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Using the Brown-Rho (BR) scaling law, several new relativistic Hartree-Fock (RHF) models with chiral limit
are thoroughly investigated. The high-density nuclear equation of state (EOS) of RHF with the BR scaling
become softer than one without the BR scaling. The EOS of RHF with BR scaling is consistent with the constraint
extracted from collective flows and kaon production in heavy-ion collisions. It is found that, with a sizable
strength parameter of the mass drop x = 0.126, the symmetry energy is almost flat at density above 3 times the
saturation density ρ0, and even decreases slightly. This is caused from the fact that the decline of the potential
part of symmetry energy is faster than the increase of the kinetic part of symmetry energy. The decrease of
potential part is mainly because the neutron mass M∗

n and the proton mass M∗
p are close to each other when the

density gradually approaches the critical density of chiral limit. For a mass drop of x = 0.092, since the critical
density of chiral limit is higher than one of x = 0.126, the symmetry energy becomes flat at density above 5ρ0.
While, since the critical density of chiral limit is very high for a small mass drop x = 0.053, the symmetry
energy of RHFs with x = 0.053 always increases at the entire density domain of this work (below 6 ρ0). The
maximum mass of neutron star (NS) obtained with present models can satisfy M = 2.08 ± 0.07M�. However,
the radius of 1.4 M� with the mass drop of x = 0.126 will surpass the upper limit (13.7 km) extracted from
the tidal deformability parameter of coalescence of a NS binary system and the radius of J0030+0451 being
12.71+1.14

−1.19 km. The radius of 1.4 M� with the mass drop of x = 0.092 is 13.6 km, closing to 13.7 km and the
radius of J0030+0451 being 12.71+1.14

−1.19 km. Therefore, the RHF model with BR scaling prefers the mass drop of
x � 0.092.

DOI: 10.1103/PhysRevC.104.045804

I. INTRODUCTION

In-medium effects are very important in nuclear physics.
It is well known that the nucleon mass will decrease to
around 0.6 times at saturation density ρ0 [1]. Experiments also
show that the meson mass may decrease in the medium. The
photoproduction experiments with the Crystal Barrel detector
investigated in-medium modifications of the ω meson in the
γ -A reactions, and reported a sizable mass drop of ω for an
average density of 0.6 times saturation density [2]. The KEK
proton-induced nuclear reactions also showed a sizable mass
drop of ρ and ω mesons at saturation density [3]. However, the
γ -A reactions with the TAPS detector indicated a small mass
drop of ρ and ω mesons at saturation density [4]. Besides,
in theoretical calculations, the hidden local symmetry theory
showed the ρ meson becomes massless at the chiral limit [5].
The mass drop of a hadron can also be described by the scaling
law established by Brown and Rho (BR) [6]. The BR scaling,
which is based on an effective chiral Lagrangian of QCD,
implies that hadron masses will decrease to zero at chiral limit.
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Since the BR scaling is very convenient to describe the hadron
mass drop and the chiral symmetry, relativistic mean-field
(RMF) models with the BR scaling have been established and
used to study properties of nuclear matter and a neutron star
(NS), the binding energies and charge radii of finite nuclei
[7–11]. However, the pion exchange, which is important in
the spin-orbit interaction, is missing in the RMF. Therefore,
the RMF cannot describe that the nuclear matter may undergo
transitions to phases with pion condensation [12–14]. It would
be interesting to introduce the BR scaling in the relativistic
Hartree-Fock (RHF) approximation.

