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Spin-polarized phases of 3P2 superfluids in neutron stars
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The interior of a neutron star is expected to be occupied by a neutron 3P2 superfluid, which is the condensate
of spin-triplet p-wave Cooper pairs of neutrons with total angular momentum J = 2. Here we investigate the
thermodynamic stability of 3P2 superfluids in a neutron-star interior under a strong magnetic field. Using the
theory incorporating the finite-size correction of the neutron Fermi surface, we show that the spin-polarized
phases of 3P2 superfluids, the magnetized biaxial nematic phase, and the ferromagnetic phase appear in high
temperatures and high magnetic fields. These phases were missed in the previous studies using the quasiclassical
approximation in which dispersions of neutrons are linearized around the Fermi surface. In particular, the
ferromagnetic phase, which is the condensation of Cooper-paired neutrons with fully polarized spins, appears
between the normal phase and the biaxial nematic phase and enlarges the thermodynamic stability of 3P2

superfluids under strong magnetic fields. Furthermore, we present the augmented Ginzburg-Landau theory that
incorporates the thermodynamic stability of spin-polarized 3P2 superfluid phases.
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I. INTRODUCTION

A neutron star, which is composed almost entirely of dense
neutrons, is a colossal superfluid in the Universe [1–3]. When
the temperature of a neutron star falls below a certain critical
value it becomes energetically favorable for neutrons to form
Cooper pairs. The neutron superfluidity is a key ingredient for
understanding the vital properties of neutron stars, including
the long relaxation time observed in the sudden speed-up
events (pulsar glitches) of neutron stars [4–6] and the en-
hancement of neutrino emission at the onset of superfluid
transition [7–12]. Pulsar glitches may also be explained by the
existence of superfluid components with quantized vortices
[13,14].

The condensates of paired neutrons exist under extreme
conditions prevailing in the interiors of neutron stars such
as high density, rapid rotation, and a strong magnetic field
[15,16]. In particular, magnetars are known as neutron stars
accompanied by the most intense magnetic field (B = 1015–
1018 G) observed in the Universe. Neutrons in the inner crust
form spin-singlet s-wave Cooper pairs via the 1S0 attractive
interaction [17], while the 1S0 channel becomes repulsive
due to the strong core repulsion in the high density regime
[18]. The 3P2 interaction stemming from a strong spin-orbit
force between nucleons remains attractive, leading to the

*mizushima@mp.es.osaka-u.ac.jp
†yasuis@keio.jp
‡dinotani@keio.jp
§nitta@phys-h.keio.ac.jp

formation of spin-triplet p-wave Cooper pairs preserving total
angular momentum J = 2. Neutron 3P2 superfluids have been
predicted to occupy the neutron-star interior instead of the
conventional 1S0 superfluids near the surface [19–37]. In con-
trast to 1S0 superfluids, the 3P2 superfluids are tolerant against
a strong magnetic field to the spin-triplet pairings. Thus the
3P2 superfluids will be more important in magnetars. It has
been discussed that the enhancement of neutrino emission
from the onset of the breaking and formation of 3P2 Cooper
pairs may explain the observed rapid cooling of the neutron
star in Cassiopeia A [10–12] (see also Refs. [38–40]).

Let us consider neutrons interacting via a strong spin-
orbit force, which are invariant under a gauge transformation
[U(1)ϕ] and spin-momentum rotation [SO(3)J ].1 The sym-
metry group, G = U(1)ϕ × SO(3)J , has three continuous
subgroups, U(1)Jz , U(1)2Jz−ϕ , and U(1)Jz−ϕ . The first case is
the uniaxial nematic (UN) phase. The UN phase is thermo-
dynamically stable at zero magnetic fields, while a magnetic
field induces successive phase transitions from the UN phase
to biaxial nematic (BN) phases with the dihedral-two (D2) or
dihedral-four (D4) symmetries [41–43]. These nematic phases
appear also in spin-2 Bose-Einstein condensates (BECs) [44].
However, one of the most salient features coming from the
fact that 3P2 superfluid is composed of fermion Cooper pairs
is that all the nematic phases are prototypes of topological
superfluidity accompanied by topologically protected Bogoli-
ubov quasiparticles [41,45]. In addition to these fermionic

1In this paper, we consider the presence of a uniform magnetic field
along the z axis, which explicitly breaks SO(3)J down to U(1)Jz .
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excitations, there are also rich massless and massive bosonic
excitations [46–58], which might provide sources of cool-
ing and transport phenomena in neutron stars. The ordered
states characterized by the other two subgroups, U(1)2Jz−ϕ and
U(1)Jz−ϕ , are referred to as the ferromagnetic (FM) phases.
These are the condensation of 3P2 Cooper pairs with fully
polarized spins. The interaction of neutron spins with strong
field in magnetars gives rise to the Zeeman splitting of the
neutron Fermi surface, amounting to the critical field of the
Pauli depairing of 1S0 Cooper pairs (≈ kBTc) or more, where
the superfluid critical temperature is about Tc ∼ 109 K. The
spin-polarized states are compatible with a strong Zeeman
splitting, and may become competitive to nematic states at
strong magnetic fields. Nevertheless, no previous works have
predicted the thermodynamic stability of spin-polarized su-
perfluid states.

In this paper, we report the thermodynamic stability of
spin-polarized 3P2 superfluid phases, such as the magnetized
BN and FM phases, at strong magnetic fields relevant to
magnetars. In general, the superfluid phase transition dras-
tically changes a low-energy dispersion of neutrons near
the Fermi surface. The Cooper pairs are confined to a low-
energy band near the Fermi surface and a shell in momentum
space, |k − kF| � kF, where kF is the Fermi momentum of
normal neutrons. In previous works [41,59], therefore, we
employed the quasiclassical approximation. We used the same
approximation in our studies on 3P2 superfluids based on the
Ginzburg-Landau (GL) theory [42,43,60,61]. The approxi-
mation incorporates quasiparticles confined to a low-energy
shell near the Fermi surface, and quasiparticles away from the
Fermi level are renormalized to the critical temperature and
Fermi liquid parameters. The quasiclassical approximation
postulates an infinitely large Fermi surface and cannot prop-
erly incorporate the Zeeman splitting of the neutron Fermi
surface. In this paper, we perform the microscopic calculation
of the Luttinger-Ward thermodynamic potential without the
quasiclassical approximation. The finite-size correction of the
neutron Fermi surface favors the FM state at high tempera-
tures and strong magnetic fields, while the D4-BN phase still
survives in low temperatures. The Zeeman splitting does not
exclude the D4-BN phase under strong magnetic fields, but
induces spin polarization of Cooper pairs, which is referred
to as the magnetized BN phase.2 We also discuss the impact
of such spin polarization on topological excitations, such as
Abelian and non-Abelian fractional vortices. Furthermore, we
extend the GL theory to incorporate the finite-size effect of
the Fermi surface. The augmented GL theory properly cap-
tures the thermodynamics of the spin-polarized 3P2 superfluid
phases.

The organization of this paper is as follows. In Sec. II, we
present the Luttinger-Ward functional for neutron 3P2 super-

2The magnetized D4-BN is also called a broken axisymmetric
phase in the context of spin-2 BECs [44]. For rotationally symmetric
d-wave superconductors, the stability of the C2 symmetric nematic
state with broken time-reversal symmetry is demonstrated using the
mean-field theory at T = 0 and the sixth-order GL theory near Tc

[62,63].

fluids and symmetry classification of 3P2 superfluid phases
including UN/BN phases and FM phases. Here we empha-
size that the particle-hole asymmetry is indispensable for the
thermodynamic stability of the spin-polarized phase. Based
on the theory, in Sec. III, we show the phase diagram of 3P2

superfluids at strong magnetic fields. In Sec. IV, we present
the augmented GL theory which properly takes account of the
leading-order contributions of the particle-hole asymmetry.
Section V is devoted to a summary and discussion.

