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Partial-wave correlations with uncertainties in the two-nucleon system
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The nucleon-nucleon scattering problem is usually analyzed in terms of partial waves and the corresponding
coupled-channel phase shifts and mixing angles, but the available experiments induce correlations among the
corresponding channels with different quantum numbers. Based on the Granada 2013 database we analyze
the meaning and impact of those correlations, taking into account both the purely statistical ones reflecting
the primary experimental data uncertainties as well as the systematic ones exhibiting the ambiguities in the
form of the potential representing the unknown nuclear force for distances below 3 fm. We find that the
combined uncertainties not only display a dominance of systematic over statistical effects, but also show that
these correlations are almost compatible with zero. These findings support the frequent practice of determining
potentials from separated channel-by-channel direct fits to phase shifts with the combined systematic and
statistical effects without the full-fledged partial wave analysis inferred from experimental data but only with
much larger uncertainties.

DOI: 10.1103/PhysRevC.104.054002

I. INTRODUCTION

The determination of the nucleon-nucleon (NN) scattering
amplitude [1] has traditionally been done in terms of a partial
wave expansion [2] and the corresponding phase shifts con-
strained by unitarity, particularly in the elastic energy regime
located below the pion production threshold. Early attempts
used the phase shifts directly as fitting parameters at fixed
energies for differential cross sections and polarization ob-
servables [3] (see, e.g., Refs. [4,5] for reviews up until the
late 1950s). Such a procedure proves crucial to unveil the
most general NN potential [6] which is of concern to nuclear
physics calculations, but also induces correlations among the
phase shifts which need to be taken into account for a faithful
representation of the data within their given uncertainties. The
issue of correlations in this regard is rather old, and within
a phase-shift context it goes back to the mid 1950s (see,
e.g., Refs. [7,8]). With some important modifications, this is
essentially the same procedure implemented over the years by
a countless number of attempts and is still followed nowa-
days. A historical overview up to 1989 was reported [9] and
the series of Refs. [10–19] describes statistically satisfactory
descriptions of the data since 1993 using phenomenologi-
cal potentials. This includes in particular some of the most
up to date versions of the modern chiral potentials [20,21],
which are routinely used in ab initio calculations including
three-body chiral interactions. (For recent and comprehensive
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reviews, see, e.g., Refs. [22–24] and references therein). In
this paper we undertake a detailed study of these statistical
correlations where from a large set of 8000 proton-proton
(pp) and neutron-proton (np) scattering data below 350 MeV
laboratory energy a subset of 6713 of 3σ self-consistent data
(the Granada 2013 database) is selected and fitted [15], and
we explore the multidimensional parameter space taking into
account correlation uncertainties which have been overlooked
to the best of our knowledge.

One common practice of nuclear theoreticians has been to
propose NN potentials and fitting to phase shifts separately
[25–34] so that one could avoid undergoing a full partial wave
analysis (PWA). This is a rather convenient shortcut from
a computational point of view, and a good starting point to
undertake a finer PWA, but such a scheme is at odds with the
existence of correlations. Actually, as it has been long known
[35,36] (see also Ref. [27] for an early discussion) and we
have emphasized in previous works [18] a good fit to phase
shifts with an acceptable confidence level does not imply a sat-
isfactory description of the complete scattering amplitude and
casts doubts about the portability of the partial wave analysis
itself without explicitly quoting the correlations. When such
correlations are reported [8] correlated fits become possible
[37–39]. However, these correlations are subjected to uncer-
tainties themselves. Therefore, by undertaking the present
correlation study we hope to give a specific answer to the
question of under what conditions is the independent phase-
shifts fit a faithful description of the original scattering data
including all sorts of uncertainties.

