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Nucleon-nucleon potentials from �-full chiral effective-field-theory and implications
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We closely investigate NN potentials based upon the �-full version of chiral effective-field-theory. We find
that recently constructed NN potentials of this kind, which (when applied together with three-nucleon forces)
were presented as predicting accurate binding energies and radii for a range of nuclei from A = 16 to A = 132
and providing accurate equations of state for nuclear matter, yield a χ2/datum of 60 for the reproduction of
the pp data below 100 MeV laboratory energy. This χ2 is more than three times what the Hamada-Johnston
potential of the year of 1962 achieved already some 60 years ago. We perceive this historical fact as concerning
in view of the current emphasis on precision. We are able to trace the very large χ2 as well as the apparent
success of the potentials in nuclear structure to unrealistic predictions for P-wave states, in which the �-full
next-to-next-to-leading order (NNLO) potentials are off by up to 40 times the NNLO truncation errors. In fact,
we show that the worse the description of the P-wave states, the better the predictions in nuclear structure.
Thus, these potentials cannot be seen as the solution to the outstanding problems in current microscopic nuclear
structure physics.
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I. INTRODUCTION

One of the most fundamental aims in theoretical nuclear
physics is to understand nuclear structure and reactions in
terms of the basic forces between nucleons. As discussed in
numerous review papers [1–5], the nuclear physics commu-
nity presently perceives chiral effective-field-theory (EFT) as
the authoritative paradigm for the derivation of those forces.
This perception is based upon a clearly defined relationship
between the fundamental theory of strong interactions, QCD,
and chiral EFT via symmetries.

For a while, it has been well established that predictive
nuclear structure must include three-nucleon forces (3NFs),
besides the usual two-nucleon force (2NF) contribution. The
advantage of chiral EFT is that it generates 2NFs and mult-
inucleon forces simultaneously and on an equal footing. In
the �-less theory [1], 3NFs occur for the first time at next-to-
next-to-leading order (NNLO) and continue to have additional
contributions in higher orders. Four-nucleon forces (4NFs)
start at next-to-next-to-next-to-leading order (N3LO), but are
difficult to implement, which is why they are left out in most
present-day calculations. If an explicit � isobar is included
in chiral EFT (�-full theory [6–9]), then 3NF contributions
start already at next-to-leading order (NLO), which leads to
a smoother convergence when advancing from leading order
(LO) to NNLO. However, summing up all contributions up to
NNLO leads to very similar results for both versions of the
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theory [9]. The convergence of both theories beyond NNLO
is expected to be very similar.

In the initial phase, the 3NFs were typically adjusted in
A = 3 and/or the A = 4 systems and the ab initio calculations
were driven up to the oxygen region [10]. It turned out that
for A < ∼16 the ground-state energies and radii are predicted
about right, no matter what type of chiral or phenomenolog-
ical potentials were applied (local, nonlocal, soft, hard, etc.)
and what the details of the 3NF adjustments to few-body
systems were [10–13]. It may be suggestive to perceive the
α substructure of 16O to be part of the explanation.

The picture changed when the many-body practitioners
were able to move up to medium-mass nuclei (e.g., the
calcium or even the tin regions). Large variations of the pre-
dictions now occurred depending on what forces were used,
and cases of severe underbinding [14] as well as of substantial
overbinding [15] were observed. Ever since the nuclear struc-
ture community has understood that the ab initio explanation
of intermediate and heavy nuclei is a severe, still unsolved,
problem.

A seemingly successful interaction for the intermediate
mass region appears to be the force that is commonly denoted
by “1.8/2.0(EM)” (sometimes dubbed “the magic force”)
[16,17], which is a similarity renormalization group (SRG)
evolved version of the N3LO 2NF of Ref. [18] complemented
by a NNLO 3NF adjusted to the triton binding energy and the
point charge radius of 4He. With this force, the ground-state
energies all the way up to the tin isotopes are reproduced
perfectly—but with charge radii being on the smaller side
[19,20]. Nuclear matter saturation is also reproduced reason-
ably well, with a slightly too high saturation density [16].
However, these calculations are not consistently ab initio,
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because the 2NF of 1.8/2.0(EM) is SRG evolved, while the
3NF is not. Moreover, the SRG evolved 2NF is used like an
original force with the induced 3NFs omitted. Still, this force
is providing clues for how to get the intermediate and heavy
mass region right.

Thus, in the followup, there have been attempts to get the
medium-mass nuclei under control by means of more consis-
tent ab initio calculations [21]. Of the various efforts, we will
now single out three, which demonstrate in more detail what
the problems are.

In Ref. [22], recently developed soft chiral 2NFs [23] at
NNLO and N3LO were picked up and complemented with
3NFs at NNLO and N3LO, respectively, to fit the triton bind-
ing energy and nuclear matter saturation. These forces were
then applied in in-medium similarity renormalization group
(IM-SRG [24]) calculations of finite nuclei up to 68Ni predict-
ing underbinding and slightly too large radii [25].

In a separate study [26], the same 2NFs used in
Refs. [22,25] were employed, but with the 3NFs now adjusted
to the triton and 16O ground-state energies. The interactions
so obtained reproduce accurately experimental energies and
point-proton radii of nuclei up to 78Ni [26]. However, when
the 2NF plus 3NF combinations of Ref. [26] are utilized in
nuclear matter, then dramatic overbinding and no saturation
at reasonable densities is obtained [27].

Obviously, there is a problem with achieving simultane-
ously reasonable results for nuclear matter and medium mass
nuclei: In Refs. [22,25], nuclear matter is saturated right, but
nuclei are underbound; while in Ref. [26], nuclei are bound
accurately, but nuclear matter is overbound.

In recent work by the Gőteborg-Oak Ridge (GO) group
[28,29], the authors present an NNLO model including �

isobars that apparently overcomes the above problem. With
this model, the authors obtain “accurate binding energies and
radii for a range of nuclei from A = 16 to A = 132, and
provide accurate equations of state for nuclear matter” [29].
However, the accuracy of the NN part of these interactions is
not checked against NN data. Another aspect of interest (not
investigated in Refs. [28,29]) is if the inclusion of � degrees
of freedom leads to a higher degree of softness. Note that the
successful magic 1.8/2.0 (EM) potential is very soft since it
is SRG evolved. Moreover, a recent study [30], which investi-
gated the essential elements of nuclear binding using nuclear
lattice simulations, has come to the conclusion that proper
nuclear matter saturation requires a considerable amount of
nonlocality in the NN interaction implying a high degree of
softness.

