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We probe the outcomes of the baryon-quark phase transition in the hybrid neutron star (HNS) structure with the
help of the Gibbs and Maxwell constructions, adopting a semiclassical mean-field (MF) model for the equation
of state (EOS) of baryonic matter based on the Thomas-Fermi (TF) approximation and a nonlocal extension of
the Nambu–Jona-Lasinio (NJL) model for the EOS of the deconfined quark phase. We find that the repulsive
vector contribution of the nonlocal NJL (NNJL) EOS plays an inevitable role in modeling a stable 2M� HNS.
Our results exclude the emergence of the pure quark phase in the inner core of a stable HNS. Within the Gibbs
construction, as the quark vector interaction becomes stronger, the contribution of the baryon-quark coexisting
phase in the total HNS mass is reduced. On the other hand, a stable HNS is not predicted within the Maxwell
construction because it does not include a pure quark core. A comparison is made to the corresponding results
employing the local (standard) NJL (LNJL) model of quark matter. Fulfilling the observational constraints, our
model indicates that a neutron star (NS) with canonical mass of around 1.4M� is not massive enough to be
described as an HNS.
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I. INTRODUCTION

Neutron stars (NSs), which are generally regarded as ex-
tremely compact objects, might be constituted with a core
compressed to densities exceeding several times the nuclear
matter saturation density ρ0 ≈ 0.16 fm−3 [1]. Therefore, the
dense matter composing the interior of NSs could undergo a
baryon-quark phase transition among different exotic phases,
creating hybrid NSs (HNSs). The equation of state (EOS) of
dense matter that uses the deconfined quark phase to describe
the core region of HNSs has been investigated by many au-
thors during the past few decades [2–13]. Terrestrial evidence
supporting the appearance of quark degrees of freedom in
superdense matter can be found in relativistic heavy-ion colli-
sions [14,15]. The Nambu–Jona-Lasinio (NJL) model, which
can successfully reproduce many aspects of quantum chromo-
dynamics (QCD) such as nonperturbative vacuum structure
and dynamical breaking of chiral symmetry [16,17], has been
one of the most efficient models for probing the EOS of
quark matter and therefore the structure of HNSs. Nonlocality
arising from deep analysis of low-energy quark dynamics
has been suggested as an alternative approach for simulating
confinement to improve the standard NJL model (which is
nonconfining [18]) in both nonperturbative and perturbative
regimes [19–21]. Therefore, the EOS of HNS matter using
the nonlocal NJL (NNJL) model can be challenged to fulfill
the stringent constraints placed by the observation of 2M�
pulsars [22–25], the GW170817 event [26–28], as well as
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the in-progress NASA Neutron Star Interior Composition Ex-
plorer (NICER) mission [29,30]. In this work, we study the
HNS structure within the Gibbs and Maxwell constructions,
using the Thomas-Fermi (TF) approximation to describe the
baryonic EOS [31,32] and the SU(3) version of the NNJL
model [33–37] to analyze the three-flavor deconfined quark
phase. The TF approximation, which was first introduced
in atomic physics [38] as a semiclassical mean-field (MF)
approach, can be used in a density functional based model
(phenomenological model) to satisfy the nuclear physics con-
straints on the saturation properties of nuclear matter and
finite nuclei [39,40]. Such baryonic EOSs have been suc-
cessfully used to investigate the thermodynamic properties
of nuclear matter [41–43] and the structure of compact ob-
jects [31,32,44–47]. Based on the considerations mentioned
above, the paper is organized as follows. In Sec. II, we
present the formalism for the EOS of HNS matter using the
TF approximation for baryonic matter and the NNJL model
for quark matter to describe the phase equilibrium between
baryons and quarks via the Gibbs and Maxwell constructions.
In this section, we also provide a discussion of recovering
the local (standard) NJL (LNJL) model from the nonlocal
Lagrangian. Section III is devoted to the investigation into the
properties of HNS matter. Finally, the summary and conclu-
sion are given in Sec. IV.

II. FORMALISM

In this section, we introduce our approach for studying the
baryon-quark phase transition based on the baryonic model of
TF approximation and the quark model of NNJL.
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A. Baryonic model

The baryonic EOS is obtained by the TF approximation
based on a statistical approach, using a semiclassical MF
model where the state of each nucleon is specified by its
momentum and position in phase space. This approximation
is valid when the MF potential has a smooth behavior [38,48].
Adopting the TF approximation, we use the Myers and
Swiatecki (MS) interactions of TF[90] [39] and TF[96] [40] as
the Yukawa-type nucleon-nucleon interactions in phase space
to present the EOS of baryonic matter, assuming that nucleons
are in β equilibrium with relativistic electrons and muons:
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The seven adjustable parameters (a, ξ , ζ , α, β, γ , σ ) in
TF[90] (TF[96]) are fixed to reproduce the saturation prop-
erties of normal nuclear matter and the coefficients of the
Weizsacher-Bethe semiempirical mass formula [39] ([40]):

a = 0.59542 (0.59294) fm, α = 3.60928 (1.94684),

β = 0.37597 (0.15311), γ = 0.21329 (1.13672),

σ = 1.33677 (1.05), ξ = 0.44003 (0.27976),

ζ = 0.59778 (0.55665). (3)

For each pair of nucleons in phase space, r12 = | �r1 − �r2|
and p12 = | �p1 − �p2| are the separation distance and relative
momentum, respectively. The mean density ρ̄ is also intro-
duced as a function of ρ1 and ρ2, being the densities of
each pair of nucleons at the positions �r1 and �r2, respec-
tively. Thus, the strength of these Yukawa-type interactions
depends explicitly on the momentum and density. By adopt-
ing the nuclear matter radius r0 = 1.13 (1.14) for TF[90]
(TF[96]), the Fermi momentum pb = h̄( 3

2π2ρ0)
1
3 correspond-

ing to the saturation density ρ0 = ( 4
3πr3

0 )−1, together with

the associated kinetic energy Tb = p2
b

2m̄ = 37.679 (37.021)
where m̄ = 938.903 MeV/c2 is the average nucleonic mass,
are incorporated into these interactions. The interactions can
be distinguished with the upper signs for the like particles and
the lower signs for the unlike particles. Choosing ξ �= ζ gives
a better description of the nuclear systems with higher isospin
asymmetry. On the other hand, the nuclear saturation mech-
anism can be exploited through the competition between the
attractive terms having α and γ coefficients and the repulsive
terms having β and σ coefficients.