In the early days, some co-workers had tried to use RHF to
study properties of nuclear matter and finite nuclei [15–18].
Due to the large incompressibility, the nuclei based on the
early RHF were not bound enough, this defect being more
important for light nuclei. Nowadays, there are two popular
methods to obtain a reasonable incompressibility. One is to
introduce the density-dependence meson-nucleon couplings
into the RHF [19,20], the other is to add the nonlinear me-
son self-couplings into RHF [21,22]. RHF with BR scaling
(RHFSL) is one kind of density-dependent RHF (DDRHF)
model, but can describe chiral symmetry restoration phe-
nomenologically. The equation of state (EOS) of theoretical
models, which plays a crucial role in understanding struc-
tures of the atomic nucleus, reaction dynamics of heavy-ion
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collisions, and properties of NSs, should be consistent with
constraints extracted from the terrestrial experiments and as-
trophysical observations. For instance, collective flows [23]
and kaon production [24–29] in heavy-ion collisions pro-
vide constraints on the EOS of symmetric nuclear matter at
1.2–4.5ρ0. Apart from terrestrial experiments, the mass-radius
trajectories of NSs extracted from astrophysical observations
have been used to constrain the EOS. The EOS should be
stiff enough to support the maximum mass of NSs given by
astrophysical observations. The maximum mass of NS was
measured accurately through the Shapiro delay. Over the past
decade, the radio pulsar J1614-2230 was found to have M =
1.908 ± 0.016M� [30–32], and the J0348+0432 was found
to have M = 2.01 ± 0.04M� [33]. The mass of millisecond
pulsar J0740+6620 was measured to be M = 2.14+0.10

−0.09M�
with 68.3% confidence and M = 2.14+0.20

−0.18M� with 95.4%
confidence [34]. Now, the mass of J0740+6620 has been up-
dated to be M = 2.08 ± 0.07M� with 68.3% confidence [35].
Unfortunately, the radius of NS, which is extracted from as-
trophysical observations, still has a large uncertainty suffered
from the distance measurements and theoretical analyses of
the light spectrum. In the past, the radius of NS with 1.4M�
extracted from optical observations ranged roughly 10–14 km
[36–42]. More recently, the Neutron Star Interior Composition
Explorer (NICER) collaboration used a Bayesian inference
approach to analyze energy-dependent thermal x-ray wave-
form of millisecond pulsar J0030+0451, and found that
the radius (mass) of J0030+0451 is 13.02+1.24

−1.06 km (M =
1.44+0.15

−0.14M�) [43] or 12.71+1.14
−1.19 km (M = 1.34+0.15

−0.16M�) [44].
Apart from optical measurement, an alternative way to extract
the radius of NSs is based on the gravitational-wave signals
of NS mergers. Based on the tidal deformability parameter
of the coalescence of a NS binary system, the radius of NS
with 1.4M� was predicted to have an upper limit which is
about 13.7 km [45–49]. The radius range of NS with 1.4M�
implies that the EOS should be soft below the central density
of 1.4M�.

This work is arranged as follows. In Sec. II, the formal-
ism for obtaining the EOS of RHF theory with BR scaling
is briefly introduced. The numerical results and discussions
including properties of nuclear matter and NS are presented
in Sec. III. Finally, a brief summary is given.

II. FORMALISM

The Lagrangian density for hadron is written as follows
[15–22]:

L = L0 + LI , (1)

where L0 and LI are the free Lagrangian density and the
interaction Lagrangian density, respectively,

L0 =
∑

B

ψ̄B(iγμ∂μ − MB)ψB + 1

2

(
∂μσ∂μσ − m∗2

σ σ 2
)

+ 1

2
m∗2

ω ωμωω − 1

4
FμνFμν + 1

2
m∗2

ρ ρμ · ρμ

− 1

4
Gμν · Gμν + 1

2

(
∂μπ∂μπ − m∗2

π π2
)
, (2)

ψB and MB are the baryon field and the rest mass of baryon. σ ,
ω, ρ, and π are the meson field, and m∗

σ , m∗
ω, m∗

ρ , and m∗
π are

the corresponding scaled mass in the medium. Fμν and Gμν are
the field strength tensors of ω and ρ mesons, and expressed as
follows:

Fμν = ∂νωμ − ∂μων, Gμν = ∂νρμ − ∂μρν . (3)

The interaction Lagrangian density means the interaction
between nucleons is achieved by exchanging a meson. In
the current work, since we do not consider isoscalar- and
isovector-tensor coupling, there are only four expressions
lived:

LI = −g∗
σ ψ̄σψ − g∗

ωψ̄γμωμψ − g∗
ρψ̄γμρμ · τψ

− f ∗
π

m∗
π

ψ̄γ5γμ∂μπ · τψ, (4)

where the τ is isospin Pauli matric. g∗
σ , g∗

ω, g∗
ρ , and f ∗

π are the
scaled meson-nucleon coupling constants in the medium.

