansion for the
longitudinal amplitude, and at NLO for the transverse ampli-
tude. We have provided analytic expressions for the VVCS
amplitudes—the possibility to do so being one of the advan-
tages of the �πEFT framework.

Investigating the RG running of the longitudinal amplitude,
we show that there is a single unknown one-photon two-
nucleon contact term contributing to the amplitude at N3LO,
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FIG. 18. Fourth-order generalized Baldin sum rule. The curves
are coded as in the right panel of Fig. 16.

parametrized by the low-energy constant lC0S
1 . This constant

is extracted from a fit to the deuteron charge form factor also
at N3LO; the corresponding �πEFT result is obtained from the
residue of the longitudinal amplitude. We note that two of the
RG equations for the N3LO two-nucleon one-photon contact
terms obtained by us are at variance with those obtained in
Ref. [36]. Since these RG equations simply relegate these
contact terms to higher orders, this disagreement alone should
not make the results of Ref. [36] incompatible with ours. On
the other hand, the calculation of Ref. [37] that deals with the
same contact terms at N4LO could be affected. However, a
reevaluation of its results might still not be needed. Namely,
we suspect the reason for the difference in the RG equations to
be a factor of 2 missing in Refs. [36,37] in all contributions of
the contact terms in question. A more serious mistake would
likely leave RG scale dependent results, which do not seem
to appear. Fitting an RG-invariant quantity to an experimental
datum should renormalize the missing constant factor, leading
to the correct result for the observables.

The deuteron charge and magnetic form factors, calculated,
respectively, at N3LO and NLO from the residues of the
longitudinal and transverse VVCS amplitudes, recover the
previously obtained NNLO result for the charge form factor
[29], as well as the NLO result for the magnetic form factor
[7]. We furthermore obtain the generalized deuteron polariz-
abilities, namely, the electric αE1(Q2) and magnetic βM1(Q2)
dipole polarizabilities, the longitudinal polarizability αL(Q2),
and the generalized Baldin sum rule [αE1 + βM1](Q2). We
also calculate the fourth-order generalized Baldin sum rule.
The results for the electric and longitudinal generalized polar-
izability are at N3LO, while the remaining ones are calculated
at NLO. There is a slight discrepancy between our expression
for the static electric polarizability of the deuteron αE1 and
the results obtained previously in Ref. [29]. The numerical
values of the static electric and magnetic polarizabilities of
the deuteron, αE1 and βM1, are in a good agreement with other
calculations, in particular, the recent χEFT-based evaluation
in Ref. [27]. This agreement between the values of αE1 cal-
culated in the two low-energy effective field theories would
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be expected, since αE1 is dominated by low-energy (or long-
range) properties of the deuteron. On the other hand, the fact
that the results for βM1 agree so well between the two theories
can be reasonably explained by the properties of the procedure
used to determine the NLO isovector magnetic contact term
in Ref. [37], namely, that it reproduced the cross section in
np → dγ at low energies (although this remains to be ex-
plicitly demonstrated). The results of this paper, in particular,
the longitudinal amplitude, can be used to benchmark other
calculational frameworks, e.g., χEFT potentials, especially
in settings where reproducing low-energy properties of the
deuteron is important, such as the calculation of the TPE
corrections in μD.

The N3LO �πEFT result for the longitudinal amplitude
and the charge form factor provides high-precision model-
independent input for a calculation of the TPE correction
to the Lamb shift in μD. The uncertainty of such a cal-
culation will be dominated by higher-order terms in the
�πEFT expansion, expected to be of the order of 1% at N3LO.
At the same time, the result for fT (ν, Q2) can be used to verify
the smallness of the transverse contribution to the TPE correc-
tion. One has to point out that the numerically most important
corrections are likely to come from high-order terms in the
one-nucleon sector, such as those stemming from the expan-
sion of the nucleon elastic form factors and the single-nucleon
VVCS amplitudes, owing to the large energy and momentum
scales needed in order to probe the nucleon structure and
the resulting slow convergence of the said expansion. The
investigation of these issues, together with a detailed analysis
of the uncertainty of the TPE correction, will be presented
in a subsequent publication [30]. We are also investigating

the spin-dependent deuteron VVCS amplitudes and the cor-
responding generalized polarizabilities of the deuteron.

A natural extension of this paper would involve an appli-
cation to unpolarized VVCS in A = 3 nuclei, where a good
description of quantities such as the charge radii has already
been obtained in �πEFT (see, e.g., Refs. [56,57] for recent
results, and Ref. [58] for a review). Given the complications
of �πEFT as applied to the three-nucleon sector, pursuing this
program would not be straightforward; however, it promises
interesting results.
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