II. 3P2 SUPERFLUID THEORY

A. Luttinger-Ward thermodynamic functional

Here we introduce the theoretical formulation for neutron
3P2 superfluids on the basis of the Luttinger-Ward thermody-
namic functional. Let us start to define the Nambu-Gor’kov
Green’s function in terms of a grand ensemble average of the
fermion-field operators in the Nambu (particle-hole) space,
� ≡ (ψ↑, ψ↓, ψ̄↑, ψ̄↓)tr, as

Ĝ(x1, x2) = −〈Tτ�(x1)�̄(x2)〉 =
(

G(x1, x2) F (x1, x2)
F̄ (x1, x2) Ḡ(x1, x2)

)
,

(1)
where ψa(τ ) = eHτψae−Hτ and ψ̄a(τ ) = eHτψ†

a e−Hτ (a =
↑,↓ for spins) are the field operators for fermions with spin
α = ↑,↓ and momentum k in the Matsubara representa-
tion. In this paper, we set h̄ = kB = 1 and set the volume
of the system to V → 1. We have introduced an abbrevi-
ation, xi ≡ (ri, τi ), representing the three-dimensional space
position ri and the imaginary time τi for the neutron (i =
1, 2). atr denotes the transpose of a matrix a. The elements
of Ĝ obey the symmetry relations in the Nambu space,
Gαβ (x1, x2) = −Gβα (x2, x1) and F̄αβ (x1, x2) = F ∗

βα (x2, x1). In
this paper, we consider translationally invariant neutron matter
and transform the space-time position x to the momentum k
and Matsubara frequency at temperature T , εn = (2n + 1)πT
(n ∈ Z): (x1, x2) → (k, εn). The self-consistent formalism is
derived from the Luttinger-Ward thermodynamic functional
which is given in terms of the full Nambu-Gor’kov Green’s
function G and the self-energy 	 as


[Ĝ] = − 1

2
T

∑
n

∫
d3k

(2π )3
Tr4

{
	̂Ĝ + ln

(−Ĝ−1
0 + 	̂

)}

+ 1

2

∫
d3k

(2π )3
tr2ξk + �[Ĝ], (2)

where the trace Tr4, (tr2) is taken over the spin and Nambu
spaces (spin space). The inverse propagator for free fermions
is given by

Ĝ−1
0 (k, iεn) = iεn − ξk, (3)

where ξk is the 2 × 2 spin matrix of the single-particle Hamil-
tonian for neutrons under a magnetic field B:

ξk = k2

2m
− μ − 1

2
γnσ · B, (4)

where m and μ are the mass and the chemical potential. Here
γn = 1.2 × 10−13 MeV/T is the gyromagnetic ratio for a neu-
tron. We use σ = (σ1, σ2, σ3) and τ = (τ1, τ2, τ3) to denote
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the matrices in the spin and Nambu spaces, respectively. The
last term in Eq. (4) is the interaction of neutron spins with
magnetic field. The Green’s function and the self-energy are
related to the functional �[Ĝ] by the stationary conditions
with respect to the Green’s function, δ
/δĜtr = 0, and the
self-energy, δ
/δ	̂tr = 0. The former is recast into the defi-
nition of the self-energy in terms of the functional derivative

	̂[Ĝ, 	̂] = 2
δ�[Ĝ]

δĜtr
≡

(
	 �

�̄ 	̄

)
. (5)

Dyson’s equation for the full Green’s function is obtained
from the latter stationary condition as

Ĝ−1 = Ĝ−1
0 − 	̂[Ĝ]. (6)

To discuss the thermodynamic stability of 3P2 super-
fluid phases, we employ the mean-field approximation in the
Luttinger-Ward thermodynamic functional. We take account
of the following mean-field self-energies into Eq. (2) through
the � functional. First, the off-diagonal submatrix of the self-
energy, �αβ (k), in Eq. (5) is the mean field associated with
effective interaction in the Cooper channel of neutrons:

�αβ (k) = T
∑

n

∫
d3k′

(2π )3
V pair

αβ;γ δ (k, k′)Fγ δ (k′, iεn), (7)

where we assume a condensate of neutron pairs with zero
center-of-mass energy and momentum. Second, the diagonal
self-energy,

	γα (k) = T
∑

n

∫
d3k′

(2π )3
V FL

αβ;γ δ (k, k′)Gβδ (k′, iεn), (8)

describes the Fermi liquid corrections to the quasiparticle
excitation energies. The � functional in Eq. (2) is constructed
from these mean-field self-energies as

� =1

4
T

∑
n

∫
d3k

(2π )3
T

∑
n′

∫
d3k′

(2π )3

× [
Gγα (k, iεn)V FL

αβ;γ δ (k, k′)Gβδ (k′, iεn′ )

+2F̄αβ (k, iεn)V pair
αβ;γ δ (k, k′)Fγ δ (k′, iεn′ )

]
. (9)

The interaction in the Cooper channel is decomposed into
the spin-singlet (e: even parity) and spin-triplet (o: odd parity)
functions: V pair

αβ;γ δ (k̂, k̂
′
) = V (e)

αβ;γ δ (k̂, k̂
′
) + V (o)

αβ;γ δ (k̂, k̂
′
), where

we have introduced k̂ ≡ k/kF. At low density of neutrons,
the 1S0 channel is attractive and dominant in Cooper pair
channels. At the high density regime ρ � 1014g/cm3 (ρ is
the particle density of neutrons), the 1S0 channel remains
repulsive due to the strong core repulsion, while the 3P2 in-
teraction stemming from a strong spin-orbit force between
two nucleons remains attractive. As the interactions in the 3P0

and 3P1 channels are repulsive at high density [20,21,64], they
are irrelevant to the formation of the superfluidity. Hence we
consider the attractive 3P2 interaction as a dominant pairing
interaction of neutrons in the inner cores of neutron stars:

V pair
αβ;γ δ (k̂, k̂

′
) = −v

3∑
μ,ν=1

Tμν,αβ (k̂)T ∗
μν,δγ (k̂

′
). (10)

The traceless and symmetric tensor, Tμν,αβ (k̂), is given by

Tμν,αβ (k̂) = 1
2

(
�

μ

αβ k̂ν + �ν
αβ k̂μ

) − 1
3δμν�αβ ·k̂, (11)

with �
μ
αβ = i(σμσy)αβ , which obeys Tμν,αβ (k̂) = Tνμ,αβ (k̂) =

Tμν,βα (k̂) and tr[T (k̂)] ≡ ∑
μ Tμμ,αβ (k̂) = 0 [25]. The general

form of the spin-triplet p-wave superfluid order is expressed
in terms of a symmetric traceless tensor, Aμi ∈C, as

�αβ (k) =
∑
μν

AμνTμν,αβ (k̂). (12)

Another interaction potential, (V FL
αβ;γ δ), is expanded in

terms of the Legendre polynomials P� and parametrized with
Landau’s spin-independent and spin-dependent Fermi liquid
parameters F (s)

� and F (a)
� (� = 0, 1, . . . ) as

V FL
αβ;γ δ (k̂, k̂

′
) = N−1

F

∑
�

[
F (s)

� δαγ δβδ + F (a)
� σαγ ·σβδ

]
P�(k̂·k̂′

),

(13)

where NF is the neutron density of states at the Fermi energy
εF. Among the dimensionless parameters, F (a)

0 gives rise to the
spin-exchange interaction with the magnetization density of
neutrons, and significantly affects the equilibrium properties
of 3P2 superfluids under a magnetic field. In this paper, there-
fore, we only take account of the lowest-order terms (� = 0).
The 2 × 2 self-energy matrix in the spin space is then given
by

	αβ = 1

2NF

[
F (s)

0 nδαβ + F (a)
0 S·σαβ

]
, (14)

and 	̄αβ = −	βα . The particle density n and the spin density
S are obtained as

n = T
∑

n

∫
d3k

(2π )3
tr2[G(k, iεn)], (15)

Sμ = T
∑

n

∫
d3k

(2π )3
tr2[σμG(k, iεn)], (16)

respectively. Although the thermodynamic properties are in-
sensitive to F (s,a)

��1 , the fermionic vacuum polarization steaming
from the Fermi liquid corrections with � � 1 may affect the
spectrum of bosonic excitations, i.e., collective excitations of
3P2 Cooper pairs [65].