Before embarking on the issue of correlations and their un-
certainties, let us review the nature of the problem in order to
motivate our study. Much of the current information about any
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theoretical analysis of NN scattering data is often presented in
terms of the corresponding coupled-channel phase shifts and
mixing angles which are determined by the conventional least
squares minimization method against the existing scattering
data. The fitting method acquires statistical meaning under
certain conditions which can be checked a posteriori [17,40].
Typically these statistical methods allow for a determination
and propagation of the uncertainties and correlations of the
fitting parameters and hence of the corresponding phase shifts.
The net result stressed in previous works [18,41,42] has been
that these statistical uncertainties turn out to be about an order
of magnitude smaller than the standard deviation between all
the (statistically equivalent, i.e., similar reduced χ2 values)
PWAs carried out in the past. The reason may be attributed
to the details of the statistically equivalent interactions in the
region below a relative separation of 3 fm. This is particularly
significant; while phase shifts are not experimental observ-
ables themselves, they are regarded as model-independent
quantities which can be extracted from data. However, as
we remind below, they turn out to be statistically dependent
objects as inferred from data uncertainties and model depen-
dent due to the different statistically equivalent fits based on
different NN potentials.1 The existence of correlations exhibits
a level of redundancy and is quite natural within a potential
model approach to nuclear forces. It simply reflects the fact
that there are more phase shifts than independent potential
components according to general symmetry principles as long
as nucleons and pions are regarded as elementary particles.
Of course, one should not forget, on a more fundamental level,
the fact that QCD, the underlying theory of strong interactions
in terms of quarks and gluons for the two lightest u, d flavors,
essentially depends solely on two parameters which, in the
isospin limit, can be mapped at the hadronic level onto the
pion weak decay fπ and the pion mass mπ suggests that
all correlations should be traced from the underlying fπ , mπ

dependence. At the current experimental accuracy those fun-
damental correlations are, however, practically invisible. The
same is true at the fundamental level, despite encouraging
progress at a fundamental level within the lattice QCD ap-
proach to the NN problem [44,45] (see also, e.g., Refs. [46,47]
for recent studies and references therein and Ref. [48] for
an overview). Thus we are left, for the time being, with the
phenomenological analysis.

The paper is structured as follows. In Sec. II we review the
essential difference of the phase shifts as primary or secondary
parameters and the corresponding fitting strategies as well as
the implications for statistical and systematic uncertainties.

1For NN potentials deduced from quantum field theory at the
hadronic level this model dependence also covers finite cutoff reg-
ularization scheme dependence or equivalently strong form factors
due to short distance singularities inherent in the perturbative eval-
uation of Feynman diagrams involving a meson exchange picture
(see, e.g., Ref. [9] for a review). Modern effective field theory (EFT)
approaches with suitable counterterms based on chiral symmetry
(see, e.g., Refs. [20,21] for recent reviews) also display a scheme
dependence which may be larger than nominally expected due to the
need for a finite regularization scheme [43].

The necessary definitions of the statistics of correlations are
introduced in Sec. III and particularized for our case. Our
main numerical results are presented in Sec. IV where we sep-
arate the study for both statistical and systematic uncertainties
at different confidence levels. Finally, in Sec. V we come to
the conclusions and provide an outlook.

II. PHASE SHIFTS AS PRIMARY OR DERIVED
QUANTITIES

While a procedure based on taking the phase shifts as
primary fitting quantities facilitates enormously the direct
evaluation of statistical correlations through the correspond-
ing covariance matrix at fixed energy values, alternative
procedures using NN potentials may be competitive enough
in terms of goodness of fit at arbitrary energy values but
complicate the uncertainty analysis of correlations. Thus, we
find it appropriate to ponder the need for taking the phase
shifts as secondary quantities, as it has become customary
for the past 50 years (see, e.g., Ref. [49] and the discussion
below). The reader familiar with these issues may skip this
section.

A. Statement of the problem

From a mathematical point of view the path from scattering
data to the scattering amplitude proves to be an unambigu-
ous procedure [50] provided a complete set of measurements
encompassing differential cross sections and polarization ob-
servables at a particular energy value are available [51] (see
Ref. [52] for an analytical solution). From the scattering am-
plitudes the corresponding partial wave amplitudes and hence
the phase shifts may be obtained. While the situation of plan-
ning experiments this way in a significant sample of measured
energies would be the ideal one, it has seldom been applied in
the region below the pion production threshold of most impor-
tance for theoretical nuclear physics in ab initio calculations
of binding energies of light nuclei. Instead rather fragmentary
intervals of energies, angles, and measured observables car-
ried out at different laboratories are more frequently available
to undertake large scale analysis encompassing as many com-
patible data as possible.