Within this statistical approach, the energy density of nu-
clear matter is given by

eT F = 2

h3

∑
b=n,p

∫
d3 p1

[
mbc2 + p2

1

2mb
+ 1

2
Vb(p1)

]
× 
(pF,b − p1), (4)

where Vb(p1) is the MF potential of the bth nucleon, which can
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The interaction between the like and unlike particles can be
distinguished by l and u indices indicating the minus and plus
signs, respectively:

αl,u = 1
2 (1 ∓ ξ )α, βl,u = 1
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2 (1 ∓ ζ )σ. (7)

Consequently, the energy density can be expressed in terms
of the Fermi momentum pF,b and the associated kinetic energy

density κb = 8π p2
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Here, one can define the asymmetry parameter δ = ρn−ρp

ρB
,

describing symmetric nuclear matter (SNM) with δ = 0 and
pure neutron matter (PNM) with δ = 1. For β-stable nuclear
matter, the β-equilibrium conditions are imposed using the
chemical potential of nucleons and leptons, according to the
second law of thermodynamics:

μe− = μn0 − μp+ , (9)

μe− = μμ− . (10)
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The chemical potential of the bth nucleon can be written as
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In addition, the chemical potential of each lepton can be obtained by its Fermi energy:

μl=e−,μ− =
√

(pF,l c)2 + (mlc2)2, pF,l =
(

3h3ρl

8π

) 1
3

. (13)

Adding the leptonic energy density, we can determine the baryonic energy density to reach the baryonic EOS:

eB = eT F + eL, (14)

where

eL = 2

h3
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Consequently, imposing the charge neutrality condition yp+ = ye− + yμ− (where yk = ρk

ρB
is the relative fraction of the kth nucleon

or lepton), we can obtain the pressure of baryonic matter in the β equilibrium:

PB = PT F + PL =
∑
k=b,l

(μkρk ) − eB. (16)

B. Quark model

For studying the EOS of quark matter, a three-flavor version of the NNJL model is adopted using the following QCD
Lagrangian in Euclidean space [34,35,49]:

LQNL = q̄(−i ∂/ + m̂)q − GS
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where q signifies a quark field including the contributions of three active flavors (Nf = 3) and three colors (Nc = 3). In this
Euclidean picture, the operator ∂/ is defined in terms of Dirac matrices γ μ as ∂/ = γ μ∂μ = �γ · �∇ + γ 4 ∂

∂x4 with γ 4 = i γ 0 and the
imaginary time variable x4 = i t , expressed together with the current quark mass matrix m̂ = diag(mu, md , ms). The nonlocal
nature of the interaction arises from the scalar, pseudoscalar, and vector current densities j (S)

a , j (P)
a , and j (V )μ

a , respectively, which
can be written as
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where the function �̃(z) is included as a form factor and λa with a = 1, 2, . . . , 8 correspond to the well-known Gell-Mann
matrices in the color space together with λ0 = √

2/3 I3×3. In the model, the scalar and pseudoscalar four-quark interaction
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with the coupling GS , the Kobayashi-Maskawa-’t Hooft six-quark interaction with the coupling Gp accompanied by Ha,b,c =
1
3!εi jkεmnl (λa)im(λb) jn(λc)kl , and the vector four-quark interaction with the coupling GV are taken into account.

Within the MF approximation, the zero-temperature grand canonical thermodynamic potential [35–37] can be introduced as
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∑

i=u,d,s

2Nc
(2π )4
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where the momentum-dependent constituent quark mass
Mi(ω2

i ) = mi + �(ω2
i )σ i and the squared four-momentum

ω2
i = (p0 + i μi )2 + p2 are introduced using mi, μi, and σ i as

the current mass, chemical potential and scalar MF of the ith
quark flavor, respectively. The auxiliary MF Si is related to the
scalar MF σ i within the stationary phase approximation. The
Fourier transform of the form factor �̃(z) in Euclidean space
turns out to be the Gaussian function �(ω2

i ) = exp(−ω2
i /�̂

2),
which is used to regulate the nonlocal interactions. The vector
MF V i shifts the chemical potential μi [21], rendering the
dressed part of the thermodynamic potential as follows:

μi → μ̂i = μi − �(
ω2

i

)
V i, (22)

ω2
i → ω̂2

i = (p0 + i μ̂i )
2 + p2. (23)

Besides the model parameter �̂ being related to the stiff-
ness of the chiral transition, the current mass of each quark
flavor mi and the coupling constants GS , Gp are fixed to

reproduce the pion decay constant fπ and the meson masses
mπ , mK , mη′ [19,20]. In the present calculations, we use the
nonlocal interaction set ms = 140.7 (127.8) MeV (treated
as a free parameter), �̂ = 706.0 (780.6) MeV, mu = md =
6.2 (5.5) MeV, GS = 15.04 (14.48)

�̂2 , Gp = − 337.71 (267.24)
�̂5 from

Refs. [34,35] ([9,37]), labeled as NNJL I (II). Due to the
uncertainty in the theoretical predictions of the vector cou-
pling constant GV , we introduce the vector strength ratio
ηV = GV /GS as a free parameter [50].