The full Green’s function, Ĝ, is determined from the self-
consistency condition in Eq. (5) as

Ĝ−1(k, iεn) = iεn − ĤBdG(k), (17)

where the Bogoliubov–de Gennes (BdG) Hamiltonian is given
by

ĤBdG(k) ≡
(

ξeff (k) �(k)
−�∗(−k) −ξ tr

eff (−k)

)
. (18)

The self-energies associated with the particle density and spin
density are renormalized to the chemical potential and the
magnetic field as

μeff = μ − 1

2NF
F (s)

0 n, Beff ≡ B − F (a)
0 M

χ0
N

, (19)
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where Mμ ≡ 1
2γnSμ is the magnetization density of neutron

3P2 superfluid and χ0
N is the Pauli spin susceptibility of a

normal neutron gas with effective mass m∗ and the density
of state NF. We define ξeff (k) = k2/(2m) − μeff − (1/2)γnσ ·
Beff . Let Û (k) be a 4 × 4 unitary matrix that diagonalizes the
Bogoliubov–de Gennes Hamiltonian as

Û†(k)ĤBdG(k)Û (k) =
(

E(k)
−E(−k)

)
, (20)

where E(k) = diag(E1(k), E2(k)) is the energy eigenvalues of
the Hamiltonian. The thermodynamic stability of 3P2 superflu-
ids is determined by minimizing the thermodynamic potential

(T, μ, B). The potential is equivalent to the Luttinger-Ward
functional 
[Ĝ, 	̂] when Ĝ and 	̂ satisfy the stationary con-
ditions in Eqs. (5) and (6). On the basis of the quasiparticle
energy, Eα (k), the thermodynamic potential is recast into


 =1

2

∑
α

∫
d3k

(2π )3
[ξα (k) − Eα (k) − 2T ln(1 + e−Eα (k)/T )]

+ 1

2v
tr3[A†A] − 1

4NF
F (s)

0 n2 + 1

4NF
F (a)

0 S2
z , (21)

where we utilize the relations tr ln A = ln det A and∑
n ln[(ε2

n + ε2)/T 2] = ε/T + 2 ln(1 + e−ε/T ) + a (a is a
T -independent constant). The gap equation for the 3P2 order
parameter is derived from the stationary condition of the
thermodynamic potential. The total particle density n and
magnetization density Mμ = 1

2γnSμ are also obtained from
the thermodynamic relations

n = −∂


∂μ
, Mμ = − ∂


∂Bμ

, (22)

respectively. The gap equations for Aμi are derived from the
stationary condition of the thermodynamic potential:

δ


δA∗
μi

= 0. (23)

The equilibrium state is determined by solving the self-
consistent equations (19) and (22), and the gap equation (23)
for Aμi.

B. Symmetry classification of 3P2 order parameters

In the absence of external fields, the normal neutron system
is invariant under a gauge transformation [U(1)ϕ] and the
three-dimensional spin-orbit rotation [SO(3)J ]

G = U(1)ϕ × SO(3)J . (24)

The order parameter for 3P2 superfluids is the 3 × 3 traceless
symmetric tensor, Aμi, defined in Eq. (12). The continuous
symmetry, G, acts on the tensor as

A → eiϕgAgtr, eiϕ ∈ U(1), g ∈ SO(3) (25)

in the 3 × 3 matrix notation. The ordered state spontaneously
breaks the symmetry of the Hamiltonian, G, to H ⊂ G. The
group H describes the remaining symmetry of the ordered
state and the tensor is invariant under a transformation by
the group element h ∈ H , hA = A. The element h is written
as h = ei�+iαμJμ , where � and Jμ are the generators for a

gauge transformation and simultaneous spin-orbit rotation,
respectively, and α is an infinitesimal parameter.

There are three continuous subgroups of G, HFM =
U(1)ϕ−2Jz , HFM′ = U(1)ϕ−Jz , and HUN = U(1)Jz . The ele-
ments of these subgroups are given by h = ei(α−2Jzα), ei(α−Jzα),
and eiJzα , respectively. In the first two subgroups, the gauge
transformation A → Aeiα is compensated by the spin-orbit
rotation about the z axis by −α or −2α, which manifestly
exhibits the equivalence between phase change and spin-orbit
rotation. The order parameters of two ferromagnetic (FM and
FM′) phases are given by

AFM
μi = �

⎛
⎝

1 ±i 0

±i −1 0

0 0 0

⎞
⎠

μi

, AFM′
μi = �

⎛
⎝

0 0 1

0 0 ±i

1 ±i 0

⎞
⎠

μi

,

(26)

where we omit the U(1) phase degrees of freedom. The former
(latter) state corresponds to a condensation of neutrons into
Cooper pairs with Jz = ±2 (Jz = ±1), the spins of which
are fully (partially) polarized. The ordered state with HUN =
U(1)Jz is the UN nematic state.

In addition to the ordered states preserving continuous
symmetry, there exist competitive orders with discrete sym-
metry. When the ordered state preserves the time-reversal
symmetry, Aμi must be a real symmetric traceless tensor.
Hence, the order parameter with time-reversal symmetry is
given by a diagonal form:

Aμi = �

⎛
⎝

1 0 0

0 r 0

0 0 −1 − r

⎞
⎠

μi

. (27)

The eigenvalue r ∈ [−1,−1/2] is the order parameter that
represents the biaxiality of the nematic order parameter. The
most symmetric state is the UN state at r = −1/2, which
maintains the U(1) symmetry about the x̂ axis in the spin-orbit
space. When r deviates from the UN point, the ordered state
breaks the U(1) symmetry down to the discrete symmetry. The
BN state at r = −1 remains invariant under dihedral-four D4

symmetry, which has the C4 and C2 axes. The intermediate r
holds dihedral-two D2 symmetry with the three C2 axes.

Below, we focus on the high temperature and high mag-
netic field regime of 3P2 neutron superfluids. The 3P2 order
parameter under a magnetic field is expressed in terms of three
real parameters (�, κ, r) as

Aμi = �

⎛
⎝

1 iκ 0

iκ r 0

0 0 −1 − r

⎞
⎠

μi

. (28)

Without loss of generality, we assume that the magnetic field
is applied along the z axis. The order parameter in Eq. (28) has
three real variational parameters, �, r ∈ [−1,−1/2], and κ ∈
[−1, 1], which are determined by solving the self-consistent
equations in Sec. II A. The amplitude of the order parameter
is represented by �, while r ∈ [−1,−1/2] and κ ∈ [−1, 1]
quantify the biaxiality and spin polarization of the nematic
order parameter, respectively. The order parameter in Eq. (28)
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TABLE I. The remaining symmetries (H ), order parameter manifolds (R = G/H ), and topological vortices [π1(R)] in possible phases of
3P2 superfluids, the uniaxial/biaxial nematic phases, the cyclic phase, the magnetized BN phase, and the ferromagnetic phase. The magnetized
D4-BN phase with r = −1 and κ �= 0 is also called a broken axisymmetric phase in spin-2 BEC [44]. “No. NG” and “No. qNG” count the
number of Nambu-Goldstone (NG) modes and quasi-Nambu-Goldstone (qNG) modes, respectively. A∗ indicates the universal covering group
of A, and Q = D∗

2 is a quaternion group (see Appendix A of Ref. [66] for the definition of the product ×h).