The formalism of NN PWA was comprehensively reviewed
in Refs. [23,24] with an emphasis put on the verification vs
falsification of statistical tests and the possibility of uncer-
tainty quantification and propagation. We refer to these papers
for further details and specific formulas in the general case
corresponding to the scattering of two spin-1/2 particles and
the relation to experimental cross sections and polarization
observables as well as the modifications due to the tensor force
and the inclusion of determinant long range effects such as
Coulomb, vacuum polarization, and relativistic corrections as
well as charge-dependent (CD) one-pion-exchange potentials.
For our purposes of illustrating the discussion here, we may
summarize the situation for the much simpler spinless spher-
ical local potential, V (r), case where the only measurable
observable would be the differential cross section σ (θ, E ) =
| f (θ, E )|2 with θ the scattering angle and E the scattering
center-of-mass (c.m.) energy. The scattering amplitude can be
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expanded in the conventional partial wave expansion as

f (θ, E ) =
∞∑

l=0

(2l + 1)
e2iδl (p) − 1

2ip
Pl (cos θ ). (1)

Here, Pl (z) are Legendre polynomials and δl (p) are the
phase shifts depending on the c.m. momentum p = √

2μE
with μ the reduced mass. For the spherical potential case
the total wave function can be factorized as usual, �(�x) =
(ul (r)/r)Yl,m(θ, φ) with Yl,m(θ, φ) the spherical harmonics,
and the phase shifts δl (p) are computed by solving the reduced
Schrödinger equation for the reduced wave function ul (r)
where

−u′′
l (r) +

[
l (l + 1)

r2
+ 2μV (r)

]
ul (r) = p2ul (r), (2)

with the asymptotic conditions (we assume nonsingular po-
tentials r2V (r) → 0 as r → 0)

ul (r) →︸︷︷︸
r→0

rl+1, ul (r) →︸︷︷︸
r→∞

sin

(
pr − lπ

2
+ δl

)
. (3)

For a potential with finite range a, the partial wave expansion
is truncated at about lmax ≈ pmaxa.

B. Energy-independent analysis

The simplest situation corresponds to having complete
data in a single energy E (or momentum p), namely,
(σ (θ1, E ), . . . , σ (θN , E )). In this case one can determine the
lmax ∼ pa phase shifts directly from the data as fitting param-
eters (δ0(E ), . . . , δlmax (E )) by minimizing

χ2(δ1(E ), . . . , δlmax (E ), Z ) =
(

1 − Z

	Z

)2

+
N∑

i=1

[
σ expt(θi, E ) − Zσ th(θi, δ1(E ), . . . , δlmax (E ))

	σ (θi, E )

]2

.

(4)

Here the normalization Z with estimated uncertainty 	Z (pro-
vided by the experimentalists) is common for one energy.
Moreover, the matrix error deduced as a second derivative
with respect to the fitting parameters allows to determine both
the error and the correlations of different partial waves at
this same energy. Thus, phase shifts become “experimental”
and model-independent observables, δ

expt
l (E ) ± 	δ

expt
l (E ) for

l = 0, . . . , lmax at this particular energy.
The energy-independent analysis, despite being direct for

extraction of uncertainties and correlations, suffers from some
undesirable deficiencies. First, the number of active phase
shifts increases with the energy, since the maximal orbital
angular momentum in the partial wave expansion is typically
lmax ∼ 2pc.m./mπ . Second, phase shifts at different energies
may display trigonometric and unpleasant ambiguities, al-
though for nearby energies data may be extrapolated to a fixed
energy. Finally, every energy is treated independently, so that
if we have fewer experimental measurements than the number
of necessary phase shifts, N � lmax, a PWA becomes unfeasi-
ble. Although the energy-independent analysis is the only way
to make a model-independent PWA, it is no longer an active

strategy in part because of how the available experimental data
have been accumulated over the years.

C. Energy-dependent analysis

If one has incomplete data for a fixed energy but
a set of measurements at several energies and angles
(σ (θ1, E1), . . . , σ (θN , EN )) one cannot generally determine
phase shifts δl (Ei ) at those energies because of lack of data.
Instead, a model-dependent interpolation with fitting parame-
ters p in the energy is needed, so that one has δl (E ; p); i.e., the
phase shifts become secondary or derived quantities.2 Thus,
one minimizes

χ2(p, Z ) =
N∑

i=1

[
σ (θi, Ei )expt − Zσ th(θi, Ei, p)

	σ (θi, Ei )

]2

+
(

1 − Z

	Z

)2

. (5)

Different experiments have different normalization constants
Z so that generally

χ2(p, Z1, . . . , ZE ) =
E∑

i=1

χ2
i (p, Zi ). (6)

The outcome of this multienergy analysis would be an error
matrix for the parameters p whereby errors could be propa-
gated to compute the error matrix for the phase shifts, using
the standard covariance matrix approach.