Neglecting the small Coulomb field in infinite nuclear mat-
ter, with the time-reversal symmetry and rotational invariance,
the self-energy of baryon 
B can be expanded as follows:


B(k) = 
S
B(k) + γ0


0
B(k) + γ · k̂
V

B (k), (5)

where k̂ is the unit vector along k. 
S
B, 
0

B, and 
V
B are

the scalar, time, and space components of the self-energy,
respectively. With the self-energy, the effective nucleon mass,
momentum, and energy are defined as

M∗
B(k) = MB + 
S

B(k),

k∗ = k + k̂
V
B (k), (6)

E∗
B (k) =

√
M∗2

B + k∗2.

For further simplicity, we write K̂ ≡ k∗
E∗

B
and M̂B ≡ M∗

B
E∗

B
. By

taking the ground state expectation of the Hamiltonian (H =
T + VD + VE ), the energy density includes the baryon and
meson contributions can be written as [18,20]

ε = εK + εD + εE , (7)

εK =
∑

B=n,p

1

π2

∫ kF,B

0
k2dk(kK̂ + MBM̂B),

εD = −1

2

g∗2
σ

m∗2
σ

ρ2
s + 1

2

g∗2
ω

m∗2
ω

ρ2 + 1

2

g∗2
ρ

m∗2
ρ

ρ2
3 ,

εE = 1

2

1

(2π )4

∑
α,B,B′

∫ kF,B

0

∫ kF,B′

0
kk′dkdk′

× {δBB′ [Aα (k, k′) + M̂B(k)M̂B′ (k′)Bα (k, k′)

+ K̂ (k)K̂ (k′)Cα (k, k′)]σ,ω + (2 − δBB′ )[Aα (k, k′)

+ M̂B(k)M̂B′ (k′)Bα (k, k′)

+ K̂ (k)K̂ (k′)Cα (k, k′)]ρ,π }. (8)

kF is the Fermi momentum. ρ, ρS , and ρ3 are the baryon
density, the scalar density, and the third component of isovec-
tor density. εK , εD, and εE are the kinetic energy density, the
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TABLE I. The functions Aα , Bα , and Cα in Eqs. (11) and (8).

α Aα (k, k′) Bα (k, k′) Cα (k, k′)

σ g∗2
σ �σ (k, k′) g∗2

σ �σ (k, k′) −2g∗2
σ �σ (k, k′)

ω 2g∗2
ω �ω(k, k′) −4g∗2

ω �ω(k, k′) −4g∗2
ω �ω(k, k′)

ρ 2g∗2
ρ �ρ (k, k′) −4g∗2

ρ �ρ (k, k′) −4g∗2
ρ �ρ (k, k′)

π − f ∗2
π �π (k, k′) − f ∗2

π �π (k, k′) 2 f ∗2
π

m∗2
π

[(k2 + k′2)�π (k, k′) − kk′�π (k, k′)]

direct, and exchange terms of the potential energy density, re-
spectively. δBB′ and 2 − δBB′ are the isospin factor for isoscalar
and isovector, respectively. The α runs over σ and ω (ρ and
π ) mesons. The functions Aα , Bα , and Cα are given in Table I,
with the following functions:

�α (k, k′) = ln

[
m∗2

α + (k + k′)2

m∗2
α + (k − k′)2

]
,

�α (k, k′) = 1

4kk′
(
k2 + k′2 + m∗2

α

)
�α (k, k′) − 1. (9)