Phase O.P. [see Eq. (28)] H R = G/H π1(R) No. NG No. qNG [67]

Uniaxial nematic r = −1/2, κ = 0 D∞ � O(2) U(1) × RP2 Z ⊕ Z2 [42,68] 3 2

Biaxial nematic
r ∈ (−1,−1/2), κ = 0

r = −1, κ = 0
D2

D4

U(1) × SO(3)/D2

[U(1) × SO(3)]/D4

Z ⊕ Q [42,68]
Z ×h D∗

4 [42,43,66]
4
4

1
1

Cyclic r = ei2π/3, κ = 0 T [U(1) × SO(3)]/T Z ×h T ∗ [66,69–71] 3
Magnetized
biaxial nematic

r ∈ (−1, −1/2), κ ∈ (0, 1)
r = −1, κ ∈ (0, 1)

0
C4

SO(3) × U(1)
[U(1) × SO(3)]/Z4

Z2 ⊕ Z
Z ×h C∗

4

4
4

Ferromagnetic
r = −1, κ = 1

Eq. (26)
U(1)Jz+2�

U(1)Jz+�

SO(3)Jz−2�/Z2

SO(3)Jz−�/Z2

Z4 [70,72]
Z4 [70,72]

3
3

contains the FM states in (r = −1, κ = −1) and nonmagnetic
UN/BN states in κ = 0.

For r = −1 and κ ∈ (0, 1) in Eq. (28), the order parame-
ter is invariant under the cyclic group C4 ⊂ G, the elements
(eiα, g) of which are

C4 = {(1, 13), (−1, R3), (1, I3), (−1, I3R3)}, (29)

where I3 and R3 represent π and π/2 rotations around the third
(z) axis, respectively,

I3 =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, R3 =

⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠, (30)

and 13 is the 3 × 3 unit matrix. The mixing of the nonzero
κ component in the D4-BN state lowers the symmetry to the
cyclic group C4.

In Table I, we summarize the remaining symmetries (H),
order parameter spaces (R = G/H), and topological (vortex)
excitations [π1(R)] in possible phases of 3P2 superfluids. In
the nonmagnetic BN state with r = −1 and κ = 0, the unbro-
ken symmetry is the dihedral-four D4, and the fundamental
group is π1(R) = Z ×h D∗

4, which includes the possibility
of non-Abelian half-quantized vortices [42,43]. Recently, the
thermodynamic stability of non-Abelian half-quantized vor-
tices has been discussed by means of the Ginzburg-Landau
theory [43] and microscopic quasiclassical theory [73]. In the
magnetized BN state with r = −1 and 0 < κ < 1, however,
the D4 symmetry reduces to C4. The fundamental group,
π1(R) = Z ×h C∗

4 , indicates that possible vortex excitations
include half-quantized vortices. In Fig. 1, we illustrate the
gap structure and U(1) phase in a half-quantized vortex of the
nonmagnetic D4-BN state. The π phase jump is compensated
by the fourfold rotation about the z axis, C4,z. In the magne-
tized BN state, the element (−1, R3) ensures the topological
stability of the half-quantized vortices. The spatial profile of
the order parameter along the azimuthal angle θ ∈ [0, 2π ) is
represented as

Aμi(θ ) = �eikθ Rn(θ )AμiR
tr
n (θ ) (31)

where Rn(θ ) ∈ O(2) is the n-fold rotation matrix about the z
axis:

Rn(θ ) =
⎛
⎝cos(nθ ) − sin(nθ ) 0

sin(nθ ) cos(nθ ) 0
0 0 1

⎞
⎠. (32)

The integer vortex is k = 1 and n = 0, while the half-
quantized vortex is k = 1/2 and n = ±1/4. They obey
Abelian exchange statistics. In the case of the nonmagnetic
D4-BN (r = −1, κ = 0), each non-Abelian half-quantized
vortex hosts a single zero energy mode, which behaves as a
non-Abelian anyon [73]. The non-Abelian anyon is protected
by topological invariants, such as the mirror Chern number.
The nonzero κ induces the spin polarization of the BN order
and changes the order parameter manifold R, but does not
affect the topological stability of the non-Abelian anyon.

FIG. 1. Schematics of the texture of the gap structure and U(1)
phase in a half-quantized vortex of the unitary (D4) BN state. The
gap structure shows the energy gap Eg at k = kF and the thick arrows
denote the spin degrees of freedom of 3P2 Cooper pairs, d(k).
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III. 3P2 SUPERFLUID PHASE DIAGRAM

A. Particle-hole asymmetry and Zeeman splitting
of transition temperatures

At zero magnetic fields, the excitation energy of Bogoli-
ubov quasiparticles is obtained from Eq. (20) as

Eα=±(k) =
√[

ξ
(0)
eff (k)

]2 + |d(k)|2 ± |d(k) × d∗(k)|, (33)

where ξ
(0)
eff (k) = k2/(2m) − μeff is the energy of the normal

neutrons at zero magnetic fields and the d vector is defined as

dμ(k) ≡ 1
2 tr2[−iσyσμ�(k)] = Aμ j k̂ j, (34)

which represents the spin degrees of freedom of 3P2 Cooper
pairs. When the time-reversal symmetry is preserved (κ = 0),
the d vector is real and the eigenstates are doubly degen-
erate as a Kramers doublet. A state with nonzero κ breaks
time-reversal symmetry, and the energy gap of the fermionic
excitations at k = kF is determined by

Eg ≡
√

tr2[�̂(kF)�̂†(kF)]/2

=
√

|d(kF)|2 ± |d(kF) × d∗(kF)|. (35)

The ordered state with d(k) × d∗(k) �= 0 is referred to as a
nonunitary state. In such nonunitary state, the 3P2 Cooper
pairs at the point k have spin [74]

Spair (k) = id(k) × d∗(k). (36)

The spin polarization of 3P2 Cooper pairs splits the degen-
eracy of Bogoliubov excitations at k, leading to two distinct
excitation gaps, |d(k)|2 ± |d(k) × d∗(k)|. In particular, when
κ �= 0, the order parameter in Eq. (28) has a net average spin
on the Fermi surface:〈

Sz
pair

〉 = 2κ (1 − r)�2/3, (37)

where 〈· · · 〉 is the average over the neutron Fermi surface.
The net spin of 3P2 Cooper pairs leads to the polarization of
neutron spins S at zero magnetic fields. The spin polarization
of 3P2 Cooper pairs may stabilize the nonunitary states with
κ �= 0, such as the magnetized D4-BN and FM states, under a
strong magnetic field.