The analysis pioneered by the Nijmegen group in the mid-
1990s [10] was the first example of a large scale PWA of NN
data which had a statistically significant fit due to the inclusion
of long range fine effects and a meticulous selection of mutu-
ally consistent scattering data. This work was partly followed
by the Granada group and has allowed to pin down the NN
phase shifts up to pion production threshold rather accurately
[53]. In the spinless case the Granada approach corresponds
to a separation of the potential into a well-known quantum
field theoretical piece VQFT(r) for the long range tail and an
unknown short distance piece. VQFT(r) can be calculated by
evaluating the corresponding Feynman diagrams in perturba-
tion theory. The short distance piece can be determined by
a PWA and is coarse grained on “thick” sampling points rn

suitably located by Dirac delta shells as

VShort (r) =
∑

n

	rV (rn)δ(r − rn), (7)

where rn = n	r. Here 	r ∼ 1/pmax ≈ 0.6 fm, the shortest
de Broglie wavelength. From the error matrix in the fitting
parameters V (ri ) one may propagate to the error matrix of
phase shifts.

In the general case with spin-1/2 particles, one has instead
a set of potential functions Vi(r) associated to the gen-
eral decomposition of the potential in a given operator base

2A typical example is to take a rational representation of
the K matrix, p cot δl = ∑K

n=0 an pn/
∑M

n=0 bn pn, where the corre-
sponding coefficients build the vector of fitting parameters p =
(a0, . . . , aK ; b0, . . . , bM ).
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V (�x) = ∑
i OiVi(r) (see, e.g., Refs. [23,24]) and as a conse-

quence the fitting parameters are given by Vi(rn). The upshot
of the whole scheme is the best fit of the Granada 2013
database with NDat = 6741 pp + np selected scattering data
below 350 MeV laboratory energy with a total χ2 = 6855.50
and NPar = 55 fitting parameters, which corresponds to a re-
duced χ2 per degrees of freedom (DOF) of χ2/DOF = 1.025
[19]. On the statistical level most phases are determined by a
1 per mile or less accuracy, the main reason being the strong
constraints imposed by CD-one-pion-exchange interaction.
For recent reviews on uncertainties in the NN problem see,
e.g., Refs. [23,24].

While the model dependence due to the inclusion of
suitable potentials is generated by the need to intertwine frag-
mentary scattering measurements, it has the further benefit
that one can, in principle, use the fitted potentials in ab initio
nuclear structure calculations. As we will see, it also provides
an additional source of uncertainty for those calculations, a
subject which has become in the last decade the cornerstone
of the predictive power in nuclear physics.

D. Systematic and statistical uncertainties

The decomposition of the potential into an unknown short
range part and a well-known long range part complies with
expected analytical properties of the scattering amplitude in
the absence of long distance electromagnetic effects [54] and
provides a universal representation for VQFT(r). However, the
representation of the short range part is generally ambiguous,
and the coarse grained representation, Eq. (7), while quite
convenient and computationally cheap, is not unique and sev-
eral other functions have been proposed which are statistically
acceptable; i.e., they have χ2/DOF ∼ 1. They are seven pre-
Granada analyses starting with the Nijmegen benchmarking
study [10–14] the primary Granada 2013 χ2 analysis [15] and
the subsequent five Granada potentials [15–18].3 The differ-
ences in the phase shifts are mainly attributed to a systematic
uncertainty in VShort (r). In previous work [18,23,24,41,42] we
estimated systematic uncertainties taken over a total of N =
13 analyses which have provided a satisfactory χ2/DOF at the
time of their fit. One important consequence of the Granada
energy-dependent analysis corresponds to the out-coming un-
certainty structure, where it was found that the statistical
uncertainties are about an order of magnitude smaller than the
systematic uncertainties [18,23,24,41,42]. This observation
will be highly relevant for our determination of systematic
uncertainties of correlations.

So far, the dominance of systematic vs statistical uncertain-
ties is a very important but purely empirical observation based
on combining the available statistically equivalent PWA. We
try to give here some rationale of the situation. One may
wonder how is it possible that statistically equivalent model
fits may yield different phase shifts. To understand this let

3Our selection, based on comparison with measurable data, ex-
cludes several often used important potentials such as the extended
soft core (see, e.g., Ref. [55]) and might appear too strict in cases
where sometimes a qualitative agreement suffices.

us consider a situation where we could compare the energy-
independent strategy, where phase shifts are taken as primary
fitting parameters with the energy-dependent one where the
phase shifts are obtained from the minimizing potential pa-
rameters.