For simplicity, in this work, we use a numerical calculation
to solve the pressure P, the incompressibility κ , the symmetry
energy Esym, and the slope of symmetry energy L:

P = ρ2 ∂ (ε/ρ)

∂ρ
,

κ = ρ
d2ε

dρ2
= 9

dP

dρ
,

Esym(ρ) = 1

2

∂2(ε/ρ)

∂δ2

∣∣∣∣
δ=0

,

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣∣
ρ0

(10)

with ρ0 being the saturation density. δ = (ρn − ρp)/ρ is the
isospin asymmetry parameter.

By differentiating the potential energy densities (εD and
εE ) of Eq. (8) with respect to the Dirac spinor, the scalar, time,
and space components of the self-energy are given as [18,20]


S
B(k) = − g∗2

σ

m∗2
σ

ρS + 1

(4π )2k

∑
α,B′

∫ kF,B′

0
k′dk′M̂B′ (k′)

× [δBB′Bα (k, k′)σ,ω + (2 − δBB′ )Bα (k, k′)ρ,π ],


0
B(k) = g∗2

ω

m∗2
ω

ρ + 1

(4π )2k

∑
α,B′

∫ kF,B′

0
k′dk′

× [δBB′Aα (k, k′)σ,ω + (2 − δBB′ )Aα (k, k′)ρ,π ],


V
B (k) = 1

(4π )2k

∑
α,B′

∫ kF,B′

0
K̂ (k′)k′dk′

×[δBB′Cα (k, k′)σ,ω + (2 − δBB′ )Cα (k, k′)ρ,π ]. (11)

Equations (6) and (11) can be solved with a self-consistent
calculation. And then, the energy density, the pressure, the
incompressibility, the symmetry energy, and the slope of sym-
metry energy are easy to work out.

The innovation of this work is that we consider the BR
scaling in RHF. Similar to the SLC and SLCD models which

can successfully describe the properties of NS and finite nuclei
[10,11], we ignore the BR scaling for the nucleon mass MB.
For mesons’ mass, the BR scaling functions are introduced as
[2,3,6,9–11]

m∗
σ

mσ

= m∗
ω

mω

= m∗
ρ

mρ

= f ∗
π

fπ
= 1 − x

ρ

ρ0
, (12)

where x is the strength parameter of the mass drop. Different
from Eq. (12), the pion mass m∗

π , which is missing in the RMF,
scales as

√
f ∗
π [6]. Apart from f ∗

π , the scaling functions of
coupling constants are given as [10,11]

g∗
σ

gσ

= 1

1 + yρ/ρ0
,

g∗
ω

gω

= 1 − xρ/ρ0

1 + wρ/ρ0
, (13)

g∗
ρ

gρ

= 1 − xρ/ρ0

1 + zρ/ρ0
.

The strength parameter of the mass drop x is given based
on the experimental results. When x is given, the remaining
scaling parameters of coupling constants y and z are chosen
to adjust the incompressibility κ and the slop of symmetry
energy, respectively. The scaling parameter w will stiffen the
EOS at low density and soften the EOS at high density, so that
the properties of finite nuclei and NS are not very reasonable.
In the following, similar to the SLC and SLCD models, we set
w to be zero.

III. RESULTS AND DISCUSSIONS

The EOS of earlier RMF and RHF is quite stiff [17,50].
In order to soften the EOS, nonlinear meson self-interactions
and density-dependence meson-nucleon couplings are intro-
duced in the RMF and RHF [7–11,21–24,51]. As one kind
of density-dependence model, RMF with the BR scaling can
produce a soft EOS and describe chiral symmetry restoration
phenomenologically [7–11]. The RMF with BR scaling has
been established to study properties of NS and finite nuclei
successfully. However, the pion exchange, which is important
in the spin-orbit interaction, is missing in the RMF. In order
to take into account the contributions of pion exchange in
the nucleon-nucleon force, we have established several RHFs
with BR scaling.