In previous works [41,59], employing the quasiclassical
approximation, we found that the UN state is thermodynam-
ically stable at zero magnetic fields, while the phase diagram
in nonzero magnetic fields is occupied by the D2 and D4-BN
states with κ = 0. The superfluid phase transition drastically
changes the properties of normal neutrons, but the change
occurs in a low-energy dispersion near the Fermi surface.
The Cooper pairs are confined to a low-energy band near
the Fermi surface |ξeff | ∼ � � εF and a shell in momentum
space, |k − kF| � kF, where εF is the Fermi energy of normal
neutrons. Hence, the quasiclassical approximation incorpo-
rates only quasiparticles confined to a low-energy shell near
the Fermi surface as a leading-order contribution of Tc/TF �
1 and �/εF � 1. The quasiparticles away from the Fermi
level are renormalized to the physical parameters, such as
the effective mass of neutrons, spin susceptibility, the critical
temperature, and so on. However, the quasiclassical approxi-
mation cannot properly describe the thermodynamic stability

1.0

1.1

0.8

1.2

1.3

1.4

0.9

0.7
0.5 1.00-1.0 -0.5

)b()a(

FIG. 2. (a) Schematics of the particle-hole symmetry emergent in
the quasiclassical approximation (top) and the leading-order correc-
tions of the particle-hole asymmetry (bottom). The latter corresponds
to the finite-size corrections of the Fermi surface, and properly takes
account the Zeeman splitting of the Fermi surface. (b) Critical tem-
peratures as functions of κ and δ, where the former (latter) represents
the spin polarization of the 3P2 Cooper pairs (the Zeeman splitting of
the Fermi surface due to the particle-hole asymmetry). Here we fix
r = −1.

of the spin-polarized superfluid states. This is because, as
shown in Fig. 2(a), the approximation assumes the infinitely
large Fermi surface and the particle-hole symmetry in the
quasiparticle density of states. The self-consistent equations
in Sec. II A are thus computed with∫

d3k

(2π )3
≈ NF

∫
dε〈· · · 〉, (38)

which cannot incorporate the Zeeman splitting of the neutron
Fermi levels and asymmetry in density of states, where 〈· · · 〉
is the average over the neutron Fermi surface.

To properly discuss the thermodynamic stability of spin-
polarized 3P2 superfluids under strong magnetic fields, we
compute the momentum integral in self-consistent equations
in Sec. II A without employing the quasiclassical approxi-
mation. This incorporates the finite-size effect of the Fermi
surface and asymmetry of density of states (particle-hole
asymmetry), which are regarded as the higher-order correc-
tions on Tc/TF and �/εF. It is demonstrated below that the
corrections split the critical temperatures of the nonmagnetic
UN/BN states and the FM states, and thermodynamically
stabilize the spin-polarized 3P2 states under a strong magnetic
field.

To see the role of particle-hole asymmetry on the splitting
of the critical temperatures, we start with the order parameter
in Eq. (28), which connects the nonmagnetic UN/BN states
(κ = 0) and the FM state (κ = ±1). We first note that the
critical temperatures in D4-BN and FM states are the same in
the quasiclassical approximation with accidental particle-hole
symmetry. A strong magnetic field then gives rise to Pauli
depairing of �↑↓ = �↓↑, and favors the ordered state �↑↑
and �↓↓ with r = −1. Then, the order parameter in the spin
representation is given as

�↑↑(k) = −�(1 + κ )(k̂x + ik̂y), (39)
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�↓↓(k) = −�(1 − κ )(k̂x − ik̂y), (40)

and �↑↓(k) = �↓↑(k) = 0. The BdG Hamiltonian is decom-
posed to the spin sectors

ĤBdG(k) =
(

ξ↑(k) �↑↑(k)
�∗

↑↑(k) −ξ↑(k)

)
⊕

(
ξ↓(k) �↓↓(k)

�∗
↓↓(k) −ξ↓(k)

)
,

(41)
where ξ↑ and ξ↓ are the single-particle energies of spin-up and
-down neutrons, respectively. The Bogoliubov quasiparticle
excitation energy is obtained as

Eα (k) =
√

ξ 2
α (k) + �2(1 + ακ )2

(
k̂2

x + k̂2
y

)
, (42)

where we have taken α = + (−) for spin up (down).
The variational parameters κ and � are determined by

solving the gap equation. From the saddle point condition of
the thermodynamic potential for Aμi given by Eq. (28), the
equations for κ and � are obtained as

1

v
= 1

2

[
(1 + κ )2

1 + κ2
F+ + (1 − κ )2

1 + κ2
F−

]
, (43)

κ

v
= 1

2
[(1 + κ )F+ − (1 − κ )F−], (44)

where

Fα =
∑

k

k̂2
x + k̂2

y

2Eα (k)
tanh

(
Eα (k)

2T

)
. (45)

The inverse of the coupling constant is associated with the pa-
rameter �0/εF through the gap equation at T = B = 0, where
�0 is the superfluid gap at T = 0 and B = 0. To quantify
the finite-size correction of the neutron Fermi surface and
particle-hole asymmetry, we introduce the parameter

δ ≡ NF,↑ − NF,↓
NF,↑ + NF,↓

. (46)

To determine the critical temperatures, we linearize the
gap equations (43) and (44) with respect to �. The critical
temperatures in the nonmagnetic D4-BN state (Tc,0) and in the
spin-polarized 3P2 state (Tc,κ ) are given by

Tc,κ

Tc,0
= exp

[
− 3

2vN̄F

{(
1 + 2κ

1 + κ2
δ

)−1

− 1

}]
, (47)

where N̄F ≡ (NF,↑ + NF,↓)/2. In the spin-polarized state with
κ > 0 (κ < 0), the spins of Cooper pairs are aligned parallel
(antiparallel) to the applied magnetic field. The finite-size
correction of the neutron Fermi surface, δ, splits the critical
temperatures, which is crucial for the thermodynamic stability
of the magnetized BN and ferromagnetic states with κ > 0
at high magnetic fields. As shown in Fig. 2(b), the critical
temperature of the magnetic state (κ �= 0) is the same as that
of the nonmagnetic D4-BN state at the quasiclassical (particle-
hole symmetric) limit, δ = 0, while Tc,κ for κ > 0 increases as
the particle-hole asymmetry parameter δ increases. This indi-
cates that the spin-polarized states, such as the FM state and
magnetized D4-BN state, can be thermodynamically stable in
a strong magnetic field, where the magnetic field gives rise to

the Fermi level shift and particle-hole asymmetry of spin-up
and -down neutrons.

B. 3P2 superfluid phases under a magnetic field

Let us now clarify the thermodynamically stable 3P2 su-
perfluid phases under a strong magnetic field. In the previous
works based on the quasiclassical approximation [41,59], we
find that the UN phase appears at B = 0, while the D2 and
D4-BN states with κ = 0 are thermodynamically stable in the
presence of magnetic fields. As mentioned in Sec. III A, the
approximation postulates that the neutron Fermi surface is
infinitely large, and the Zeeman splitting effect of the neutron
Fermi surface becomes negligible. In the quasiclassical limit,
Tc0/TF → 0, therefore, a magnetic Zeeman field along the ẑ
direction gives rise to the pair breaking effect of the spin state,
|↑↓ + ↓↑〉, while it does not affect the spin configurations of
|↑↑〉 and |↓↓〉, leading to �↑↑ = �↓↓. As the Cooper pairs
in the D4-BN state are equally distributed to the spin states,
|↑↑〉 and |↓↓〉, it is tolerant against pair breaking effect by
magnetic fields. The lower and higher region of the magnetic
field in the phase diagram are occupied by the D2 and D4-BN
phases, respectively, and the two phases are separated by
the second-order (first-order) phase boundary in the higher
(lower) temperature regime. The phase boundaries meet at the
(tri)critical end point [59].

Here we determine the order parameters �(T, B), r(T, B),
and κ (T, B) in Eq. (28), by numerically solving the self-
consistent equations in Sec. II A without employing the
quasiclassical approximation. We introduce the dimensionless
parameter

Tc0/TF ∼ �0/εF. (48)

This is related to the dimensionless parameter δ in Eq. (46)
representing the particle-hole asymmetry due to the finite-size
correction of the neutron Fermi surface. The quasiclassical
limit corresponds to Tc0/TF → 0 and δ → 0, while the finite-
size correction of the Fermi surface is taken into account as
Tc0/TF increases. In Figs. 3(a) and 3(b), we plot the thermo-
dynamic potential 
(T, B) and the superfluid gap �(T, B),
respectively, as functions of the nonunitarity κ , where we set
Tc0/TF = 0.025 and γn h̄B/πkBTc0 = 0.42. In this high mag-
netic field regime, r = −1 is favored in the entire T . The
spin polarization of Cooper pairs, κ , stays zero in the low
temperature region, which coincides with the superfluid phase
diagram within the quasiclassical limit. As T approaches Tc0,
however, κ gradually increases and reaches κ = 1. The region
with κ ∈ (0, 1) and r = −1 corresponds to the magnetized
D4-BN state with nonzero spin polarization, where Cooper
pairs are condensed into ↑↑ and ↓↓ spin states but the popu-
lation is imbalanced as shown in Eqs. (39) and (40).