The corresponding phase shifts will be denoted as δα where
α = (En, l ) runs over all the available energies and relevant
angular momenta. Thus, written in compact form, we have

min
δ

χ2(δ) ≡ χ2(δ∗), (8)

where δ∗
α are the minimizing phase shifts whose statistical

uncertainties, 	δα , and correlation matrix can be obtained
from the standard covariance matrix.

In the energy-dependent strategy we use a potential with
parameters, which we denote for short as Vi, and we actually
have that effectively the phase shifts become functions of the
potential parameters δα (V ) ≡ δα (V1, . . . ,VM ) so that

χ2(V ) = χ2(δ(V )). (9)

Thus, from a variational point of view, the minimization with
respect to the potential parameters operates in general as a
restriction. Of course, the introduction of arbitrarily many
parameters in the potential may produce overfitting which as
we will see below is in fact not necessary. Hence minimization
means

min
V

χ2(δ(V )) ≡ χ2(δ(V ∗)) � min
δ

χ2(δ) ≡ χ2(δ∗). (10)

Now, in the limit of small deviations we set

δα (V ∗) = δ∗
α + εα, (11)

and because of the stationary condition we get that the accu-
racy in the minimum is quadratic in the small deviation:

χ2(δ(V ∗)) − χ2(δ∗) = χ2(δ∗ + ε) − χ2(δ∗) = O(ε2). (12)

Thus, by construction we expect the energy-dependent strat-
egy to provide O(ε) phase shifts for O(ε2) values of χ2. In
other words, using a potential we can get rather good fits with
not so precise phase shifts. Any potential taken as a basis for
the PWA will induce a bias and we can only hope that, by
using different potentials with different biases, the global bias
will be removed on average.

In the above notation, the findings of our previous work
correspond to the fact that, if we take different potentials, say
V (1),V (2), . . . , on average 〈εα〉 = 0 but their mean squared
standard deviation Std(εα ), which we call the systematic un-
certainty, is much larger than the statistical uncertainty, 	δα ,
i.e.,

Std(εα ) 
 	δα. (13)

The underlying reason of why there is such a big increase
remains, to our knowledge, a mystery. Nonetheless, as we
will see later in this paper, all these simple considerations
have implications in the short-cut approach of fitting nuclear
potentials directly to phase shifts extracted without passing
through the rather cumbersome approach of the PWA.
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FIG. 1. Theoretical distribution function of the correlation co-
efficient r for a sample of size N = 13 generated from a bivariate
Gaussian population with theoretical correlation coefficients (from
left to right) ρ = −0.75, −0.5, −0.25, 0, 0.25, 0.50, 0.75.

III. STATISTICAL DEFINITIONS FOR CORRELATIONS

To assess numerically these correlations and their uncer-
tainties we rely on a few definitions from statistics. We briefly
introduce here the main statistical quantities necessary to di-
rectly present our results. However, we encourage the reader
to review the Appendix for a more in-depth discussion of
the theory on the uncertainty estimate of the correlation co-
efficient. The Appendix takes a pedagogical approach since
the theory, although a century old, does not usually appear
comprehensively in standard statistics textbooks (we take
Refs. [56–58]).

Our purpose in this work will be to estimate a confi-
dence interval for the population correlation ρ among the
different NN partial waves at different laboratory energies.
In practice we only have access to a finite sample of pairs
(x1, y1) . . . (xN , yN ) of size N extracted from a bivariate distri-
bution P(x, y). We define then standardized variables

x̂i = xi − x

sx

√
N

N − 1
, (14)

where the bar notation indicates the conventional sample
mean and s2 corresponds to the unbiased sample variance
[see Eqs. (A4) and (A5) for specific definitions]. The linear
correlation coefficient r, which is an estimator for ρ, is given
by the sample mean of the variable ξi = x̂iŷi:

r ≡ C(x̂, ŷ) = ξ = x̂ŷ = 1

N

N∑
i=1

x̂iŷi, (15)

which fulfills the inequality −1 � C � 1 with C = −1, 0, 1
corresponding to full anticorrelation, full independence, and
full correlation, respectively, of the sets {x̂1, . . . , x̂N } and
{ŷ1, . . . , ŷN }. Of course, the correlation coefficient depends
on the sample of size N and hence different extractions will
produce different values of r so that it will eventually provide
a distribution Pρ,N (r) due to the finite sample size.