For a mixture of quarks and leptons, the β-equilibrium
conditions can be written in terms of the baryonic chemical
potential μB = 2μd +μu

3 and the electron chemical potential μe:

μu+ = μB − 2μe−

3
, μd− = μs− = μB + μe−

3
,

μμ− = μe− . (24)

Imposing the β-equilibrium conditions, one can obtain the MF
values σ i, Si, V i by minimizing the thermodynamic potential
�QNL as follows:
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(
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In the so-called gap equation (26), (i, j, k) indicate any per-
mutation of (u, d, s) quarks. For a neutral mixture of quarks
and leptons in the β equilibrium, μB is employed as an input
to solve the coupled equations self-consistently so that μe can
be fixed using the following charge neutrality condition:

2
3ρu+ − 1

3 (ρd− + ρs− ) − (ρe− + ρμ− ) = 0, (28)

where the number density of the ith quark flavor is calculated
by ρi = − ∂�QNL

∂μi
. Here, we can also introduce the relative

quark fraction y(i=u,d,s) = ρi

3ρB
at a given baryonic density

ρB = (ρu + ρd + ρs)/3. Finally, the pressure PQ and energy
density eQ for the EOS of quark matter are given by

PQ = PQNL + PL, (29)

eQ =
∑

k=u+,d−,s−,e−,μ−
ρkμk − PQ. (30)

In the above relation, we adopt PQNL = �0
QNL − �QNL using

�0
QNL to ensure the requirement PQNL = 0 in the vacuum.
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It is worth mentioning that the standard NJL model is
trivially recovered via inserting the form factor �̃(z) = δ(z)
into the integrals of Eqs. (18)–(20). At the MF level [17],
the constituent quark mass Mi and renormalized chemical
potential μ̃i are introduced as

Mi = mi − 2GS〈q̄iqi〉 − 2Gp〈q̄ jq j〉〈q̄kqk〉, (31)

μ̃i = μi − 2GV 〈q†
i qi〉, (32)

where 〈q̄iqi〉 is the quark condensate and 〈q†
i qi〉 denotes the

ith quark number density ρi = p3
F,i

π2 (pF,i being the correspond-
ing Fermi momentum), as (i, j, k) indicate any permutation
of (u, d, s) quarks. Since the standard NJL model is non-
renormalizable, the regularization scheme is provided by the
ultraviolet cutoff parameter �̂ in the MF thermodynamic po-
tential as follows:

�QL = −
∑

i=u,d,s

3

π2

∫ �̂

0
d pp2

[
E (Mi )

p + (
μ̃i − E (Mi )

p

)



(
μ̃i − E (Mi )

p

)] +
∑

i=u,d,s

GS〈q̄iqi〉2

+ 4Gp〈q̄uqu〉〈q̄d qd〉〈q̄sqs〉 −
∑

i=u,d,s

(μ̃i − μi )2
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√
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Using Eqs. (31) and (32), 〈q̄iqi〉 and 〈q†
i qi〉 are obtained by minimizing �QL with respect to Mi and μ̃i, respectively (μ̃i � �̂):

∂�QL

∂Mi
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π2
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0
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(
μ̃i − E (Mi )

p

)
. (35)

For comparison, we also perform the standard NJL cal-
culations using the RKH (HK) [51] ([52]) set with ms =
140.7 (135.7) MeV, �̂ = 602.3 (631.4) MeV, mu = md =
5.5 (5.5) MeV, GS = 3.67 (3.67)

�̂2 , Gp = − 12.36 (9.29)
�̂5 , as PQL =

�0
QL − �QL is adopted to fulfill the vacuum pressure PQL = 0.

C. Baryon-quark phase transition

In a systematic analysis of the baryon-quark mixed phase,
both the Gibbs and Maxwell constructions indicate the bulk
properties without including the geometrical (pasta) structures
constituted by the finite-size effects like surface and Coulomb
energies, describing the two limiting cases of zero and suffi-
ciently large values of the poorly known baryon-quark surface
tension, respectively. In the Gibbs construction, the following
conditions hold between both phases at a given μB:

μ
(BP)
B = μ

(QP)
B ≡ μB ; μ

(BP)
B = μn

3
, (36)

μ(BP)
e = μ(QP)

e ≡ μe, (37)

P(BP)[μB , μe] = P(QP)[μB , μe]. (38)

Therefore, the volume fraction χQ (0 � χQ � 1) occupied by
quark matter in the mixed phase is obtained from the condition
of global charge neutrality as follows:

(1 − χQ )ρ (BP)
C + χQρ

(QP)
C = 0, (39)

where

ρ
(BP)
C = ρ

(BP)
p+ − ρ

(BP)
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ρ
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3
ρ

(QP)
u+ − 1

3
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3
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Consequently, the baryonic density ρ
(MP)
B and energy density

e(MP) of the mixed phase are extracted from

ρ
(MP)
B = (1 − χQ )ρ (BP)

B + χQρ
(QP)
B , (42)

e(MP) = (1 − χQ )e(BP)
B + χQ e(QP)

Q . (43)

A sharp phase transition takes place in the Maxwell con-
struction where the phase transition conditions are imposed
by μ

(BP)
B = μ

(QP)
B and P(BP) = P(QP), as the pure phases are

independently taken to be locally charge neutral. When the
charge screening effects become strong, the Maxwell scenario
turns out to be favored for any surface tension being greater
than a critical value σ̃c, which [13,53] can be estimated by

σ̃c =
(
μ(BP)

e − μ(QP)
e

)2

8παe
(
λ

(BP)
D + λ

(QP)
D

) , (44)

where αe � 1
137 is the fine-structure constant and λ

(S)
D =

(−4παe
∂ρ

(S)
C

∂μe
)−

1
2 denotes the Debye screening length of the

Sth phase.