The FM state with κ = 1 and r = −1 appears in the narrow
region around Tc. In Fig. 3(c), we plot the 3P2 superfluid phase
diagram in the T -B plane for 0.005 � Tc0/TF � 0.05. The sta-
bility region of the fully spin-polarized state enlarges and the
critical temperature Tc, corresponding to Eq. (47) with κ = 1,
increases as Tc0/TF increases. In contrast to the enlargement of
the spin-polarized state, the phase boundary between the D2-
and D4-BN states, T ∗

D4
, is insensitive to the parameter Tc0/TF.
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FIG. 3. Thermodynamic potential 
(κ ) (a) and the superfluid gap �(κ ) (b) as functions of the temperature T and the spin polarization of
Cooper pairs, κ , at γn h̄B/πkBTc0 = 0.42, where we set Tc0/TF = 0.025. In this high magnetic field regime, r = −1 is favored in the entire T .
(c) 3P2 superfluid phase diagram in the T -B plane for various Tc0/TF. In all data, we take F (s)

0 = F (a)
0 = 0.

Let us now discuss the role of the Fermi liquid parameter,
F (a)

0 . The parameter F (a)
0 < 0 (F (a)

0 > 0) induces the Fermi
liquid correction associated with a ferromagnetic (antifer-
romagnetic) exchange interaction, which alters the effective
magnetic field via Eq. (19). Here we ignore the contribution
of other Fermi liquid parameters, e.g., F (s)

0 , since it is renor-
malized to the chemical potential, and μ ≈ εF � F (s)

0 n/NF.
Figure 4(a) shows the shift of the critical magnetic fields,
Bc(T ), in the FM state [κ = 1 in Eq. (28)] for several values
of F (a)

0 (0.05 for each interval in Tc0/TF = 0.025 and 0.1 for
each interval in Tc0/TF = 0.005). For nonzero F (a)

0 , the local
magnetization density induced by the spin-polarized 3P2 pair-
ing and the external magnetic field is fed back to the effective
magnetic field in Eq. (19). As shown in Figs. 4(b)–4(d), for
F (a)

0 < 0 (F (a)
0 > 0), the induced M enhances (decreases) the

effective magnetic field via the ferromagnetic (antiferromag-
netic) spin exchange interaction. This effective magnetic field
enlarges (suppresses) the thermodynamically stable region of

the FM state as B increases. We note that at B = 0 all the
possible 3P2 pairing states have the same critical temperature
Tc = Tc0, regardless of F (s)

0 .
In the high magnetic field regime, the neutron 3P2 super-

fluid undergoes double second-order phase transitions at Tc,−
and Tc,+: the transition from the magnetized D4-BN (κ < 1)
to the FM state (κ = 1) at Tc,− and the transition from the
FM state to the normal state at Tc,+. The signature of the
multiple phase transitions is reflected as the successive jumps
of the specific heat of neutrons, CV = −T ∂2
/∂T 2. It has
been demonstrated in previous work [41,59] that the symme-
try breaking driven by the phase transition from the D4-BN
to D2-BN phases gives rise to the discontinuity of the specific
heat jumps. Similarly, the multiple phase transitions are ac-
companied by the successive jumps of the specific heat at Tc,−
and Tc,+. The first jump is attributed to the condensation of
only up-spin neutrons into 3P2 Cooper pairs with orbital angu-
lar momentum Lz = +1, �↑↑ ∝ (k̂x + ik̂y), while the second

FIG. 4. (a) Critical magnetic fields Bc(T ) in the fully spin-polarized 3P2 state for several values of F (s)
0 (0.05 for each interval in Tc0/TF =

0.025 and 0.1 for each interval in Tc0/TF = 0.005), where Tc0 is the critical temperature at zero magnetic fields. Phase diagram in the T -B plane
for F (a)

0 = 0.2 (b), 0 (c), and −0.2 (d) for Tc0/TF = 0.005, where T ∗
D4

is the phase boundary between D2- and D4-BN states.
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jump involves another spin component of neutrons to con-
dense into the Cooper pairs with Lz = −1, �↓↓ ∝ (k̂x − ik̂y).

IV. GINZBURG-LANDAU THEORY FOR 3P2 SUPERFLUIDS

Around the transition point from the normal phase to the
superfluid phase, the 3P2 superfluids allow bosonic excitations
as collective modes [46–48,50–58]. Such modes are important
not only in microscopic physics but also in astrophysics, be-
cause they can be relevant to the cooling process by neutrino
emissions from neutron stars.3 Generally, bosonic excitations
around the transition point can be described by the GL theory
as a low-energy effective theory [24,25,42,43,59–61,76–83].
The GL equation is expressed by a series of power terms of the
order parameter as a systematic expansion. This is obtained
through the fermion loops by integrating out the fermion
degrees of freedom.

In many cases, the GL expansion may be given up to
the fourth order. In the case of 3P2 superfluids, however, the
expansion up to the fourth order is not enough to determine
uniquely the ground state due to a continuous degeneracy
among the UN, D2-BN, and D4-BN phases at the fourth order.
At this order, in fact, an extended symmetry, SO(5), happens
to exist though it is absent in the original Hamiltonian.4

Such degeneracy can be resolved at the sixth order in the
GL expansion [42]. However, the sixth-order term is still not
enough because it brings only the local stability for the small
amplitude of the order parameter and it does not ensure the
global stability for the large amplitude. This problem can be

cured at the eighth order [61]. Therefore, the expansion up
to the eighth order is the minimum set of terms for allowing
the ground state with uniqueness and globally stability. As a
by-product, the expansion up to the eighth order enables us
to identify the (tri)critical end point separating the transition
lines of the first and second order between the D2-BN and
D4-BN phases [59].5

So far the GL expansion was given under the quasiclassical
approximation at high density region. In this approximation,
the coefficients of the GL equation can be expressed in sim-
ple forms according to the scaling behavior. At low density,
however, the quasiclassical approximation is not ensured any-
more, and its violation should be considered carefully, as we
have already discussed for the BdG equation in Sec. III. The
violation of the quasiclassical approximation is relevant to the
curvature of the Fermi surface, and it leads to the modification
of the coefficients in the GL equation [see β (1) and γ (1) in
Eqs. (61) and (62)]. After some calculations, we obtain the
GL free energy expressed by

f (τ ) = f (0)
8 (τ ) + f (�4)

2 (τ ) + f (�2)
4 (τ ) + O(Bmτ n)m+n�7,

(49)

where τ is a complex 3 × 3 matrix for the 3P2 order parameter.
In the GL equation, we use the notation τμi for the order
parameter of the 3P2 superfluids, which is different only by a
factor from Aμi used in the BdG theory in Sec. II. Each term
in Eq. (49) is explained as the following. f (0)

8 (τ ) is the term
up to the eighth order of the superfluid condensate without
magnetic fields:

f (0)
8 (τ ) = K (0)(∇xiτμ j∗∇xiτμ j + ∇xiτμi∗∇x jτμ j + ∇xiτμ j∗∇x jτμi ) + α(0)tr(τ ∗τ ) + β (0)[tr(τ ∗τ )tr(τ ∗τ ) − tr(τ ∗τ ∗ττ )]