Thus, there is a need for a deeper understanding of the ele-
ments in the recent model by the GO group [28,29], and how
they come together to produce the reported nuclear structure
predictions. To gain this deeper insight, we will investigate the
following issues:

(i) What are the precision and accuracy of the �-full NN
potentials developed in Ref. [29]? In the context of
chiral EFT, this amounts to asking whether the pre-
cision of the �-full potentials is consistent with the
uncertainty of the chiral order at which they have been
derived. And, is the accuracy sufficient for meaning-
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FIG. 1. Chiral 2NF without and with �-isobar degrees of free-
dom. Arrows indicate the shift of strength when explicit �’s are
added to the theory. Note that the �-full theory consists of the
diagrams involving �’s plus the �-less ones. Solid lines represent
nucleons, double lines � isobars, and dashed lines pions. Small dots,
large solid dots, solid squares, and diamonds denote vertices of index
δi = 0, 1, 2, and 4, respectively. �b denotes the breakdown scale.
Further explanations are given in the text.

ful ab initio predictions? If there are problems with
precision and/or accuracy, how does that impact the
predictions for nuclear many-body systems?

(ii) Does the inclusion of � isobars increase the smooth-
ness of the interaction and, if so, how does the �

degree of freedom accomplish that?

This paper is organized as follows In Sec. II, we investigate
NN potentials based upon �-full chiral EFT which, in Sec. III,
are applied in nuclear matter. Our conclusions are summarized
in Sec. IV.

II. CHIRAL TWO-NUCLEON FORCES
INCLUDING � ISOBARS

A. Definition of NN potentials

We focus on NN potentials at NNLO of the �-full theory,
which—following the notation introduced in Ref. [29]—will
be denoted by “�NNLO.” The diagrams to consider are dis-
played in Fig. 1. For illustrative purposes, the figure includes
also the graphs that occur at N3LO. The powers that are
associated with the various orders are calculated as follows.
For a connected diagram of NN scattering, the power is given
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TABLE I. Hadron masses [31] and pion low-energy constants
[32,33] used throughout this work.

Quantity Value

Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV
�-isobar mass M� 1232 MeV
� ≡ M� − M̄N 293.0817 MeV
Nucleon axial coupling constant gA 1.289
πN� axial coupling constant hA 1.400
Pion-decay constant fπ 92.2 MeV
c1 −0.74 GeV−1

c2 −0.49 GeV−1

c3 −0.65 GeV−1

c4 +0.96 GeV−1

by [1]

ν = 2L +
∑

i

δi, (2.1)

with vertex index

δi ≡ di + fi

2
− 2, (2.2)

where L denotes the number of loops. Moreover, for each
vertex i, di is the number of derivatives or pion-mass insertions
and fi the number of fermion fields. The sum runs over all
vertices i contained in the diagram under consideration. The
mathematical expressions defining the potentials are given in
the Appendixes.

We list the constants involved in the long-range parts of
the potentials (cf. Appendix A) in Table I. These constants
have the same values as used in Ref. [29]. The πN LECs are
from the πN analysis by Siemens et al. [32], in which the

(redundant) subleading πN� couplings proportional to b3 and
b6 (b8 in the notation of Refs. [9,34]) are removed by means
of a redefinition (renormalization) of the leading-order πN�

axial coupling hA and the subleading ππNN couplings ci (i =
1, 2, 3, 4) [33]. The constants that parametrize the short-range
parts of the potentials (NN contact terms, cf. Appendix B) are
shown in Table II.

B. Predictions for two-nucleon scattering

We will present the predictions that can be made within the
�NNLO model in two steps. First, we will show the results
obtained by the Gőteborg-Oak Ridge (GO) group. In a second
step, we will generate further fits of the NN data within the
�NNLO model.

1. Predictions by the GO models

In Ref. [29], the GO group presented two �NNLO
models, which—following the GO notation—are marked by
�NNLO(450)GO and �NNLO(394)GO, where the parenthet-
ical number denotes the value for the cutoff � in units of MeV
used in the regulator function, Eq. (A6). Note that all models
discussed in this paper share the same basic parameters shown
in Table I; the models differ only by the contact term LECs
displayed in Table II (and SFR and regulator parameters, see
Appendixes A 2 and C 2, respectively). The LECs listed in
columns �NNLO(450)GO and �NNLO(394)GO of Table II
are from Ref. [29].

In Fig. 2, we display the phase parameters for neutron-
proton scattering as predicted by the GO models [solid red line
�NNLO(450)GO, dashed red �NNLO(394)GO] and compare
them with two authoritative phase-shift analyses, namely, the
Nijmegen [35] and the Granada [36] np analyses. It is clearly
seen that, above around 100 MeV laboratory energy, the pre-
dictions deviate substantially from the analyses in most cases.

Even though it is not uncommon to use phase shifts to
provide a qualitative overview, a more precise measure for
the accuracy and precision of predictions is obtained from a
direct comparison with the NN data. It is customary to state

TABLE II. Partial-wave contact LECs for the NN potentials discussed in this paper. The C̃i of the zeroth-order partial-wave contact terms
defined in Eq. (B2) are in units of 104 GeV−2 and the Ci, Eq. (B4), in 104 GeV−4. For SFR and regulator parameters, see Appendixes A 2 and
C 2, respectively.

LEC �NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf

C̃ (pp)
1S0

–0.339111 –0.338142 –0.326970 –0.327058

C̃ (nn)
1S0

–0.339887 –0.338746 –0.3274139 –0.32747485

C̃ (np)
1S0

–0.340114 –0.339250 –0.32778548 –0.32798615

C̃3S1
–0.253950 –0.259839 –0.22116035 –0.23998011

C1S0
2.526636 2.505389 2.238414 2.180000

C3S1
0.964990 1.002189 0.760000 0.870000

C3S1−3D1
0.445743 0.452523 0.370000 0.435000

C1P1
–0.219498 –0.387960 0.027506 0.027506

C3P0
0.671908 0.700499 0.858000 0.892000

C3P1
–0.915398 –0.964856 –0.843000 –0.843000

C3P2
–0.895405 –0.883122 –0.740000 –0.755000
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FIG. 2. Neutron-proton phase parameters as predicted by the Gőteborg-Oak Ridge (GO) potentials [29] [solid red line �NNLO(450)GO,
dashed red �NNLO(394)GO] and by our refit (Rf) potentials [solid blue line �NNLO(450)Rf , dashed blue �NNLO(394)Rf ]. Partial waves
and mixing parameters with total angular momentum J � 2 are displayed for laboratory energies up to 200 MeV. The filled and open circles
represent the results from the Nijmegen [35] and the Granada [36] np phase-shift analyses, respectively.

the result of such comparison in terms of the χ2, which is
obtained as outlined below.