III. RESULTS AND DISCUSSION

Within the Gibbs and Maxwell construction, we investigate
the deconfinement phase transition in HNSs, adopting the
baryonic EOS of TF (TF[90] and TF[96]) and the quark EOS
of NNJL (the interaction sets I and II), and paying special
attention to the role of the quark repulsive vector interaction.

As a first step, it is worthwhile to basically present the
nuclear matter EOS of TF at supersaturation densities. To
this purpose, we show in Fig. 1 the pressure of SNM and
PNM as a function of baryonic density. As clearly seen,
the baryonic interaction of TF[90] gives a stiffer EOS than
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TABLE I. Domain of the mixed-phase region in terms of baryonic density, energy density, baryonic chemical potential, and pressure, for
the quark interactions of NNJL I and II at ηV = 0, 0.04, 0.08, combined with the baryonic interactions of TF[90] and TF[96] via the Gibbs
[Maxwell] construction.

ρ (BP)-ρ (QP) e(BP)-e(QP) μ
(BP)
B -μ(QP)

B P(BP)-P(QP)

EOS ηV (fm−3) (GeVfm−3) (MeV) (MeVfm−3)

0

{
0.60–1.39 0.64–1.75 428.10–481.26 135.52–257.72

[0.71–1.31] [0.79–1.63] [472.98] [224.23]

TF[90]-NNJL I 0.04

{
0.69–1.41 0.76–1.84 463.07–513.97 203.32–331.44

[0.79–1.35] [0.90–1.75] [506.20] [299.36]

0.08

{
0.82–1.35 0.95–1.83 521.21–564.92 335.76–459.18

[0.90–1.34] [1.08–1.81] [558.63] [432.79]

0

{
0.68–1.54 0.73–1.96 435.11–495.81 160.70–321.52

[0.83–1.43] [0.93–1.80] [485.16] [274.20]

TF[96]-NNJL I 0.04

{
0.80–1.56 0.89–2.08 476.31–534.32 252.60–422.44

[0.93–1.49] [1.08–1.96] [524.77] [378.44]

0.08

{
0.99–1.48 1.18–2.04 550.68–598.70 452.93–612.99

[1.08–1.44] [1.34–1.98] [592.62] [583.46]

0

{
0.62–1.36 0.66–1.70 435.47–480.64 149.02–255.48

[0.71–1.28] [0.79–1.59] [472.42] [223.02]

TF[90]-NNJL II 0.04

{
0.67–1.38 0.73–1.79 455.10–505.69 187.04–311.41

[0.77–1.32] [0.88–1.69] [497.93] [279.93]

0.08

{
0.76–1.40 0.86–1.88 492.26–538.93 266.90–391.92

[0.85–1.36] [0.99–1.80] [531.76] [362.21]

0

{
0.69–1.51 0.73–1.93 435.77–495.62 162.05–319.99

[0.83–1.40] [0.93–1.77] [485.15] [274.17]

TF[96]-NNJL II 0.04

{
0.78–1.55 0.86–2.05 467.01–525.03 230.58–396.53

[0.90–1.47] [1.04–1.91] [515.26] [352.31]

0.08

{
0.90–1.58 1.04–2.18 513.69–566.48 348.06–515.23

[1.01–1.52] [1.21–2.07] [557.44] [473.16]

the one of TF[96]. It can be concluded from this figure
that the results of the TF model are compatible with the

FIG. 1. Pressure of SNM (left panel) and PNM (right panel) as a
function of baryonic density. The results are compared with the ones
obtained form the flow data analysis of heavy-ion collisions [54].

measurements obtained form analysis of collective flows in
heavy ion collision experiments [54], although the SNM
EOS of TF[90] lies near the upper boundary of the flow
data region.

In the plane of pressure and baryonic chemical potential,
the crossing between the baryonic and quark EOSs gives
rise to the emergence of the baryon-quark mixed phase (see
Fig. 2). Note that in this figure the intercepts indicate a high
transition pressure for all hybrid EOSs, which is more re-
markable for TF[96] being joined to the larger values of the
vector coupling strength ηV . In general, a more high-pressure
mixed phase can be formed with NNJL I. As a starting point
for describing our hybrid EOSs, Table I presents the domain
of the baryon-quark mixed phase obtained by the Gibbs and
Maxwell constructions in terms of the baryonic density, en-
ergy density, baryonic chemical potential, and pressure.

The baryonic chemical potential plays a fundamental role
in the study of dense stellar matter. Figure 3 shows the bary-
onic chemical potential at various baryonic (energy) densities.
As seen in the mixed-phase region using the Gibbs con-
struction, the baryonic chemical potential increases smoothly
with the baryonic (energy) density, while the mixed phase
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FIG. 2. Pressure as a function of baryonic chemical potential for
the quark interactions of NNJL I (left panel) and NNJL II (right
panel) at ηV = 0, 0.04, 0.08, together with the baryonic interactions
of TF[90] (short dashes) and TF[96] (long dashes).

is described by the plateau within the Maxwell construction.
However, the baryonic chemical potential grows drastically
when the repulsive vector contribution in quark matter be-
comes stronger, as seen more considerably for NNJL I.
It can be generally indicated that the mixed phases de-

FIG. 3. Baryonic chemical potential as a function of baryonic
density (left panels) and energy density (right panels) for the
quark interactions of NNJL I (upper panels) and NNJL II (lower
panels) at ηV = 0, 0.04, 0.08, combined with the baryonic inter-
actions of TF[90] (solid lines) and TF[96] (dashed lines) via the
Gibbs construction, as the plateaus correspond to the Maxwell
construction.

FIG. 4. Pressure as a function of baryonic density (left panels)
and energy density (right panels) for the quark interactions of NNJL
I (upper panels) and NNJL II (lower panels) at ηV = 0, 0.04, 0.08,
combined with the baryonic interactions of TF[90] (solid lines) and
TF[96] (dashed lines) via the Gibbs construction, as the plateaus
correspond to the Maxwell construction.

scribed with TF[96] and NNJL I emerge with higher baryonic
chemical potentials than the ones obtained with TF[90]
and NNJL II.