+ γ (0)[−3tr(ττ ∗) tr(ττ ) tr(τ ∗τ ∗) + 4tr(ττ ∗) tr(ττ ∗) tr(ττ ∗) + 6tr(τ ∗τ ) tr(τ ∗τ ∗ττ ) + 12tr(τ ∗τ ) tr(τ ∗ττ ∗τ )

− 6tr(τ ∗τ ∗) tr(τ ∗τττ ) − 6tr(ττ ) tr(τ ∗τ ∗τ ∗τ ) − 12tr(τ ∗τ ∗τ ∗τττ ) + 12tr(τ ∗τ ∗τττ ∗τ ) + 8tr(τ ∗ττ ∗ττ ∗τ )]

+ δ(0)[(tr τ ∗2)2(tr τ 2)2 + 2(tr τ ∗2)2(tr τ 4) − 8(tr τ ∗2)(tr τ ∗ττ ∗τ )(tr τ 2) − 8(tr τ ∗2)(tr τ ∗τ )2(tr τ 2)

− 32(tr τ ∗2)(tr τ ∗τ )(tr τ ∗τ 3) − 32(tr τ ∗2)(tr τ ∗ττ ∗τ 3) − 16(tr τ ∗2)(tr τ ∗τ 2τ ∗τ 2) + 2(tr τ ∗4)(tr τ 2)2

+ 4(tr τ ∗4)(tr τ 4) − 32(tr τ ∗3τ )(tr τ ∗τ )(tr τ 2) − 64(tr τ ∗3τ )(tr τ ∗τ 3) − 32(tr τ ∗3ττ ∗τ )(tr τ 2) − 64(tr τ ∗3τ 2τ ∗τ 2)

− 64(tr τ ∗3τ 3)(tr τ ∗τ ) − 64(tr τ ∗2ττ ∗2τ 3) − 64(tr τ ∗2ττ ∗τ 2)(tr τ ∗τ ) + 16(tr τ ∗2τ 2)2 + 32(tr τ ∗2τ 2)(tr τ ∗τ )2

+ 32(tr τ ∗2τ 2)(tr τ ∗ττ ∗τ ) + 64(tr τ ∗2τ 2τ ∗2τ 2) − 16(tr τ ∗2ττ ∗2τ )(tr τ 2) + 8(tr τ ∗τ )4

+ 48(tr τ ∗τ )2(tr τ ∗ττ ∗τ ) + 192(tr τ ∗τ )(tr τ ∗ττ ∗2τ 2) + 64(tr τ ∗τ )(tr τ ∗ττ ∗ττ ∗τ ) − 128(tr τ ∗ττ ∗3τ 3)

+ 64(tr τ ∗ττ ∗2ττ ∗τ 2) + 24(tr τ ∗ττ ∗τ )2 + 128(tr τ ∗ττ ∗ττ ∗2τ 2) + 48(tr τ ∗ττ ∗ττ ∗ττ ∗τ )]. (50)

Notice that the δ(0) term is the eighth-order term for the global
stability which was found in Ref. [61]. The other two terms in

3Note that the cooling process is relevant also to quantum vortices
[75].

4In this case, the spontaneous breaking of the extended symmetry
eventually generates a quasi-Nambu-Goldstone mode [67].

Eq. (49) contain the magnetic fields:

f (�4)
2 (τ ) = β (1)iBk tr(εkττ ∗) + β (2)Btττ ∗B

+β (4)|B|2Btττ ∗B, (51)

5The existence of the critical end point was first found in the
analysis of the BdG equation [41].
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and

f (�2)
4 (τ ) = γ (1)iBk[tr(εkττ ∗)tr(ττ ∗) − tr(εkτττ ∗τ ∗)

− tr(εkττ ∗ττ ∗)] + γ (2)[−2 |B|2 tr(ττ ) tr(τ ∗τ ∗)

− 4 |B|2 tr(ττ ∗) tr(ττ ∗) + 4 |B|2 tr(ττ ∗ττ ∗)

+ 8 |B|2 tr(τττ ∗τ ∗) + BtττB tr(τ ∗τ ∗)

+ Btτ ∗τ ∗B tr(ττ ) − 8 Btττ ∗B tr(ττ ∗)

+ 2 Btττ ∗τ ∗τB + 2 Btτ ∗τττ ∗B − 8 Btτττ ∗τ ∗B

−8 Btττ ∗ττ ∗B]. (52)

In the above equations, the coefficients are uniquely deter-
mined by the loop calculation for fermions:

K (0) ≡ 7ζ (3)N0k4
F

240m2(πTc0)2
, (53)

α(0) ≡ N0k2
F

3

T − Tc0

Tc0
, (54)

β (0) ≡ 7ζ (3)N0k4
F

60(πTc0)2
, (55)

γ (0) ≡ − 31ζ (5)N0k6
F

13440(πTc0)4
, (56)

δ(0) ≡ 127ζ (7)N0k8
F

387072(πTc0)6
, (57)

β (2) ≡ 7ζ (3)N0k2
F

12(πTc0)2
|m∗

n|2, (58)

β (4) ≡ −31ζ (5)N0k2
F

48(πTc0)4
|m∗

n|4, (59)

γ (2) ≡ 31ζ (5)N0k4
F

960(πTc0)4
|m∗

n|2, (60)

and

γ (1) ≡ 7ζ (3)N0m k2
F

24(πTc0)2
|m∗

n|, (61)

β (1) ≡ −N0m

2
J1(D/Tc0)|m∗

n|, (62)

with the state-number density N0 = m kF/(2π2) at the Fermi
surface, the magnitude of the magnetic moment |m∗

n| =
(γn/2)/(1 + F (a)

0 ), the superfluid transition temperature at
zero magnetic fields Tc0, and the polarization vector εk (k =
1, 2, 3) defined by

ε1 =
⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠, ε2 =

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠,

ε3 =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠. (63)

We note that K (0), α(0), β (0), γ (0), δ(0), β (2), and β (4) are
obtained under the quasiclassical approximation, where the
Fermi surface is regarded as the flat surface approximately. On
the other hand, the β (1) and γ (1) terms represent the violation

of the particle-hole symmetry. Those two terms are beyond
the quasiclassical approximation and they are relevant to the
curvature of the Fermi surface. In the definition of β (1), the
function J1(x) is given by

J1(D/Tc0) ≡
∫ D/Tc0

−D/Tc0

(sinh x − x) sech2(x/2)

2x
dx > 0, (64)

where D > 0 is the cutoff parameter for the energy measured
from the Fermi surface: ξp ∈ [−D, D]. D should be a finite
value, because the scaling behavior does not hold at the lowest
order for the violation of the particle-hole symmetry. In fact,
the value of J1(D/Tc0) becomes divergent for the infinite value
of D. There is no such divergence in the coefficient γ (1) due to
the higher-order loops of fermions. We confirm that the β (1)

and γ (1) terms vanish in the quasiclassical approximation with
the large kF limit. Thus, those terms are relevant at the low
density region only.

Here, we comment that the β (1) term was first given for
the 3He superfluids in the GL formalism [84]. The authors
in Ref. [84], however, regarded it as the phenomenological
parameter the values of which should be fitted to the ex-
perimental data. In our paper, in contrast, the β (1) term as
well as the γ (1) term are determined microscopically in the
expansions of the fermion loops.

Similarly to Eq. (28), we parametrize τμi by

τμi = τ0

⎛
⎝ r iκ 0

iκ 1 0
0 0 −1 − r

⎞
⎠

μi

, (65)

with real parameters τ0 � 0, −1 � r � −1/2, and −1 � κ �
1. We recall that the amplitude τ0 can be different from that in
the BdG theory due to the different overall factor as discussed
already. The nonzero value of κ is relevant to the magnetized
D4-BN and FM phases. The values of τ0, r, and κ are deter-
mined uniquely by minimizing the GL free energy for given
temperature, magnetic field, and particle density.