For the particular case of a bivariate Gaussian distribution
the resulting Pρ,N (r) was derived long ago and can be found
in Eq. (A16). Figure 1 shows the corresponding distribution
Pρ,N (r) for a few values of the correlation coefficient and in

FIG. 2. Estimated confidence limits for the correlation ρ as a
function of the empirical correlation coefficient of a sample of size
N = 13 for one, two, and three standard deviations corresponding to
68%, 95%, and 99% confidence levels, respectively.

the particular case N = 13 which will be our main interest
here. As we can clearly see, rather large empirical values,
|r| � 0.5, would be needed if one claims that ρ �= 0 signifi-
cantly.

According to a naive application of the central limit the-
orem, for N 
 1, the distribution becomes a Gaussian with
mean ρ and standard deviation

√
(1 + ρ2)/N . In that case the

formula involving the sample variance can be used directly:

ρ = x̂ŷ ± 1√
N

[(x̂ŷ − x̂ŷ)2], (16)

which for our case N = 13 works rather well for |ρ| � 1, but
fails for sizable correlations due to the asymmetric shape of
the distribution. Equation (16) can erroneously give estimates
of r which fall outside the interval [−1, 1]. A way to address
the general asymmetric situation is by recurring to the central
limit theorem, in terms of the Fisher transform, which for
large N behaves as a Gaussian variable,

z = 1

2
ln

1 + r

1 − r
= 1

2
ln

1 + ρ

1 − ρ
+ ξ√

N − 3
, (17)

with ξ ∈ N[0, 1]. Thus z has a mean μz = tanh−1 ρ and
variance σz = 1/

√
N − 3. For our N = 13 case this formula

works well enough (it can hardly be distinguished in Fig. 1 so
we do not plot it) for the asymmetric case and higher order
corrections may be found in Ref. [59]. Therefore we have the
ranges

ρ = tanh

{
tanh−1(r) ± z√

N − 3

}
, (18)

where z = 1, 2, 3 correspond to 68%, 95%, and 99% confi-
dence levels (CLs), respectively. These three CL bands are
displayed for illustration purposes in Fig. 2.

IV. NN PARTIAL WAVE CORRELATIONS

We may now proceed directly to evaluate the correspond-
ing linear correlation coefficients. For any pair of partial
waves, say δα and δβ , and for a given laboratory energy we
proceed by computing the sample correlation C(δ̂α, δ̂β ) from
Eq. (15) and assign the error according to Eq. (18) for z = 1, 2
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corresponding to 68% and 95% confidence levels. As already
mentioned we will address separately both the correlations
due to purely statistical origin, i.e., directly stemming from
the experimental measurements, and our estimates of sys-
tematic origin corresponding to the different representations
and parametrizations of the interaction and reflecting inherent
ambiguities in the scattering problem.

In our study of the 13 PWA fits we will segregate the
six Granada potentials from the remaining seven previous
phenomenological approaches. While all the potentials share
the necessary long range effects to provide statistically sig-
nificant fits at their time, this separation makes sense for a
variety of reasons. First, all the Granada analyses are explic-
itly provided in published form with statistical error bars, a
practice which only applies to the original and benchmarking
Nijmegen analysis (but unfortunately not to their subsequent
high-quality potentials). Second, the selected database is the
same. A third reason is that the strict separation between
VQFT(r) and VShort (r) is applied in all six Granada cases.
Finally, it is encouraging that from grouping the Granada
potentials separately, there seems to be no particular bias as
compared to the precedent and quite diverse PWA using the
original and 40% smaller 1993 Nijmegen database.

We consider correlations among all partial waves with to-
tal angular momentum J � 3, corresponding to waves from
1S0 to 3G3. Our results for the linear correlation coefficients
among different partial waves are shown in Fig. 3, where
we show the 1σ and 2σ confidence levels according to the
Fisher transformation mapping specified in Eq. (18). For a
better comparison we display them in a block form resembling
the (symmetric) correlation matrix and splitting the upper
diagonal involving the central phases, which have a total
angular momentum J � 1 and the peripheral phases J � 2.
In this representation the off-diagonal block corresponds to
the correlation between central and peripheral waves. The
thin band corresponds to the purely statistical correlations of
the Granada 2013 partial wave analysis whereas the thicker
bands represent the 13 high-quality potentials developed since
the Nijmegen analysis (left panels) as well as the 6 Granada
interactions (right panels). In all cases we take as the x axis
the nucleon laboratory energies for 0 � Tlaboratory � 350 MeV
(ticks represent each multiples of 50 MeV) and the y axis as
the correlation coefficient in the range −1 � r � 1.