The pressure is one of the most outstanding feature of
the EOS for compact objects due to its key role in nuclear
astrophysics. We show in Fig. 4 the pressure as an increasing
function of baryonic (energy) density, which rises smoothly
(shows the plateau) in the mixed phase under the Gibbs
(Maxwell) construction (similar to the baryonic chemical po-
tential). As expected, the region of the mixed phase for the
Maxwell construction is located inside the one for the Gibbs
construction. It is seen that the stiffness of hybrid EOS, espe-
cially in the quark branch, shows a significant influence on the
characteristics of the mixed phase. Besides strengthening the
repulsive vector interaction between quarks (increasing ηV ),
using the more repulsive interactions of TF[90] and NNJL
I leads to a stiffer hybrid EOS. As similarly indicated in
Ref. [35] for the baryonic EOSs of RMF (using the GM1
and NL3 parametrizations), the width of the mixed phase for
the ones of TF becomes significantly smaller if the quark
EOSs of NNJL with larger ηV are taken into account in the
hybrid EOSs. In general, the more repulsive quark EOSs
push the threshold formation of the mixed phase toward
higher baryonic (energy) densities. For better understanding
the properties of the mixed phase, the pressure versus the

045807-7



J. RANJBAR AND M. GHAZANFARI MOJARRAD PHYSICAL REVIEW C 104, 045807 (2021)

FIG. 5. Pressure as a function of baryonic and electron chemical potentials for the quark interactions of NNJL I (upper panels) and NNJL
II (lower panels) at ηV = 0, 0.04, 0.08, combined with the baryonic interactions of TF[90] (left panels) and TF[96] (right panels) via the Gibbs
construction, as the plateaus correspond to the Maxwell construction.

baryonic and electron chemical potentials is displayed in
three-dimensional space (see Fig. 5). Contrary to the behav-
ior of both the pressure and baryonic chemical potential in
the baryon-quark coexistence phase, the electron chemical
potential shows a significant drop as the system transforms
to the pure quark phase. It can be generally seen that the
stiffer quark EOSs shift the onset of the mixed phase to the
higher values of pressure and baryonic chemical potential,
while the lower ones are obtained by the stiffer baryonic
EOS (TF[90]).

In order to extract the structure of HNSs, each of our
hybrid EOSs provides an input for the well-known Tolman-
Oppenheimer-Volkoff equations [55,56]:

dP(r)

dr
= −Gm(r)e(r)

r2

[
1 + P(r)

e(r)c2

][
1 + 4πr3P(r)

m(r)c2

]
1 − 2Gm(r)

rc2

, (45)

dm(r)

dr
= 4πr2e(r), (46)

in which P, e, G and m denote the pressure, energy density,
gravitational constant, and star mass within radius r, respec-
tively. Starting from a central energy density ec, we compute
the pressure up to the one corresponding to the density of
iron at the star radius R. For the HNS crust, we have joined
the inner crust using the EOS of Negele and Vauthrun [57],
which is based on the Hatree-Fock approach, and the outer
crust using the one of Baym et al. [58], which relies on the
properties of heavy nuclei. In Fig. 6, we show the gravita-
tion mass M = m(R) (in units of the solar mass M�) as a
function of the central baryonic (energy) density ρc (ec). As
seen in this figure, the gravitational mass reaches a maximum
value, which is denoted by a circle. The EOS above the
respective values of ρc and ec in the maximum mass config-
uration (circle points) is excluded due to the star instability
against radial oscillations. We also signify the deconfinement
phase transition by a triangle (vertical slash) for the Gibbs
(Maxwell) construction. As expected, the larger values of
the maximum mass are obtained by the stiffer hybrid EOSs.
For all hybrid EOSs, since the respective central baryonic
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FIG. 6. Gravitational mass of HNSs (in units of the solar mass
M�) as a function of central baryonic density (left panels) and central
energy density (right panels) for the quark interactions of NNJL I
(upper panels) and NNJL II (lower panels) at ηV = 0, 0.04, 0.08,
combined with the baryonic interactions of TF[90] (solid lines) and
TF[96] (dashed lines) via the Gibbs and constructions, as the plateaus
correspond to the Maxwell construction. The circles indicate the
maximum mass configurations, as the EOS above the respective
baryonic densities and energy densities is excluded. The onset of
the baryon-quark phase transition in the star center is shown with
the triangles and vertical slashes corresponding to the Gibbs and
Maxwell constructions, respectively. The horizontal band shows the
observational mass constraint from PSR J0740 + 6620 [25].

(energy) density of the maximum mass configuration sets in
the mixed phase, pure quark phase cannot occur in the core of
an HNS.

For each hybrid EOS described with the Gibbs construction
(which predicts an HNS without a pure-quark core), the mass
fraction of the baryon-quark mixed-phase core M(MP)/M is
shown in Fig. 7. It is shown in this figure that when using
a stiffer quark EOS with larger ηV , the mass fraction lies
within a smaller range of values. As also realized from Table II
(III) where the properties of the maximum mass configuration
are summarized using the NNJL (LNJL) model, within the
the Gibbs construction, M(MP)/M cannot exceed a value of
about ≈ 19% (13%), while a 2M� HNS can be constituted

FIG. 7. Gravitational mass of HNSs (in units of the solar mass
M�) as a function of mixed-phase mass fraction for the quark inter-
actions of NNJL I (left panel) and NNJL II (right panel) at ηV =
0, 0.04, 0.08, combined with the baryonic interactions of TF[90]
(solid lines) and TF[96] (dashed lines) via the Gibbs construction.
The circles indicate the maximum mass configurations. The hor-
izontal band shows the observational mass constraint from PSR
J0740 + 6620 [25].

with the smaller amounts of the mass fraction up to about
≈ 12% (7%). On the other hand, we display in Fig. 8 the
permitted values of the quark volume fraction χQ in the HNS
structure for the hybrid EOSs based on the Gibbs construc-
tion. Evidently, χQ is an increasing function of ρB for each
case of HNS matter. Furthermore, the allowed range of χQ

is not sensitive to the case of the hybrid EOS employed in
this study.