The strength parameter of the mass drop x is given based
on the experimental results. The photoproduction experiments
with the Crystal Barrel detector reported a sizable mass drop
x ≈ 0.13 of ω for an average density of 0.6 times saturation
density [2]. The KEK proton-induced nuclear reactions also
reported a sizable mass drop x = 0.092 ± 0.002 of ρ and ω
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TABLE II. Parameter sets for RMF and RHF models. The hadron masses are MB = 938 MeV, mσ = 590 MeV, mω = 783 MeV, mρ =
770 MeV, and mπ = 138 MeV in vacuum. EB/A(MeV), κ (MeV), Esym(MeV), and L(MeV) are the binding energy, incompressibility,
symmetry energy, and slope of symmetry energy at saturation density ρ0 = 0.16 fm−3, respectively. The radius R is in units of km.

Model gσ gω gρ fπ x y z EB/A(MeV) κ (MeV) Esym(MeV) L(MeV) Mmax/M� R(1.4M�)

SLC 10.1408 10.3261 3.8021 – 0.126 0.239 – −16.3 230.0 31.6 92.3 2.01 12.6
SLCD 10.1408 10.3261 5.7758 – 0.126 0.239 0.5191 −16.3 230.0 31.6 61.5 2.00 11.5
RHFSL1 10.410 10.190 1.721 – 0.126 0.239 – −16.0 300.6 31.6 90.4 1.84 13.6
RHFSLD1 10.236 9.978 2.832 – 0.126 0.239 0.5191 −16.0 276.3 31.6 79.7 1.74 13.2
RHFSLD2 9.863 9.798 2.468 1.000 0.126 0.239 0.5191 −16.0 237.8 31.6 76.9 1.71 12.5
RHFSLD3 10.485 10.838 0.130 1.000 0.126 0.210 0.5191 −16.0 301.0 31.6 96.0 2.06 13.9
RHFSLD4 9.898 10.063 1.905 1.000 0.092 0.170 0.5191 −16.0 303.8 31.6 84.7 2.13 13.6
RHFSLD5 9.148 8.922 2.789 1.000 0.053 0.140 0.5191 −16.0 292.3 31.6 73.1 2.09 13.1
RHF 10.607 11.759 – 1.000 – – – −16.0 524.7 37.9 149.2 2.80 15.0

meson at saturation density [3]. However, the γ -A reactions
with the TAPS detector concluded that the mass drop x is not
greater than 0.053 for ρ and ω mesons at saturation density
[4]. The mass drop of SLC and SLCD is based on the result
of the photoproduction experiments with the Crystal Barrel
detector [10,11]. As shown in Table II, for comparison, we
first choose the same BR scaling parameters as the SLC and
SLCD in RHFSL1 and RHFSLD1, respectively, and ignore
the pion’s contributions. When the BR scaling parameters
(x, y,w) are set, the meson-nucleon coupling constants (gσ ,
gω, gρ) are adjusted to reproduce the binding energy per
nucleon EB/A = ε/ρ − MB = −16.0 MeV, the zero pressure
and the average value of symmetry energy Esym = 31.6 MeV
at saturation density ρ0 = 0.16 fm−3 [52]. Since the ρ meson
has no contributions in symmetric nuclear matter with RMF,
the EOS of symmetric nuclear matter between SLC and SLCD
has no differences. The SLC and SLCD models share the same
incompressibility κ = 230 MeV at saturation density. How-
ever, since the ρ meson has contributions in the Fock term
of symmetric nuclear matter, the EOS of symmetric nuclear
matter between RHFSL1 and RHFSLD1 is different. The EOS
of RHFSLD1, which considers the BR scaling parameter of
the coupling constant of ρ meson z, is softer than one of
RHFSL1. Due to the contributions of the Fock term, with the
same BR scaling parameters, the EOS of RHF is stiffer than
the one of RMF. When the contributions of the pion are taken
into account and the rest of the BR scaling parameters remain
the same, the EOS of RHF will become soft. For instance, the
EOS of RHFSLD2 is much softer than the one of RHFSLD1.
Such a soft EOS may not be conducive to reproducing the
properties of NSs. Therefore, for a given mass drop x, we
reduce the BR scaling parameter y of the coupling constant of
the σ meson to stiffen the EOS of RHF. As shown in Table II,
keeping the rest of the BR scaling parameters unchanged,
the incompressibility increases with a decreasing of the BR
scaling parameter y. Moreover, since the size of the mass drop
remains controversial [53], we also study the RHFs with the
mass drop of x = 0.092 [3] and x = 0.053 [4]. The EOS of
RHF without BR scaling is also listed for comparison.