The experimental data are broken up into groups (sets)
of data, A, with NA data points and an experimental over-
all normalization uncertainty �nexp

A . For datum i, xexp
i is the

experimental value, �xexp
i the experimental uncertainty, and

xmod
i the model prediction. When fitting the data of group A by

a model (or a phase shift solution), the overall normalization,
nmod

A , is floated and finally chosen such as to minimize the χ2

for this group. The χ2 is then calculated from [37]

χ2 =
∑

A

{
NA∑
i=1

[
nmod

A xmod
i − xexp

i

�xexp
i

]2

+
[

nmod
A − 1

�nexp
A

]2
}

;

(2.3)
that is, the overall normalization of a group is treated as an
additional datum. For groups of data without normalization

uncertainty (�nexp
A = 0), nmod

A = 1 is used and the second term
on the right-hand side (r.h.s). of Eq. (2.3) is dropped. The total
number of data is

Ndat = Nobs + Nne, (2.4)

where Nobs denotes the total number of measured data points
(observables), i.e., Nobs = ∑

A NA and Nne is the number of
experimental normalization uncertainties. We state results in
terms of χ2/Ndat ≡ χ2/datum, where we use, in general, for
the experimental data the 2016 NN base, which is defined in
Ref. [23].

In Table III, we show the χ2/datum for the two
Gőteborg-Oak Ridge potentials, �NNLO(450)GO and
�NNLO(394)GO, for pp scattering, np scattering, and a
combination of both for the laboratory energy intervals
0–100 and 0–200 MeV. In the case of the �NNLO(450)GO
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TABLE III. χ 2/datum for the reproduction of the NN data by the Gőteborg-Oak Ridge (GO) potentials and by our refit (Rf) potentials.
The Hamada-Johnston potential [38] is included for comparison.

Hamada-Johnston
Potential

Bin (MeV) of 1962 [38–40] �NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf

proton-proton
0–100 19.6 60.7 34.3 2.07 1.87
0–200 13.8 46.3 39.7 5.39 10.7

neutron-proton
0–100 5.87 8.58 1.27 1.20
0–200 14.2 26.2 2.23 9.60

pp plus np
0–100 28.8 19.3 1.59 1.47
0–200 29.6 32.6 3.71 10.1

potential, the overall χ2/datum for pp plus np is about 30
for all intervals considered, while for �NNLO(394)GO the
χ2/datum lies around 20–30. The pp χ2 for the interval
0–100 MeV is particularly concerning, because one should
expect lower χ2 for lower energies, whereas, in the case
of �NNLO(450)GO, the interval of lowest energy has the
highest χ2. The reason for this anomaly can be traced to the
P-wave phase shifts around 50 MeV (cf. Table VI and Fig. 4,
below) which—as we will demonstrate in Sec. III—have a
dramatic impact on nuclear matter predictions. Notice that
problems at low energies cannot be well identified from
global phase-shift plots (cf. Fig. 2), which corroborates the
limited value of phase-shift figures and underscores the
importance of the χ2 for the fit of the experimental data.

To put the aforementioned χ2 values into perspective,
we include in Table III the pp χ2 of the first semiquan-
titative NN potential constructed in the history of nuclear
forces: the Hamada-Johnston potential of 1962 [38]. This
old-timer yields a pp χ2/datum of 13.8 for the interval 0–183
MeV [38–40]. Thus, the χ2/datum of 46.3 produced by the
�NNLO(450)GO potential is more than three times larger
than the one of the 60-year-old potential. In fact, none of the
historical NN potentials listed in Table II of Ref. [40] has a
χ2 as large as the one of the GO potentials of 2020. Clearly,
this is problematic, especially considering that high precision
is becoming an increasingly important feature for current ad-
vances and goals in ab initio nuclear structure physics [41].

In addition to the above historical perspective, it is impor-
tant to convey some clear physics arguments. Contemporary
NN potentials developed within the well-defined framework
of an EFT must satisfy specific criteria. The EFT is orga-
nized order by order with an appropriate expansion parameter
and, consequently, the precision of the predictions can be
estimated—being dictated by the truncation error at the order
under consideration.

The expansion parameter Q is given by [42]

Q = max
{mπ

�b
,

p

�b

}
, (2.5)

where p is the characteristic center-of-mass (cms) momentum
scale and �b the so-called breakdown scale for which we
choose a value of 700 MeV, consistent with the investigations

of Ref. [43]. The truncation error at NNLO is then determined
to be [42]

�XNNLO(p) = max{Q4 × |XLO(p)|, Q2 × |XLO(p)

− XNLO(p)|, Q × |XNLO(p) − XNNLO(p)|},
(2.6)

where XNNLO(p) denotes the NNLO prediction for observ-
able X (p), etc.. Since, in the �-full theory, the difference
between NLO and NNLO is very small, the third term in
the curly bracket is most likely not the maximum. Concern-
ing the remaining two terms, let us start with the first term,
Q4 × |XLO(p)|. Assuming that |XLO(p)| is of the size of the ob-
servable under consideration, then Q4 represents the (relative)
truncation error suggested by the first term. Since Q is mo-
mentum dependent, let us consider two energy ranges: A low
energy range (≈0–100 MeV) where Q = mπ/�b = 0.2 and
an intermediate energy range (≈100–200 MeV) around a lab.
energy of 150 MeV (p = 265 MeV/c) implying Q = p/�b =
0.4. For these two energy ranges, we have Q4 ≈ 0.002 and
0.03; or 0.2% and 3%, respectively. When calculating error
estimates for the phase shifts shown in Table VI, below, we
made the experience that the second term in the curly bracket
of Eq. (2.6), namely the Q2 × |XLO(p) − XNLO(p)| term, is in
general the largest one and as a rule of thumb about twice the
Q4 term. Therefore, to be on the conservative side, we double
the naive estimates and assume truncation errors of 0.4% and
6% for the laboratory energy intervals 0–100 and 100–200
MeV, respectively.

To make connection with the χ2 formula, Eq. (2.3),
one may identify �XNNLO(p) ≈ |(nmod

A xmod
i − xexp

i )/xexp
i | for

pieces of data xexp
i in the energy range characterized by the

cms momentum p. Thus, to estimate the χ2, one needs an idea
of how the truncation error compares to typical experimental
errors.

Going over the comprehensive pp data base of Ref. [44]
reveals that, for low energies, experimental errors around
0.2–0.4 % are not uncommon. At intermediate energies, the
experimental errors move up to typically 2–4 % for the pp as
well as the np data [35,44]. Thus, χ2/datum around 1–2 for
low energies and around 2–5 for the higher-energy interval are
consistent with the estimated truncation error at NNLO. More
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TABLE IV. Scattering lengths (a) and effective ranges (r) in units of fm as predicted by the Gőteborg-Oak Ridge (GO) potentials and by
our refit (Rf) potentials. (aC

pp and rC
pp refer to the pp parameters in the presence of the Coulomb force. aN and rN denote parameters determined

from the nuclear force only and with all electromagnetic effects omitted.)

�NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf Empirical

1SS

aC
pp –7.8929 –7.8190 –7.8153 –7.8150 –7.8196(26) [37]

–7.8149(29) [46]
rC

pp 2.870 2.865 2.761 2.732 2.790(14) [37]
2.769(14) [46]

aN
pp –17.670 –17.377 –17.824 –17.901

rN
pp 2.953 2.944 2.821 2.791

aN
nn –19.382 –18.723 –18.950 –18.950 –18.95(40) [47,48]

rN
nn 2.919 2.916 2.800 2.772 2.75(11) [49]

anp –23.560 –23.504 –23.738 –23.738 –23.740(20) [50]
rnp 2.813 2.797 2.686 2.661 [2.77(5)] [50]

3SS

at 5.458 5.463 5.422 5.418 5.419(7) [50]
rt 1.820 1.820 1.757 1.751 1.753(8) [50]

compelling evidence is provided by actual calculations. For
the �-less theory, systematic order-by-order calculations with
minimized χ2 have been conducted in Refs. [23,45]. In the
case of the NNLO potential of Ref. [23], χ2/datum of 1.7 and
3.3 are generated for the intervals 0–100 and 0–190 MeV for
the combined np plus pp data. These results are in line with
our above estimates based upon the truncation error at NNLO,
and indicate that a χ2/datum ≈ 30 is inconsistent with the
precision at NNLO. Low-energy scattering parameters and
deuteron properties are shown in Tables IV and V, respec-
tively, which reveal further inaccuracies in the GO potentials.

Some important phase shifts and their NNLO truncation
uncertainties are displayed in Table VI, from which one must
conclude that the phase-shift predictions by the GO potentials
are off by 40 times the truncation error in some cases.

2. Accurate fits for �NNLO models

In the next step, we have constructed �NNLO models
with improved fits, for the purpose of explicitly checking out
whether, within the �-full theory, we can achieve χ2 that are
consistent with the above estimates and the χ2 obtained in
Ref. [23] for the �-less theory. We have dubbed our refits
�NNLO(450)Rf and �NNLO(394)Rf (where “Rf” stands for

refit). The parameters of the refits are listed in Table II [52]
and the χ2/datum are shown in Table III. The phase shifts are
displayed in Fig. 2 by the blue solid and blue dashed lines.
The conclusion is that, within the �-full theory, fits can be
achieved that are of the same quality as in the �-less theory
and consistent with the truncation error (cf. also Table VI). In
the case of the very soft cutoff of 394 MeV, cutoff artifacts are
obviously showing up already below 200 MeV, which is not
unexpected.

III. NUCLEAR MATTER

The attempts to explain nuclear matter saturation have a
long history [53,54]. The modern view is that the 3NF is
essential to obtain saturation [17,55]. In this scenario, the 2NF
substantially overbinds nuclear matter, while the 3NF contri-
bution is repulsive and strongly density dependent leading to
saturation at the appropriate energy and density [56]. Recent
example can be found in the work of Ref. [22], where chiral
2NFs at NNLO and N3LO are complemented with chiral
3NFs of the corresponding orders to saturate nuclear matter
around its empirical values.

Besides nuclear matter, there is also the problem of
the binding energies of intermediate-mass nuclei. When the

TABLE V. Deuteron properties as predicted by the NN potentials of this study. (Binding energy Bd , asymptotic S state AS , asymptotic
D/S state η, structure radius rstr , quadrupole moment Q, D-state probability PD; the predicted rstr and Q are without meson-exchange current
contributions and relativistic corrections.)

�NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf Empiricala

Bd (MeV) 2.233403 2.227450 2.224575 2.224575 2.224575(9)
AS (fm−1/2) 0.8954 0.8943 0.8856 0.8849 0.8846(9)
η 0.0253 0.0254 0.0257 0.0256 0.0256(4)
rstr (fm) 1.986 1.988 1.969 1.969 1.97507(78)
Q (fm2) 0.268 0.267 0.272 0.267 0.2859(3)
PD (%) 3.12 2.97 4.16 3.49 –

aSee Table XVIII of Ref. [50] for references; the empirical value for rstr is from Ref. [51].

054001-6



NUCLEON-NUCLEON POTENTIALS FROM �-FULL … PHYSICAL REVIEW C 104, 054001 (2021)

TABLE VI. np phase parameters, δ (in degrees), for selected states and laboratory energies, Tlab, as predicted by the Gőteborg-Oak Ridge
(GO) potentials and by our refit (Rf) potentials, for which nuclear matter predictions are shown in Table VII. Empirical values are the averages
of the Nijmegen [35] and the Granada [36] analyses. �δ is the magnitude of the difference between a prediction and the empirical value.
�δNNLO denotes the theoretical uncertainty calculated according to Eq. (2.6) [57].

�NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf

State Tlab
MeV Empirical δ �δ

�δNNLO
δ �δ

�δNNLO
δ �δ

�δNNLO
δ �δ

�δNNLO
�δNNLO

1P1 50 –9.67(5) –8.07 22.9 –6.56 44.4 –9.65 0.3 –9.81 2.0 0.07
3P0 50 11.00(5) 13.07 2.8 12.37 1.8 11.30 0.4 10.80 0.3 0.75
3P2 50 5.95(1) 7.68 7.5 7.29 5.8 6.01 0.3 6.07 0.5 0.23
3S1 50 62.47 (6) 59.00 9.1 59.00 9.1 62.79 0.9 63.19 1.9 0.38
ε1 150 2.84(7) 0.78 5.3 0.59 5.8 2.60 0.6 2.96 0.3 0.39

2NF+3NF combinations of Ref. [22] were applied in IM-
SRG calculations of finite nuclei up to the nickel isotopes,
underbinding of the ground-state energies was obtained [25].
On the other hand, also in Ref. [16], 2NF+3NF combinations
were developed; in particular, the force known as 1.8/2.0
(EM) or magic, which saturates nuclear matter properly and
reproduces the ground-state energies of nuclei up to the tin
region correctly [19,20].