FIG. 8. Quark volume fraction as a function of baryonic den-
sity for the quark interactions of NNJL I (left panel) and NNJL
II (right panel) at ηV = 0, 0.04, 0.08, combined with the baryonic
interactions of TF[90] (solid lines) and TF[96] (dashed lines) via the
Gibbs construction. The circles indicate the baryonic densities and
quark volume fractions in the center of the respective maximum mass
configurations.
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TABLE II. Characteristics of the maximum mass configuration in terms of central baryonic density ρc, central energy density ec, central
pressure Pc, gravitational mass Mmax (in units of the solar mass M�), star radius R, mixed-phase mass fraction M(MP)/Mmax, and tidal
deformability � for the quark interactions of NNJL I and II at ηV = 0, 0.04, 0.08, combined with the baryonic interactions of TF[90] and
TF[96] via the Gibbs [Maxwell] construction (σ̃c being the critical surface tension).

ρc ec Pc Mmax R σ̃c

EOS ηV (fm−3) (GeVfm−3) (MeVfm−3) (M�) (km) M(MP)
Mmax

� (MeVfm−2)

0

{
1.01 1.20 242.61 1.89 11.45 0.18 32.78

}
53.98

[0.71–1.31] [0.79–1.63] [224.23] [1.93] [11.54] [0] [30.13]

TF[90]-NNJL I 0.04

{
1.05 1.28 315.66 1.99 11.27 0.12 18.85

}
51.75

[0.79–1.35] [0.90–1.75] [299.36] [2.01] [11.31] [0] [17.87]

0.08

{
1.09 1.38 439.42 2.08 10.98 0.06 10.28

}
42.65

[0.90–1.34] [1.08–1.81] [432.79] [2.09] [10.98] [0] [9.86]

0

{
1.12 1.34 295.68 1.82 10.92 0.19 28.03

}
62.74

[0.83–1.43] [0.93–1.80] [274.20] [1.86] [11.00] [0] [25.83]

TF[96]-NNJL I 0.04

{
1.16 1.44 393.60 1.91 10.69 0.12 15.76

}
60.12

[0.93–1.49] [1.08–1.96] [378.44] [1.93] [10.71] [0] [14.86]

0.08

{
1.22 1.59 577.90 1.98 10.32 0.05 8.19

}
42.75

[1.08–1.44] [1.34–1.98] [583.46] [1.99] [10.30] [0] [7.76]

0

{
1.00 1.18 241.81 1.89 11.47 0.18 32.42

}
50.77

[0.71–1.28] [0.79–1.59] [223.02] [1.93] [11.54] [0] [30.44]

TF[90]-NNJL II 0.04

{
1.05 1.28 295.18 1.97 11.32 0.13 21.33

}
49.50

[0.77–1.32] [0.88–1.69] [279.93] [2.00] [11.37] [0] [20.09]

0.08

{
1.09 1.37 370.62 2.04 11.13 0.09 13.68

}
46.46

[0.85–1.36] [0.99–1.80] [362.21] [2.06] [11.14] [0] [13.01]

0

{
1.12 1.34 295.40 1.82 10.92 0.19 27.91

}
59.79

[0.83–1.40] [0.93–1.77] [274.17] [1.86] [11.00] [0] [25.84]

TF[96]-NNJL II 0.04

{
1.15 1.41 369.76 1.89 10.74 0.14 17.74

}
58.21

[0.90–1.47] [1.04–1.91] [352.31] [1.92] [10.78] [0] [16.72]

0.08

{
1.19 1.51 484.15 1.96 10.49 0.08 10.90

}
54.75

[1.01–1.52] [1.21–2.07] [473.16] [1.97] [10.50] [0] [10.48]

Within the Gibbs construction, using only the allowed
baryonic density range of HNS matter, we display the number
fraction of particles yi in Figs. 9 and 10 using the NNJL
I and II, respectively. It is seen that the neutrons have the
most abundance among the particles inside the HNS core.
The neutron fraction, which is almost independent of baryonic
density in the pure baryonic phase, becomes clearly smaller
with rising baryonic density in the mixed phase. In contrast
to the neutron fraction, the change of the proton fraction is
insignificant at the mixed-phase region. The emergence of
the mixed phase leads to the deleptonization of HNS matter
due to the charge neutrality condition, while the quark frac-
tions increase rapidly with the baryonic density. It can be
generally concluded that the allowed baryonic density range
of the mixed-phase core is reduced as a stiffer hybrid EOS
is adopted.

To probe comparatively the outcomes of using the nonlocal
extension of the NJL model, we display in Fig. 11 the hybrid
EOSs derived by the LNJL model of RKH (HK). As well
understood from this figure, the vector interaction in the LNJL
model has a weaker influence on stiffening the quark EOS
than the one in the NNJL model. In contrast to the NNJL
approach, the width of the mixed phase in the LNJL scenario
becomes larger with increasing ηV . It is worth noting that the
NNJL model predicts the larger values of the critical surface
tension σ̃c for a 2M� HNS than the LNJL model (see Tables II
and III), as the mixed phase is described by the Maxwell
construction for σ > σ̃c.

Incorporating the NICER measurements of J0030 +
0451 [29,30] and the constraint extracted from the most
massive pulsar J0740 + 6620 [25], we show in Fig. 12 the
mass-radius (M-R) profiles obtained by the different hybrid
EOSs using both the NNJL and LNJL models. It can be
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TABLE III. Same as Table II but for the quark interactions of RKH and HK given by the LNJL model.