When the RHF models with BR scaling are established,
we are interested in how these models reflect the chiral limit.
The corresponding critical density ρc of the chiral symme-
try restoration with a mass drop x = 0.126, x = 0.092, and

x = 0.053 is 7.94, 10.87, and 18.87ρ0, respectively. As shown
in Fig. 1, for a given mass drop x, the nucleon mass of RHF
models becomes zero at the same density. The nucleon mass
of RHF models with x = 0.126 approaches zero the fastest.
A zero mass of a nucleon will not break the chiral symmetry.
Due to the Fock term, the nucleon mass of RHFs will reach
zero faster than one of the RMFs with the same strength
parameter of the mass drop. The RHF without BR scaling
will not reach zero at high density. Moreover, as shown in
Fig. 2, we compare the pressures of BR scaling models with
constraints from collective flows [23] and kaon production
[24–29] in heavy-ion collisions. The pressures of RHFs with
BR scaling are consistent with the constraints from collective
flows and kaon production. For a sizable mass drop x = 0.126,
since RHFs with BR scaling reach the chiral limit quickly, the
pressures of these models will rise up at 5–6ρ0. While, for the
mass drop of x = 0.092 and x = 0.053, the pressures will not
rise up at 5–6ρ0. Besides, a small scaling parameter of scalar
coupling constant y will lead to a larger incompressibility and
a higher pressure. For a given mass drop x, the pressures of
RHFs with BR scaling can almost range from the lowest con-
straint to the highest constraint by varying scaling parameters
of scalar coupling constant y. This will be helpful for us to

FIG. 1. The effective mass as a function of baryon density in
symmetric nuclear matter for RHF with different parameters.
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FIG. 2. The pressure as a function of baryon density in sym-
metric nuclear matter for RHF with different parameters. The cyan
and yellow regions extracted from the collective flows [23] and kaon
[24–29] yields of heavy-ion collisions, respectively.

study the properties of NS. Since the EOS of the RHF without
BR scaling is rather stiff, the pressure of this model surpasses
the constraint obviously.

The symmetry energy, which is the energy difference per
nucleon between pure neutron matter and symmetric matter,
is also an important part of EOS. Apart from the RHF model
without BR scaling, as shown in Table II and Fig. 3, the
symmetry energy is set to an average value (31.6 MeV) at
saturation density. The symmetry energy of the RHF model
without BR scaling is stiff. However, when considering the
BR scaling, the symmetry energy of the RHF model becomes
soft. The slope of symmetry energy of RHF with BR scaling
ranges from 73.1 MeV to 96.0 MeV. Although some of the
slopes of symmetry energy are higher than the average slope
of the symmetry energy of 59.8 ± 16.5 MeV [53], however,
values beyond this average domain still cannot be excluded.
Some extractions of experimental/observational data still sup-
port a higher slope of symmetry energy. For instance, the
slopes of symmetry energy extracted from isospin diffusion
at 50 MeV/A with IBUU04 and IQMD are 86 ± 25 MeV
[54] and 77.5 ± 32.5 MeV [55], respectively. The slopes of
symmetry energy extracted from charge exchange and elastic
scattering reactions is about 70–101 MeV [56]. More recently,
the slope of symmetry energy, which is extracted from spec-
tra of charged pions in collisions involving rare isotope Sn
beams on isotopic Sn targets, ranges from 42 to 117 MeV
[57]. The slope of symmetry energy extracted from the re-
cent neutron skin thickness of 208Pb given by the PREX-II
is 109.56 ± 36.41 MeV [58]. Also, the slopes of symmetry
energy extracted from torsional crust oscillation of NSs is
115 ± 15 MeV [59]. Interestingly, as shown in the upper panel
of Fig. 3, the symmetry energy of RHFs with the strength
parameter of the mass drop x = 0.126 (RHFSL1-RHFSLD3)
is almost flat at density above 3ρ0, and even decreases slightly.
To explain this phenomenon, we decompose the symmetry
energy into a kinetic part Ekin