What is the difference between the two cases? As it turns
out the crucial difference between the two cases is to be found
in the 2NF part of the forces. We demonstrate this in Fig. 3,
where we show the 2NF contribution to nuclear matter from
the 1.8/2.0 (EM) force (denoted by magic, solid green line).
On the other hand, the 2NF contribution to nuclear matter
from the 2NFs applied in Ref. [25] are located within the
shaded band in Fig. 3. Even though in both cases nuclear mat-
ter is overbound, magic overbinds considerable more than the
NNLO and N3LO forces from Ref. [23] applied in Ref. [25]
to intermediate-mass nuclei. This shows that a considerable
overbinding of nuclear matter by the 2NF is necessary to
correctly bind intermediate-mass nuclei [27], when 3NFs at
NNLO are applied.
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ρ (fm )
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394GO   

450Rf   
394Rf   

FIG. 3. Energy per nucleon in symmetric nuclear matter, E , as a
function of density, ρ, as generated by some two-body forces. Nota-
tion for the �NNLO potentials as in Fig. 2. Magic (solid green line)
refers to the 1.8/2.0 (EM) potential of Ref. [16]. The shaded band
includes the theoretical uncertainties associated with the predictions
by the Rf potentials (blue lines) [57]. Note that this shaded band also
covers the predictions by the �-less NNLO and N3LO potentials of
Ref. [23] applied in Ref. [25] to intermediate-mass nuclei. The gray
box outlines the area where nuclear saturation is expected to occur.

Next, we turn to the nuclear matter properties as pre-
dicted by the �-full 2NFs discussed in this paper. We
apply the particle-particle ladder approximation [Brueckner-
Hartree-Fock (BHF)] for nuclear matter. We have compared
our nuclear matter results for the magic 2NF with the results
obtained in Ref. [16] where many-body perturbation theory
(MBPT) is used and obtain the same within ±0.5 MeV for
all densities displayed in Ref. [16]. Moreover, we have also
compared our BHF results with the MBPT calculations of
Ref. [22] (for the � = 450 MeV potentials) achieving a sim-
ilar agreement. From this we conclude that our BHF method
for nuclear matter is as reliable as the presently more popular
MBPT method for soft potentials.

The predictions by the original GO potentials,
�NNLO(450)GO and �NNLO(394)GO, are shown in Fig. 3
by the red solid and dashed curves, respectively. These
predictions are right on the magic curve, which explains the
results of the GO potentials for nuclei up to A = 132 [29],
similar to what happens with magic [19,20].

On the other hand, in the previous section we have iden-
tified serious problems with the accuracy of the GO NN
potentials. For that reason, in Sec. II B 2 we refitted these
potentials, generating the Rf versions �NNLO(450)Rf and
�NNLO(394)Rf , which are as accurate as expected at NNLO.
The nuclear matter predictions by the Rf potentials are shown
by the blue solid and dashed curves in Fig. 3, together with
their theoretical uncertainties represented by the shaded band.
It is seen that the refitted potentials are less attractive than the
original GO versions. In fact, their nuclear matter properties
are very similar to the ones of the 2NFs used in Ref. [25] and,
thus, they will most likely not produce the same results as the
original GO potentials and, rather, produce underbinding in
intermediate-mass nuclei.

The question we wish to address is then why, after refit
to proper accuracy, the �NNLO potentials lost attraction. As
discussed, the main issues with the GO potentials are found
in the P waves at low energy. We demonstrate this in Fig 4,
where we show, for the three most important P waves, the
phase shifts below 100 MeV as predicted by the original GO
potentials (red lines) and the refit versions in comparison with
authoritative phase-shift analyses.

To further quantify the discrepancies, we provide in
Table VI numerical values for np phase shifts at 50 MeV
laboratory energy for the three P waves of interest as predicted
by the original GO potentials, the refit potentials, and the
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FIG. 4. Neutron-proton phase shifts below 100 MeV for three critical P waves. Notation as in Fig. 2.

phase-shift analyses (empirical). We also provide the NNLO
truncation error for the phase shifts, �δNNLO [57], and state
the discrepancies in the fits, �δ, in terms of multiples of
the truncation errors, �δ/�δNNLO. For the GO potentials, the
discrepancies are on average about ten truncation errors, and
can be as large as 44 truncation errors. For the refit potentials,
the discrepancies are typically around one truncation error
or less, as expected for a properly converging EFT, whose
predictions at each order should agree with experiment within
the theoretical uncertainty (truncation error) at the given order.

Next, we will explore the impact on nuclear matter from
discrepancies in the fit of NN lower partial waves. To in-
vestigate this aspect, we show in Table VII the contributions
to the nuclear matter energy around saturation density from
distinct partial-wave states. We provide results for the original
GO potentials as well as the refit potentials and the magic
potential. Of particular interest are the three P waves that we
singled out in Table VI and Fig. 4. It is seen that, for all three
P waves, the contributions from the GO potentials are sub-
stantially more attractive than for the other cases. Recalling
that, as demonstrated in Fig. 4 and Table VI, all GO potentials
overpredict the empirical phase shifts, the increased attraction
they generate is not surprising. Thus, while accurately fitted
potentials obtain about –7.3 MeV from the three P waves,

the GO potentials produce about –10.3 MeV, that is 3 MeV
more binding energy per particle. Naturally, this is not a viable
source for the additional attraction needed in nuclear structure.

The remaining extra attraction by the GO potentials comes
from the 3S1 state, and is on average ≈1.5 MeV as compared
to the corresponding Rf potentials. This additional gain in
binding energy is, again, linked to unsatisfactory description
of phase parameters, in this case the ε1 mixing parameter,
cf. the ε1 frame in Fig. 2. The explanation of this effect is
somewhat involved. Note that the ε1 parameter is proportional
to the strength of the nuclear tensor force. For states in which
the tensor force has a dominant role (such as the 3S1–3D1–ε1

system), the T̂ matrix, Eq. (C4), is approximately given by:

T̂ ( �p′, �p) ≈ V̂C ( �p′, �p) +
∫

d3 p′′ V̂T ( �p′, �p′′)

× MN

p2 − p′′2 + iε
V̂T ( �p′′, �p), (3.1)

where V̂C denotes the central force and V̂T the tensor force.
The on-shell T̂ matrix is related to the phase shifts (and
observables) of NN scattering. Thus, potentials that fit the
same phase shifts produce the same on-shell T̂ -matrix ele-
ments. However, that does not imply that the potentials are

TABLE VII. Energy contributions per nucleon to symmetric nuclear matter from two-body forces at a density equivalent to a Fermi
momentum kF = 1.35 fm−1 as obtained in the nonperturbative particle-particle ladder approximation. The Gőteborg-Oak Ridge (GO) NN
potentials and our refit (Rf) potentials are applied. Moreover, magic refers to the 1.8/2.0 (EM) NN potential of Ref. [16]. U represents the
total potential energy per nucleon, T the kinetic energy, and E the total energy per nucleon, E = T + U . U (...) denotes the potential energy
contribution per nucleon from a particular partial-wave state. All entries are in units of MeV.