ρc ec Pc Mmax R σ̃c

EOS ηV (fm−3) (GeVfm−3) (MeVfm−3) (M�) (km) M(MP)
Mmax

� (MeVfm−2)

0

{
1.03 1.25 278.221 1.95 11.37 0.11 23.57

}
38.31

[0.76–1.31] [0.85–1.66] [262.67] [1.98] [11.42] [0] [22.50]

TF[90]-RKH 0.22

{
1.10 1.40 420.37 2.07 11.02 0.06 11.02

}
37.73

[0.89–1.46] [1.05–2.00] [410.23] [2.08] [11.03] [0] [10.70]

0.44

{
1.13 1.48 607.25 2.12 10.65 0.02 6.25

}
33.06

[1.02–1.60] [1.30–2.36] [611.78] [2.12] [10.63] [0] [6.21]

0

{
1.15 1.41 342.65 1.88 10.81 0.12 20.20

}
49.62

[0.88–1.50] [1.01–1.95] [326.07] [1.90] [10.85] [0] [19.05]

TF[96]-RKH 0.22

{
1.21 1.55 531.15 1.97 10.40 0.05 9.30

}
47.57

[1.05–1.67] [1.28–2.36] [528.45] [1.98] [10.39] [0] [8.91]

0.44

{
1.25 1.65 773.75 2.01 10.01 0.01 5.41

}
41.06

[1.23–1.86] [1.61–2.87] [819.10] [2.01] [9.95] [0] [5.02]

0

{
1.05 1.27 263.36 1.94 11.41 0.13 26.11

}
29.17

[0.74–1.13] [0.82–1.39] [243.88] [1.96] [11.48] [0] [25.75]

TF[90]-HK 0.22

{
1.08 1.38 393.66 2.06 11.08 0.07 12.30

}
34.53

[0.86–1.37] [1.01–1.83] [380.71] [2.07] [11.10] [0] [12.02]

0.44

{
1.12 1.47 559.31 2.11 10.73 0.03 7.04

}
32.13

[0.99–1.52] [1.23–2.20] [557.45] [2.12] [10.73] [0] [6.87]

0

{
1.14 1.40 331.70 1.87 10.84 0.13 21.39

}
43.65

[0.86–1.38] [0.99–1.77] [311.86] [1.89] [10.89] [0] [20.57]

TF[96]-HK 0.22

{
1.20 1.54 502.48 1.97 10.46 0.06 10.16

}
45.14

[1.02–1.60] [1.24–2.22] [495.00] [1.98] [10.46] [0] [9.80]

0.44

{
1.24 1.64 721.17 2.00 10.08 0.02 5.96

}
40.84

[1.19–1.79] [1.53–2.69] [747.95] [2.01] [10.04] [0] [5.61]

concluded that the quark vector interaction is substantial in
describing the HNS structure, because a large enough vec-
tor coupling strength ηV fulfills the 2M� constraint. In each
M-R relation, as the gravitational mass becomes larger, the
onset of the baryon-quark stellar core reduces the star radius,
and therefore, increases the compactness C = M/R. Note that
our findings are consistent with the observational constraints,
showing that PSR J0030 + 0451, and PSR J0740 + 6620
could be described as an NS and an HNS without a pure
quark core, respectively. On the other hand, a stable NS can be
constituted with the maximum mass Mmax = 2.13 (2.01)M�
for TF[90] (TF[96]). In this work, the possibility that the
secondary object of GW190814 [59] is a massive HNS (NS)
cannot be provided. For the sake of completeness, Tables II
and III yield quantitatively the maximum mass configuration
properties obtained using the NNJL and LNJL models, re-
spectively. As reported, the maximum masses in the Maxwell
construction are slightly larger than those in the Gibbs con-
struction. In conclusion, our results exclude the formation of
a stable HNS within the Maxwell construction due to not
predicting the emergence of the pure quark phase in the star
core, while in Ref. [9], on the contrary, the Maxwell construc-
tion can lead to the appearance of the pure quark core when

baryonic matter is treated in a RMF approximation and quark
matter is similarly modeled by both the NNJL and LNJL
models.

The tidal effects detected by the emission of the gravita-
tional wave during the inspiral of a binary NS system at early
stages impose strong constraints on the EOS of dense matter.
The relation between the tidal distortion in a binary NS system
and the EOS describing the NS structure is characterized by a
single dimensionless parameter known as tidal deformability
(polarizability) �, which is related to the tidal Love number
k2 and the star compactness C = M/R [60,61] as (G = c = 1):

� = 2

3
k2C−5, (47)

with

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

×{2C[6 − 3yR + 3C(5yR − 8)]

+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)]ln(1 − 2C)}−1.

(48)
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FIG. 9. Number fraction of baryons, leptons, and quarks as a
function of baryonic density for the quark interaction of NNJL I at
ηV = 0 (upper panel), ηV = 0.04 (middle panel), ηV = 0.08 (lower
panel), combined with the baryonic interactions of TF[90] (solid
lines) and TF[96] (dashed lines) via the Gibbs construction. The
solid (dashed) vertical lines indicate the central baryonic densities
of the maximum mass configurations obtained by the baryonic EOS
of TF[90] (TF[96]).