A. Statistical correlations

Correlations are generated using the bootstrap method,
where the 6713 np + pp experimental results corresponding
to 6173 scattering data containing differential cross sections
and polarization asymmetries are replicated N = 1000 times
following Ref. [60] by performing a Gaussian fluctuation on
the existing data and taking the CD one-pion exchange (OPE)
with delta shells and the pion-nucleon-nucleon coupling con-
stants as fitting parameters and minimizing the χ2 for each
of the N = 1000 replicas. This approach produces a nonpara-
metric multidimensional distribution of parameters which is
not necessarily Gaussian (see Ref. [60] for illustrations) but
also an N = 1000 sample of population of phase shifts at any
single laboratory energy value whereby their mutual correla-

tions and the corresponding uncertainties using the formulas
in the previous section can be obtained.

For a finite range potential with a sharp boundary, the
partial wave expansion has a cutoff in the maximal angular
momentum Jmax which roughly and in a semiclassical picture
corresponds to the maximal impact parameter consistent with
the occurrence of a collision, namely, b � rc. The exponential
falloff of the OPE potential above a certain cutoff radius
implies that larger angular momenta than this Jmax are mainly
determined by the OPE potential tail.

According to the Granada analysis, the partial waves may
roughly be divided into active and passive channels corre-
sponding to the low partial waves actually involving the fitting
parameters and the higher partial waves mainly, but not fully,
determined by the CD OPE potential. We naturally expect
the peripheral partial waves to be strongly correlated because
they behave approximately in a perturbative manner and are
determined by a unique Yukawa-like function.

B. Systematic correlations

Our way of handling systematic correlations is to regard
the very choice of the short range potential as random and treat
them as a sample of a population of possible potential choices.
This regards a total of N = 13 PWAs carried out in the past
25 years and which have been successful within a statistical
point of view, namely, the pioneering Nijmegen analysis and
a total of six Granada potentials. One common feature of all
the fitting potentials is that they contain exactly the same CD
OPE potential starting at distances larger than 3 fm and all
other EM corrections such as relativistic, magnetic moments,
and vacuum polarization.

The results are depicted in Fig. 3 and, consistent with
previous studies, systematic uncertainties are much larger than
statistical uncertainties. Most remarkable is the fact that many
of the apparently significant statistical correlations turn into
lack of correlations within uncertainties. Thus, if we accept
the spread of phase shifts of the N = 13 potentials as a lower
bound on the current uncertainty, one may take most of the
partial waves as uncorrelated and one may proceed to fit
different partial wave channels independently of each other.

V. CONCLUSIONS

In this paper we analyzed the correlations and their un-
certainties among the different partial waves in NN scattering
below 350 MeV stemming either from statistical data uncer-
tainties or a lack of knowledge on the interaction at short
distances.

One of the direct applications of the results found here
is that the naive approach of fitting NN phase shifts to fix
nuclear forces in potential models without undertaking a large
scale partial wave analysis to experimental data may, to some
extent, be justified. The reason is that, regarding the largest
source of uncertainty which corresponds to our current defi-
cient representation of the NN interaction below 3 fm, phase
shifts in different partial waves are uncorrelated in the entire
energy range and within the corresponding uncertainties. The
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FIG. 3. Partial wave correlation coefficients −1 � r � 1 with confidence level as a function of the nucleon laboratory energies for
0 � Tlaboratory � 350 MeV. The larger (light blue) band corresponds to the systematic uncertainty at the 2σ confidence level. The medium
band (purple) corresponds to the systematic uncertainty at the 1σ confidence level. The smaller (orange) band corresponds to the statistical
uncertainty at the 1σ confidence level as described in the text. Top: Central phases with total angular momentum J � 1. Middle: Peripheral
phases with J � 2. Bottom: Central-peripheral correlations. We show the results for the 13 HQ potentials quoted in the text (left) and the 6
Granada potentials (right).
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price to pay, however, is that this implies dealing an order of
magnitude larger uncertainties in the phase shifts.