Magic �NNLO(450)GO �NNLO(394)GO �NNLO(450)Rf �NNLO(394)Rf

U (1P1) 3.71 2.93 2.29 3.71 3.74
U (3P0) –3.21 –3.71 –3.56 –3.30 –3.21
U (3P2) –7.81 –9.49 –9.15 –7.62 –7.79
U (1P1) + U (3P0) + U (3P2) –7.31 –10.27 –10.42 –7.21 –7.26
U (3S1) –27.07 –24.35 –24.61 –22.55 –23.55
U –47.63 –47.11 –47.56 –42.25 –43.11
T 22.67 22.67 22.67 22.67 22.67
E –24.96 –24.43 –24.88 –19.57 –20.43
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the same. As evident from the above equation, the T̂ matrix
is essentially the sum of two terms: the central force term, V̂C ,
and the second order in V̂T . A potential with a strong V̂T will
produce a large (attractive) second-order term and, hence, go
along with a weaker (attractive) central force; as compared to
a weak tensor force potential, where the lack of attraction by
the second-order term has to be compensated by a stronger
(attractive) central force.

Now, when we enter nuclear matter, we encounter particle-
particle ladder graphs represented by the Ĝ matrix:

Ĝ( �p′, �p) = V̂ ( �p′, �p) +
∫

d3 p′′ V̂ ( �p′, �p′′)
M�

N QP

p2 − p′′2 Ĝ( �p′′, �p),

(3.2)
which—similarly to what happened above to the T̂ matrix—
for states where the tensor force rules, can be approximated
by:

Ĝ( �p′, �p) ≈ V̂C ( �p′, �p)+
∫

d3 p′′ V̂T ( �p′, �p′′)
M�

N QP

p2 − p′′2 V̂T ( �p′′, �p).

(3.3)
The Ĝ-matrix equation differs from the T̂ -matrix equation
in two ways: First, the Pauli projector, QP, which prevents
scattering into occupied states and, thus, cuts out the low-
momentum spectrum. Second, the single-particle spectrum
in nuclear matter, which enhances the energy denominator,
thereby decreasing the integrand. Using a simple parametriza-
tion of the single-particle energies in nuclear matter, this effect
comes down to simply replacing the free nucleon mass, MN ,
by the effective mass M�

N < MN .
Both medium effects reduce the size of the (attractive)

integral term and, thus, are repulsive. The larger VT and the
second-order VT term, the larger the repulsive effects. Thus,
large tensor force potentials undergo a larger reduction of
attraction from these medium effects than weak tensor force
potentials. This explains the well-known fact that NN poten-
tials with a weaker tensor force yield more attractive results
when applied in nuclear few- and many-body systems as
compared to their strong tensor force counterparts.

The GO potentials have a very weak tensor force, which
explains their relatively large 3S1 contribution (cf. Table VII).
In fact, the tensor force is excessively weak, as can be inferred
from the underpredicted ε1 parameter (cf. Fig. 2). To agree
with the empirical information within the truncation error,
the tensor force has to be stronger, as in the case of the Rf
potentials, leading to less binding energy in nuclear matter.

At this point of our discussion, a word is in place about
what laboratory energies of NN scattering are most relevant
for predictions in many-body systems. In P waves, about 95%
of the contributions to the Ĝ matrix, Eq. (3.2), comes from
the Born term. In the sum of the energy contributions from
zero to the Fermi momentum kF , the average relative momen-
tum is p̄ = √

0.3 kF which, for kF = 1.35 fm−1, yields p̄ =
146 MeV/c, equivalent to Tlab = 45 MeV. Thus, for P waves,
the phase shifts around Tlab = 50 MeV are most relevant for
nuclear matter predictions at saturation density. This fact is
particularly evident from the 3P0 phase shifts shown in Fig. 4.
In this figure, it is clearly seen that the phase shift predictions
around 50 MeV by the GO potentials are substantially too

large, meaning too attractive. On the other hand, the 3P0 phase
shifts above 100 MeV by the same potentials (cf. Fig. 2) are
too low, implying too repulsive. But from Table VII we know
that the GO potentials generate a 3P0 contribution that is too
attractive. The conclusion then is that phase shifts below 100
MeV are the most relevant ones for many-body predictions at
normal densities—the reason why we chose Tlab = 50 MeV
for the discussion of P-wave phase shift in Table VI.

The story is different for states where the tensor force
plays a dominant role, as in the coupled 3S1–3D1–ε1 system,
where the integral term in Eq. (3.3) makes a large contribution.
Note that the integration extends from around kF (due to
Pauli blocking) to the cutoff region of the potential. Thus,
the relative momenta involved are p > ∼kF , equivalent to
Tlab > ∼150 MeV for kF = 1.35 fm−1, which explains why
the ε1 mixing parameter needs to be considered for energies
of 150 MeV or even higher (cf. Table VI).

Finally, a comment on the many-body predictions by magic
is in order. As seen in Table VII, the P-wave contributions
from magic are essentially the same as the ones from the prop-
erly fitted Rf potentials, namely, –7.31 MeV from the three P
waves of special interest. What sets the magic potential apart
from all the others is the exceptionally large 3S1 contribution;
note that the ε1 predictions by magic are identical to the ones
by the N3LO potential of Ref. [18], which are right on the data
up 300 MeV. The extraordinarily nonlocal nature of magic due
to its similarity renormalization group (SRG) evolution is the
source of the additional attraction that shows up in nuclear
structure. This has the consequence that the second-order VT

term in Eq. (3.3) is unusually small and, consequently, the
central force, VC , unusually large and attractive, giving rise
to the very large, attractive 3S1 contribution by magic. This
degree of nonlocality can, presently, not be achieved by any
original chiral potential, no matter if �-full or �-less and,
therefore, these potentials cannot generate 3S1 contributions
as large as the magic one. Making up for this by incorrect,
extra-attractive P waves is not a valid solution.

To summarize, when the three P waves and the ε1 param-
eter of the GO potentials are corrected to obtain a realistic
fit, the favorable predictions for intermediate-mass nuclei are
very likely to disappear, as did the extra attraction in nuclear
matter.

IV. CONCLUSIONS

We have closely investigated chiral NN potentials at
NNLO including �-isobar degrees of freedom and have come
to the following conclusions:

(i) The �-full NN potentials at NNLO constructed by
the Gőteborg-Oak Ridge (GO) group [29] are up to
40 times outside the theoretical error of chiral EFT at
NNLO and are, therefore, inconsistent with the EFT
that the potentials are intended to be based upon. In
line with this fact, these potentials reproduce the NN
data with a very large χ2. This is unacceptable based
on contemporary precision standards.