In the above, yR is obtained by the function y(r) at the star
radius R, satisfying the following nonlinear first-order dif-
ferential equation, which can be solved simultaneously with
the TOV Eqs. (45) and (46) at the boundary condition y(0) =
2 [62]:

r
dy(r)

dr
+ y(r)2 + F (r)y(r) + r2Q(r) = 0, (49)

where

F (r) = 1 − 4πr2[e(r) − P(r)]

1 − 2m(r)
r

(50)

FIG. 10. Same as Fig. 9 but for the NNJL II interaction.

and

Q(r) =
4π

[
5e(r) + 9P(r) + e(r)+P(r)

d p/de − 6
4πr2

]
1 − 2m(r)

r

− 4

r4

[
m(r) + 4πr3P(r)

1 − 2m(r)
r

]2

. (51)

With the historic detection of the GW170817 signal by the
LIGO-Virgo scientific collaboration [26–28], more stringent
constraints on the EOS of dense matter can be extracted. In
Fig. 13, we display the tidal deformability � as a function
of the gravitational mass (in units of the solar mass M�). We
also present in this figure the 90% confidence-level estimate
70 � � � 580 for a 1.4M�, reported in Ref. [27]. Within the
present approach, the core of a 1.4M� NS is not dense enough
to exceed the onset density for the emergence of the mixed
phase. For a given baryonic EOS, the discrepancies between
the tidal deformability of the hybrid EOSs, which appear only
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FIG. 11. Pressure as a function of baryonic density (left pan-
els) and energy density (right panels) for the quark interactions of
RKH (upper panels) and HK (lower panels) given by the LNJL
model at ηV = 0, 0.22, 0.44, combined with the baryonic interac-
tions of TF[90] (solid lines) and TF[96] (dashed lines) via the
Gibbs construction, as the plateaus correspond to the Maxwell con-
struction. The circles indicate the maximum mass configurations,
as the EOS above the respective baryonic densities and energy
densities is excluded. The onset of the baryon-quark phase tran-
sition in the star center is shown with the triangles and vertical
slashes corresponding to the Gibbs and Maxwell constructions,
respectively.

in the coexisting branches, are rather small. In general, by
strengthening the repulsive effects in the quark (baryonic)
EOS, the tidal deformability of an HNS can coincide with the
lower (larger) values, as understood from the values reported
in Tables II and III for the maximum mass configuration prop-
erties described by the NNJL and LNJL models, respectively.
It is shown in these tables that the Maxwell construction
predicts a slightly lower value of the tidal deformabil-
ity for the maximum mass configuration than the Gibbs
construction.

IV. SUMMARY AND CONCLUSION

In this work, we have studied the EOS of HNS matter for
deep understanding about the structure of HNSs, employing a

FIG. 12. Mass-radius diagrams for the quark interactions of
NNJL I (upper left panel) and NNJL II (upper right panel) at
ηV = 0, 0.04, 0.08, together with the quark interactions of RKH
(lower left panel) and HK (lower right panel) given by the LNJL
model at ηV = 0, 0.22, 0.44, combined with the baryonic interac-
tions of TF[90] (solid lines) and TF[96] (dashed lines) via the
Gibbs and Maxwell constructions. The circles and triangles (verti-
cal slashes) indicate the maximum mass configurations, and onsets
of the baryon-quark phase transition in the star center within the
Gibbs (Maxwell) construction, respectively. The horizontal bands
show the observational mass constraint from PSR J0740 + 6620 [25]
and the gravitational mass inferred for the lighter component of
GW190814 [59]. The areas of the mass-radius limits inferred from
the NICER measurements of PSR J0030 + 0451 [29,30] are also
shown. The region on the top left of each panel is excluded
by causality [63].

semiclassical MF baryonic model based on the TF approxima-
tion and a nonlocal extension of the SU(3) NJL quark model
to determine the deconfinement phase transition under the
Gibbs and Maxwell constructions. Furthermore, we have car-
ried out a comparison with the hybrid EOSs using the LNJL
model for quark matter. Our results reflect a high-pressure
nature for the baryon-quark mixed phase. The stiffness of
the NNJL EOS turns out to be more significantly affected
by the repulsive vector coupling strength ηV than the one
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FIG. 13. Tidal deformability of HNSs as a function of gravita-
tional mass (in units of the solar mass M�) for the quark interactions
of NNJL I (upper left panel) and NNJL II (upper right panel) at ηV =
0, 0.04, 0.08, together with the quark interactions of RKH (lower left
panel) and HK (lower right panel) given by the LNJL model at ηV =
0, 0.22, 0.44, combined with the baryonic interactions of TF[90]
(solid lines) and TF[96] (dashed lines) via the Gibbs and Maxwell
constructions. The circles and triangles (vertical slashes) indicate the
maximum mass configurations and onsets of the baryon-quark phase
transition in the star center within the Gibbs (Maxwell) construction,
respectively. The vertical bar shows the tidal deformability range of
a 1.4M� NS, obtained by the analysis of the GW170817 signal [27].

of the LNJL EOS. Hence, increasing ηV changes apprecia-
bly the mixed-phase characteristics, pushing the transition
density and pressure to the higher values, while (contrary
to what happens in the LNJL model) the coexistence width
is reduced. Within the Gibbs construction, as predicted by
the stiffer hybrid EOSs using the NNJL (LNJL) model, the
center of a stable 2M� HNS is not dense enough to lie into
the pure quark phase, while the limit for the mass fraction
of the mixed-phase core is estimated to be ≈ 12% (7%),
indicating that the dominant contribution to the gravitational
mass comes from the pure baryonic phase. To describe a 2M�
HNS within the Maxwell construction, the critical surface
tension, above which the Maxwell construction is favorable,
is found to be larger for the hybrid EOSs using the NNJL
model than the ones using the LNJL model, although the
Maxwell construction leads to an unstable HNS due to not
supporting the appearance of a pure quark core. According
to the maximum mass configuration properties, stiffening
the quark EOS, has an almost small influence on the tidal
deformibility of an HNS, as it can reach the lower values.
Within this research, we cannot predict the possibility that
the secondary component of GW190814 [59] is a massive
HNS (NS). On the other hand, within the constraints from
the analysis of the GW170817 event, the emergence of the
mixed phase in the core region of a 1.4M� NS is ruled
out. In the future, we plan to extend this approach to pro-
vide deeper insight into the structure and composition of
HNSs.
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