Ignoring correlations in the fits is then justified only at
the 2σ level, namely, when we enlarge their mean standard
deviation of the 13 potentials, which roughly corresponds
to 20 times larger uncertainties than in the PWA fitting and
selecting the 3σ self-consistent 2013 Granada database. In
practice this adds further uncertainties to the already existing
ones, to ab initio nuclear structure calculations in terms of
potentials obtained by this procedure.
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APPENDIX: STATISTICS OF CORRELATIONS

We start by considering a univariate and normalized distri-
bution P(x). For such a distribution we have the expectation
value of a function O(x) defined as

〈O〉 =
∫ ∞

−∞
dxO(x)P(x), (A1)

where 〈1〉 = 1 is the normalization condition, and μx ≡ 〈x〉
is the population mean and σx ≡ 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2

is the population mean squared distribution. For a sample
(x1, . . . , xN ) of size N extracted from this distribution P we
introduce the conventional statistical mean and variance as
unbiased estimators:

x = 1

N

N∑
i=1

xi, (A2)

s2
x = N

N − 1
(x − x)2, (A3)

which fulfill the properties

〈x〉 = 〈x〉 = μx, (A4)〈
s2

x

〉 = 〈(x − 〈x〉)2〉 = σ 2
x . (A5)

The sample mean x̄ is itself a random variable since any
different extraction of size N will generally produce a differ-
ent result. The corresponding distribution function fulfills for
large samples, N 
 1, the well-known central limit theorem,

PN (z) =
N∏

i=1

∫
dxiP(xi )δ(z − x̄) → e

− 1
2

(z−μ)2

σ2/N√
2πσ 2/N

, (A6)

where δ(x) is the usual Dirac delta function. This result is
customarily summarized by stating that x̄ = μ ± σ/

√
N with

a 68% confidence level. Inverting this relation one finds an
estimate of the population mean in terms of the sample mean
and sample variance, μ = x̄ ± sx/

√
N .

The corresponding extension to a normalized joint bivari-
ate probability function P(x, y) is straightforward and we
define accordingly the expectation value as

〈O〉 =
∫

dx dy O(x, y)P(x, y). (A7)

For our discussion it will be useful to define standardized
variables

x̂ = x − μx

σx
, ŷ = y − μy

σy
. (A8)

Thus, by construction we have

〈x̂〉 = 〈ŷ〉 = 0, (A9)

〈x̂2〉 = 〈ŷ2〉 = 1, (A10)

and introduce the linear correlation coefficient ρ and its vari-
ance σ 2

ρ ,

ρ = 〈x̂ŷ〉 = σxy

σxσy
, (A11)

σ 2
ρ = 〈(x̂ŷ − 〈x̂ŷ〉)2〉, (A12)

where σxy = 〈(x − μx )(y − μy)〉 is the covariance of x and y.
The correlation ρ between the x and y variables can be

estimated by taking a finite sample of size N and calculating
the correlation coefficient defined in Eq. (15) of the main text.
Similar to the sample mean x̄, r is also a random variable since
a different sample of the same size N will result, generally, in
a different value for r. Therefore, the distribution function for
the linear correlation coefficient of N pairs is given by the
δ-constrained integral

PN (r) =
{

N∏
i=1

∫
dx̂idŷiP(x̂i, ŷi )

}
δ(r − C(x̂, ŷ)), (A13)

which fulfills the proper normalization condition∫ 1

−1
drPN (r) = 1. (A14)

For a standardized bivariate Gaussian distribution of the form

P(x, y) = 1

2π
√

1 − ρ2
e
− x2+y2−2ρxy

2(1−ρ2 ) , (A15)

the distribution function PN (r) was evaluated analytically long
ago [61]:

Pρ,N (r) = (N − 1)√
2π

�(N )

�
(
N + 1

2

) (1 − r2)
N−3

2 (1 − ρ2)N/2

× (1 − rρ)
1
2 −nF

(
1

2
;

1

2
; N + 1

2
;

1

2
(rρ + 1)

)
,

(A16)

where �(x) is Euler’s gamma function and F (a, b, c, x) is the
hypergeometric function, whose power series around x = 0
reads

F (a, b, c, x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
(A17)

and (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer sym-
bol. For example, for uncorrelated Gaussian distributions,
corresponding to ρ = 0, the exact result simplifies to

P0,N (r) = (1 − r2)
N−3

2 �
(

N
2

)
√

π�
(

N−1
2

) . (A18)
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In the general ρ �= 0 case one has

〈r〉 = ρ, σ 2
r = 〈r2〉 − 〈r〉2 = 1 + ρ2

N
, (A19)

which means that for a finite sample we may observe finite
correlations r ∈ (−1, 1)/

√
n even though the original popula-

tion is free of them with ≈68% confidence level. For example,
for N = 16 a correlation coefficient of |r| � 0.25 is largely
compatible with no correlation. Plots of the Pρ,N=13(r) distri-
bution for different values of ρ can be seen in Fig. 1 of the
main text.
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