(ii) The predictions by the GO NN potentials for the en-
ergy per nucleon in nuclear matter are very attractive,
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similar to the predictions by the 1.8/2.0 (EM) NN
potential of Ref. [16], also known as magic. The ex-
tremely attractive nature of both the GO and the magic
potentials is the reason for the favorable reproduction
of the energies (and radii) of intermediate-mass nu-
clei, which have proven to be a problem in ab initio
nuclear structure physics. However, the extra attrac-
tion in the GO potentials, which brings them to the
level of magic, can be traced to incorrect P-wave and
ε1-mixing parameters.

(iii) When all phase parameters, including the P-wave and
the ε1-mixing parameters, are fitted within the NNLO
truncation error, then the extra attraction disappears
and the nuclear matter predictions become very sim-
ilar to the ones by NN potentials constructed within
the �-less theory. Thus, we find claims that �-full
potentials lead to more attraction in nuclear many-
body systems to be incorrect.

(iv) The extraordinarily attractive nature of magic is due
to its high degree of nonlocality which, in turn, is due
to its SRG construction. This degree of nonlocality
is not achieved by chiral NN potentials, no matter
if �s are included or excluded, because all two-pion
exchange (2PE) contributions in both versions of the
theory are local (at least up to NNLO, see Appendix)
and nonlocality is generated only by the regulator
function, which adds only moderate nonlocality.

(v) The problem with a microscopic description of in-
termediate mass nuclei with realistic chiral nuclear
forces remains, unfortunately, unsolved.
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APPENDIX A: LONG-RANGE POTENTIAL

1. Leading order

At leading order, only one-pion exchange (1PE) con-
tributes to the long range. The charge-independent 1PE is
given by

V (CI)
1π ( �p′, �p) = − g2

A

4 f 2
π

τ1 · τ2
�σ1 · �q �σ2 · �q

q2 + m2
π

, (A1)

where �p ′ and �p denote the final and initial nucleon momenta in
the center-of-mass system, respectively. Moreover, �q = �p ′ −
�p is the momentum transfer, and �σ1,2 and τ1,2 are the spin and
isospin operators of nucleon 1 and 2, respectively. Parameters
gA, fπ , and mπ denote the axial-vector coupling constant,
pion-decay constant, and the pion mass, respectively. See Ta-
ble I for their values. Higher-order corrections to the 1PE are
taken care of by mass and coupling constant renormalizations.
Note also that, on shell, there are no relativistic corrections.
Thus, we apply 1PE in the form Eq. (A1) through all orders.

For the NN potentials considered in this paper, the charge
dependence of the 1PE due to pion-mass splitting is taken
into account. Thus, in proton-proton (pp) and neutron-neutron
(nn) scattering, we actually use

V (pp)
1π ( �p′, �p) = V (nn)

1π ( �p′, �p) = V1π (mπ0 ), (A2)

and in neutron-proton (np) scattering, we apply

V (np)
1π ( �p′, �p) = −V1π (mπ0 ) + (−1)I+1 2V1π (mπ± ), (A3)

where I = 0, 1 denotes the total isospin of the two-nucleon
system and

V1π (mπ ) ≡ − g2
A

4 f 2
π

�σ1 · �q �σ2 · �q
q2 + m2

π

, (A4)

with the exact values for the various pion masses shown in
Table I. In this context, we note that, in the 2PE contributions,
we neglect the charge dependence due to pion-mass splitting
and apply mπ = m̄π (cf. Table I).

2. Next-to-leading order

We will present the contributions from all subleading pion
exchanges in terms of the following template:

V ( �p′, �p) = VC + τ1 · τ2 WC

+ [VS + τ1 · τ2 WS] �σ1 · �σ2

+ [VT + τ1 · τ2 WT ] �σ1 · �q �σ2 · �q. (A5)

Moreover, we regularize the loop contributions from sub-
leading pion exchanges by spectral-function regularization
(SFR) [58] employing a finite �̃ � 2mπ . The purpose of the
finite scale �̃ is to constrain the loop contributions to the
low-momentum region where chiral effective-field-theory is
applicable. Thus, a reasonable choice for �̃ is to keep it below
the masses of the vector mesons ρ(770) and ω(782), but
above the f0(500) [also know as σ (500)] [31]. This suggests
that the region 600–700 MeV is appropriate for �̃. For the
GO potentials [29], �̃ = 700 MeV is used, while, following
Ref. [23], �̃ = 650 MeV is applied for the Rf potentials.

A. �-less contributions

The �-less NN diagrams that occur at NLO (cf. Fig. 1) contribute in the following way [59]:

WC = L(�̃; q)

384π2 f 4
π

[
4m2

π

(
1 + 4g2

A − 5g4
A

) + q2
(
1 + 10g2

A − 23g4
A

) − 48g4
Am4

π

w2

]
, (A6)

VT = − 1

q2
VS = − 3g4

A

64π2 f 4
π

L(�̃; q), (A7)
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where the (regularized) logarithmic loop function is given by:

L(�̃; q) = w

2q
ln

�̃2
(
2m2

π + q2
) − 2m2

πq2 + �̃

√
�̃2 − 4m2

π q w

2m2
π (�̃2 + q2)

(A8)

with w = √
4m2

π + q2.

B. �-full contributions

The �-full diagrams at NLO (cf. Fig. 1) are conveniently subdivided into three groups [8,9]:

(i) � excitation in the triangle graph:

WC = − h2
A

216π2 f 4
π

{(6� − ω2)L(�̃; q) + 12�2�D(�̃; q)}; (A9)

(ii) single � excitation in the box graphs:

VC = − g2
A h2

A

12π f 4
π�

(
2m2

π + q2
)2

A(�̃; q),

WC = − g2
A h2

A

216π2 f 4
π

{(
12�2 − 20m2

π − 11q2)L(�̃; q) + 6�2D(�̃; q)
}
,

VT = − 1

q2
VS = − g2

A h2
A

48π2 f 4
π

{−2L(�̃; q) + (ω2 − 4�2)D(�̃; q)},

WT = − 1

q2
WS = − g2

A h2
A

144π f 4
π�

ω2 A(�̃; q); (A10)

(iii) double � excitation in the box graphs:

VC = − h4
A

27π2 f 4
π

{−4�2L(�̃; q) + �[H (�̃; q) + (� + 8�2)D(�̃; q)]},

WC = − h4
A

486π2 f 4
π

{(12� − ω2)L(�̃; q) + 3�[H (�̃; q) + (8�2 − �)D(�̃; q)]},

VT = − 1

q2
VS = − h4

A

216π2 f 4
π

{6L(�̃; q) + (12�2 − ω2)D(�̃; q)},

WT = − 1

q2
WS = − h4

A

1296π2 f 4
π

{2L(�̃; q) + (4�2 + ω2)D(�̃; q)}; (A11)

where we are using the following functions:

� = 2m2
π + q2 − 2�2,

A(�̃; q) = 1

2q
arctan

q(�̃ − 2mπ )

q2 + 2�̃mπ

,

D(�̃; q) = 1

�

∫ �̃

2mπ

dμ

μ2 + q2
arctan

√
μ2 − 4m2

π

2�
,

H (�̃; q) = 2�

ω2 − 4�2

[
L(�̃; q) − L

(
�̃; 2

√
�2 − m2

π

)]
; (A12)

and � ≡ M� − M̄N the �-nucleon mass difference (Table I). Notice that � is charge-independent to avoid randomly defined
charge dependence.