sym = 1
2

∂2(εK /ρ)
∂δ2 |δ=0 and potential

part Epot
sym = 1

2
∂2((εD+εE )/ρ)

∂δ2 |δ=0 [60]. As shown in lower panel

FIG. 3. The symmetry energy as a function of baryon density for
RHF with different parameters (upper panel). The lower panel is the
kinetic and potential parts of the symmetry energy as a function of
baryon density.

of Fig. 3, for x = 0.126, the kinetic part of the symmetry
energy increases at a density above 3ρ0, however, the potential
part of the symmetry energy decreases. When the poten-
tial part decreases faster than the kinetic part is increasing,
the symmetry energy will decrease slightly. The decrease of
the potential part is mainly because the neutron mass M∗

n
and the proton mass M∗

p are close to each other when the
density gradually approaches the critical density of chiral
limit. For x = 0.092 (RHFSLD4), since the critical density
of the chiral limit is higher than the one of x = 0.126, the
symmetry energy becomes flat at a density above 5ρ0. For
x = 0.053 (RHFSLD5), the difference between M∗

n and M∗
p

remains at a density below 6ρ0. As a result, the potential part
with x = 0.053 will hardly drop and the symmetry energy
increases with an increase of the baryon density at a density
below 6ρ0. Similarly, the potential part of RHF without BR
scaling does not decrease [60]. After discussing the EOS of
RHF with BR scaling, we turn to investigate the properties
of NSs. We consider that the matter of NS consists of neu-
trons, protons, electrons, and muons. With the β equilibrium
conditions (μp = μn − μe, μμ = μe) and charge neutrality
(ρp = ρe + ρμ), the density of each component of NS matter
is determined. Then the energy density (εns = ε + εμ + εe)
and the pressure P of NS matter can be obtained. We adopt
the EOSs obtained in this work at densities above half the
saturation density, while we employ the standard low-density
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FIG. 4. The mass-radius trajectories of NSs for RHF with differ-
ent parameters.

EOS since at lower densities NS matter transitions to the
inhomogeneous phase [61,62]. With the energy density and
pressure as inputs, the NS mass-radius relation can be ob-
tained by solving the standard Tolman-Oppenheimer-Volkoff
(TOV) equation [63,64]. As shown in Fig. 4, with the same
BR scaling parameters as the SLC and SLCD, the RHFSL1
and RHFSLD1, which do not contain the contributions of a
pion, can support the NS maximum mass of 1.84 M� and
1.74 M�, respectively. When including the pion and taking
the rest BR scaling parameters as RHFSLD1, the NS maxi-
mum mass given by the RHFSLD2 is merely 1.71 M�. The
maximum mass of the RHFSL1, RHFSLD1, and RHFSLD2
does not satisfy the recent astrophysical measurement (M =
2.08 ± 0.07M� [35]). In order to satisfy this measurement, we
reduce the BR scaling parameter of scalar coupling constant
y to stiffen the EOS. As a consequence, the NS maximum
mass predicted by RHFSLD3 is M = 2.06M�, and is well
within the domain of the recent astrophysical measurement.
For the mass drop of x = 0.092 and x = 0.053, RHFs with
BR scaling can also be adjusted to satisfy the maximum mass
extracted from recent astrophysical measurement. Apart from
the maximum mass, the radius of M = 2.08 ± 0.07M� pre-
dicted by RHFSLD3-RHFSLD5 is consistent with the results
extracted from astrophysical observations (12.39+1.30