3. Next-to-next-to-leading order

A. �-less contributions

The �-less NNLO contribution (cf. Fig. 1) is given by [59]:

VC = 3g2
A

16π f 4
π

[
2m2

π (c3 − 2c1) + c3q2](2m2
π + q2)A(�̃; q), (A13)
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WT = − 1

q2
WS = − g2

A

32π f 4
π

c4w
2A(�̃; q). (A14)

B. �-full contributions

The subleading triangle diagram with � excitation (cf. Fig. 1) makes the following contribution [9] (note that we set (b3 +
b8) = 0 [32,33]):

VC = − h2
A �

18π2 f 4
π

{
6�

[
4c1m2

π − 2c2�
2 − c3(2�2 + �)

]
D(�̃; q)

+[−24 c1m2
π + c2 (ω2 − 6�) + 6 c3 (2�2 + �)

]
L(�̃; q)

}
,

WT = − 1

q2
WS = − c4 h2

A �

72π2 f 4
π

{(ω2 − 4�2)D(�̃; q) − 2L(�̃; q)}. (A15)

APPENDIX B: SHORT-RANGE POTENTIAL

1. Zeroth order

The zeroth-order [leading-order (LO)] contact potential is
given by

V (0)
ct ( �p′, �p) = CS + CT �σ1 · �σ2 (B1)

and, in terms of partial waves,

V (0)
ct (1S0) = C̃1S0

= 4π (CS − 3CT )

V (0)
ct (3S1) = C̃3S1

= 4π (CS + CT ). (B2)

To deal with the isospin breaking in the 1S0 state, we treat C̃1S0

in a charge-dependent way. Thus, we will distinguish between
C̃(pp)

1S0
, C̃(np)

1S0
, and C̃(nn)

1S0
.

2. Second order

At second order (NLO), we have

V (2)
ct ( �p′, �p) = C1 q2 + C2 k2

+ (C3 q2 + C4 k2)�σ1 · �σ2

+C5(−i�S · (�q × �k))

+C6 (�σ1 · �q) (�σ2 · �q)

+C7 (�σ1 · �k) (�σ2 · �k), (B3)

where �k = ( �p ′ + �p)/2 denotes the average momentum and
�S = (�σ1 + �σ2)/2 is the total spin. Partial-wave decomposition
yields

V (2)
ct (1S0) = C1S0

(p2 + p′2)

V (2)
ct (3S1) = C3S1

(p2 + p′2)

V (2)
ct (3S1 − 3D1) = C3S1−3D1

p2

V (2)
ct (3D1 − 3S1) = C3S1−3D1

p′2

V (2)
ct (1P1) = C1P1

pp′

V (2)
ct (3P0) = C3P0

pp′

V (2)
ct (3P1) = C3P1

pp′

V (2)
ct (3P2) = C3P2

pp′. (B4)

The relationship between the C(2S+1)LJ
and the Ci can be found

in Ref. [1].

APPENDIX C: DEFINITION OF NONRELATIVISTIC
POTENTIAL

1. Lippmann-Schwinger equation

The potential V is, in principal, an invariant ampli-
tude (with relativity taken into account perturbatively)
and, thus, satisfies a relativistic scattering equation, e.g.,
the Blankenbeclar-Sugar (BbS) equation [60], which reads
explicitly,

T ( �p′, �p) = V ( �p′, �p) +
∫

d3 p′′

(2π )3
V ( �p′, �p′′)

M2
N

Ep′′

× 1

p2 − p′′2 + iε
T ( �p′′, �p) (C1)

with Ep′′ ≡
√

M2
N + p′′2 and MN the nucleon mass. The ad-

vantage of using a relativistic scattering equation is that it
automatically includes relativistic kinematical corrections to
all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( �p′, �p) ≡ 1

(2π )3

√
MN

Ep′
V ( �p′, �p)

√
MN

Ep
(C2)

and

T̂ ( �p′, �p) ≡ 1

(2π )3

√
MN

Ep′
T ( �p′, �p)

√
MN

Ep
, (C3)

where the factor 1/(2π )3 is added for convenience, the BbS
equation collapses into the usual, nonrelativistic Lippmann-
Schwinger (LS) equation,

T̂ ( �p′, �p) = V̂ ( �p′, �p) +
∫

d3 p′′ V̂ ( �p′, �p′′)

× MN

p2 − p′′2 + iε
T̂ ( �p′′, �p). (C4)
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Since V̂ satisfies Eq. (C4), it may be regarded as a nonrel-
ativistic potential. By the same token, T̂ may be considered
as the nonrelativistic T matrix. All technical aspects associ-
ated with the solution of the LS equation can be found in
Appendix A of Ref. [50], including specific formulas for the
calculation of the np and pp phase shifts (with Coulomb).
Additional details concerning the relevant operators and their
decompositions are given in Sec. IV of Ref. [61]. Finally,
computational methods to solve the LS equation are found
in Ref. [62].

2. Regularization

Iteration of V̂ in the LS equation, Eq. (C4), requires cutting
V̂ off for high momenta to avoid infinities. This is consistent
with the fact that chiral EFT is a low-momentum expansion,
which is valid only for momenta Q < �χ ≈ 1 GeV. There-

fore, the potential V̂ is multiplied with the (nonlocal) regulator
function f (p′, p),

V̂ ( �p′, �p) �−→ V̂ ( �p′, �p) f (p′, p) (C5)

with

f (p′, p) = exp[−(p′/�)2n − (p/�)2n]. (C6)

In this work, � is either 450 MeV or 394 MeV. The exponent n
is to be chosen such that the regulator introduces contributions
that are beyond the given order. In the case of the NNLO
potentials of this paper where the given order is three, this
is guaranteed if, for a contribution of order ν, n is fixed such
that 2n + ν > 3. For the GO potentials [29], n = 3 is used for
� = 450 MeV and n = 4 for � = 394 MeV. In the case of the
Rf potentials, we follow Ref. [23] and choose n = 2 for all
contributions, except for V (0)

ct (3S1), V (2)
ct (3P1), and V (2)

ct (3P2)
where n = 3, 3, and 2.5, respectively; and n = 4 for 1PE.
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