−0.98 km [65]
or 13.7+2.6

−1.5 km [66]). Moreover, the radius of 1.4 M� predicted
by RHFSLD3-RHFSLD5 ranges from 13.1 to 13.9 km, locat-
ing at extractions from optical observations ranging roughly
from 10 to 14 km [36–42] and the radius of J0030+0451
being 13.02+1.24

−1.06 km [43]. However, the radius of 1.4 M�
with RHFSLD3 surpasses the upper limit (13.7km) based
on the tidal deformability parameter of coalescence of a NS
binary system [45–49] and the radius of J0030+0451 being
12.71+1.14

−1.19 km [44]. For a given mass drop x = 0.126, al-
though we can adjust the scaling parameter y of RHF to obtain

the maximum mass in the M = 2.08 ± 0.07M� domain, the
radius of 1.4 M� will surpass the upper limit based on the tidal
deformability parameter of the coalescence of a NS binary
system and the radius of J0030+0451 being 12.71+1.14

−1.19 km.
The NS radius of 1.4 M� with x = 0.092 is 13.6 km, closing
to the upper limit based on the tidal deformability parameter
of a coalescence of a NS binary system and the radius of
J0030+0451 being 12.71+1.14

−1.19 km. As a conclusion, the mass
drop of the RHF model cannot be too sizable, i.e., it shall not
exceed x = 0.092.

IV. SUMMARY

In this work, due to the chiral symmetry restoration at high
densities, several RHFs with various mass drops of mesons
have been proposed. Since the controversy about the size of
the mass drop of mesons still remains, the mass drops of RHFs
are chosen as x = 0.126, x = 0.092, and x = 0.053 based on
the experimental results. The pressure of symmetric nuclear
matter with these new models is consistent with the constraint
extracted from collective flows and kaon production in heavy-
ion collisions. Interestingly, the symmetry energy of RHFs
with BR scaling becomes soft at high density. Moreover, with
a sizable mass drop x = 0.126, the symmetry energy is almost
flat at densities above 3ρ0, and even decreases slightly. This is
because the potential part of the symmetry energy decreases
at density above 3ρ0. The decrease of the potential part is
caused from the fact that the neutron mass M∗

n and the proton
mass M∗

p are close to each other when the density gradually
approaches the critical density of chiral limit. With a mass
drop of x = 0.092, since the critical density of the chiral limit
is higher than the one of x = 0.126, the symmetry energy
becomes flat at densities above 5ρ0. For a small mass drop
x = 0.053, since the critical density of the chiral limit is very
high, the potential part of symmetry energy hardly decreases
at densities below 6ρ0. Therefore, the symmetry energy of
RHFs with x = 0.053 always increases at densities below 6ρ0.
Using RHFs with BR scaling, we also investigated the NS
mass-radius relations. Apart from three soft EOSs (RHFSL1,
RHFSLD1, and RHFSLD2), the NS maximum mass obtained
from RHFs with BR scaling satisfies M = 2.08 ± 0.07M�.
However, the NS radius of 1.4 M� with a sizable mass
drop x = 0.126 will surpass the upper limit (13.7 km) based
on the tidal deformability parameter of the coalescence of
a NS binary system and the radius of J0030+0451 being
12.71+1.14

−1.19 km. The NS radius of 1.4 M� with x = 0.092 is
13.6 km, closing to 13.7 km, and the radius of J0030+0451
being 12.71+1.14

−1.19 km. As a conclusion, the mass drop of RHF
model shall not exceed x = 0.092.
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