Let us show the numerical result of the phase diagram by
the GL free energy. As the input parameter, we determine
the cutoff parameter D in the following way. According to
Ref. [22], the momentum cutoff parameter � = 1.509 fm−1

was introduced for the interaction potential between two neu-
trons.6 Utilizing this value as a reference, we estimate the
value of D as D ≈ �2/(2m) = 47.17 MeV where m is the
mass of a neutron. We show the result of τ0, r, and κ on the T -
B plane in Fig. 5. It is confirmed that, in the superfluid phase,
there exist the UN phase at zero magnetic field, the D2-BN
phase at weak magnetic fields, and the D4-BN phase at strong
magnetic fields, as known in the past studies. Interestingly, we
find that that the FM phase (κ = 1) appears around the bound-
ary region between the D4-BN phase and the normal phase at
nonzero magnetic fields. This is consistent with the result in
the self-consistent calculation of the thermodynamic potential
for fermions (Fig. 3). In the GL equation, the appearance of

6Notice that a� is used as the momentum cutoff parameter in
Ref. [22].
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FIG. 5. The phase diagram by the GL equation: (a) τ0, (b) r, and
(c) κ on the T -B plane, where “UN,” “BN,” “FM,” and “N” denote the
uniaxial nematic, biaxial nematic, ferromagnetic, and normal states,
respectively. We also plot the critical field between D2- and D4-BN
states, B∗.

the FM phase is caused mainly by the β (1) term.7 Therefore,
the β (1) term in the GL equation is essentially important for
realizing the spin-polarized phase beyond the quasiclassical
approximation.

V. CONCLUDING REMARKS

We have investigated the thermodynamic stability of neu-
tron 3P2 superfluids under a strong magnetic field. A 3P2

superfluid is expected to exist in the interior of neutron stars
under extreme conditions. In particular, magnetars have the
most intense magnetic field in the Universe. The strong field,
B = 1015–1018 G, amounts to the critical field (≈ kBTc) of
spin-singlet Cooper pairing, corresponding to γn h̄B/πkBTc ∼
0.1–100 for Tc = 109 K. The interaction of neutron spins with
such strong magnetic field breaks spin-singlet Cooper pairs,
and the conventional 1S0 superfluids are thermodynamically
unstable against the Zeeman splitting of the neutron Fermi
surface. Employing the self-consistent calculations properly
incorporating the Zeeman effect, we have demonstrated that

7Because the FM fields exist at nonzero magnetic fields, it is
enough to consider only the terms coupling to the magnetic fields,
such as the β (1) term, as relevant terms in the next-to-leading order.

spin-polarized 3P2 Cooper pairs are tolerant against a strong
magnetic field. A Zeeman field induces the successive phase
transitions from the UN state (r = −1/2 and κ = 0) to the
D2- and D4-BN states [r ∈ (−1, 1/2) and κ ∈ (0, 1)] and
the FM state (r = −1 and κ = 1). The variational parame-
ters, r ∈ [−1,−1/2] and κ ∈ [0, 1], quantify the biaxility and
the spin polarization of 3P2 order parameters, respectively.
The FM state becomes thermodynamically stable in the high
temperature and strong magnetic field, and the critical tem-
perature rather increases with increasing B. Therefore, the
spin-polarized 3P2 superfluid is expected to survive in the
interior of magnetars with intense magnetic field.

We have also presented the eighth-order GL theory, which
takes account of the linear Zeeman effect. This is a finite-
size correction of the Fermi surface on the order of γnB/εF.
The augmented theory properly describes the thermodynamic
stability of the magnetized D4-BN and FM states under a mag-
netic field. It has also been pointed out that strong coupling
corrections to the bulk fourth-order term may stabilize the FM
state even at zero external field [76,85]. The strong coupling
correction is leading order in Tc/TF, stemming from quasipar-
ticle interactions via spin-orbit and central forces [79]. Our
results with the augmented theory indicate that the FM state
can be stabilized by the linear Zeeman effect even without
strong coupling corrections, which gives a new insight on 3P2

superfluidity of neutron stars under a strong magnetic field.
Neutron 3P2 superfluids have two key ingredients, Bo-

goliubov quasiparticles and 3P2 Cooper pairs. The former
is the elementary fermionic excitations from the superfluid
ground state, while the latter behaves as long-lived bosons
with internal degrees of freedom Jz = 0,±1,±2. The su-
perfluids share many common interests in condensed-matter
physics, including d-wave superconductors [86], the super-
fluid 3He [72,87–89], and Weyl superconductivity, e.g., in
heavy-fermion superconductors. All 3P2 superfluid phases
are prototypes of topological superconductors and Weyl su-
perconductors, where low-lying Bogoliubov quasiparticles
behave as Majorana and Weyl fermions [41]. In addition, the
order parameter manifold is similar to that in spin-2 BECs
[44]. The order parameter manifolds of magnetic 3P2 super-
fluid phases, such as the magnetic D4-BN and FM phases, are
similar with those of the broken axisymmetric and FM phases
in the context of spin-2 BECs, respectively, which bring
about a variety of exotic topological defects [44,90]. Hence,
neutron stars have colossal topological superfluidity in the
Universe.

The Bogoliubov quasiparticles can be main carriers in
thermal and spin transport phenomena. In 3P2 superfluids,
their gap symmetries and topological properties are sensitive
to the biaxility r and nonunitarity κ . In the UN state, the
excitation energy in Eq. (33) is gapped out on the entire
Fermi surface of neutrons, and the excitation gap is uniaxially
elongated in the momentum space. The uniaxial gap structure
continuously deforms into D2 and D4 symmetric shape with
changing the biaxiality r, and becomes gapless, E (k0) = 0, at
the pairwise points, k0 = ±kF ẑ, in the D4-BN state, where the
z axis is parallel to the magnetic field. In the lower field, the
BN state with κ = 0 is stabilized, while the strong magnetic
field favors the magnetized BN state with κ �= 0. The gapless
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quasiparticle excitations in the case of κ = 0 are spin degen-
erate, but the nonzero κ induces the spin polarization of the
superfluid ground states and thus the gapless excitations are
magnetized. As B further increases, its value reaches κ = 1
and the quasiparticle excitations are fully spin polarized in
the sense that only the ↑↑ Cooper pairs survive and the
other spin channels are broken by the strong Zeeman effect.
The gapless points are protected by topological invariants
and the low-lying Bogoliubov quasiparticles behave as Dirac
and Weyl fermions. As shown in the current paper, a strong
magnetic field in neutron stars and magnetars gives rise to the
successive phase transitions in 3P2 superfluids and makes the
quasiparticle spectrum anisotropic and magnetized. Hence, it
is expected that thermal transport mediated by anisotropic
and gapless Bogoliubov quasiparticles leads to the anisotropic
thermal evolution of neutron stars. The thermal transport by
Weyl and Dirac fermions in 3P2 superfluid ground states
remains as an important key for understanding the thermal
evolution of neutron stars and magnetars.

In addition to fermions, the condensation of 3P2 Cooper
pairs is accompanied by rich order parameter manifolds and
thus paves a way for understanding the thermal evolution of
neutron stars and a longstanding issue on glitches in pulsars.
As discussed in Sec. II B, there are several Nambu-Goldstone
bosons associated with nontrivial broken symmetries in 3P2

ordered states. Such bosonic excitations might be relevant for
the cooling process by neutrino emission [46–58]. The GL
equation can be easily applied to describe the condensations
nonuniform in space. In 3P2 superfluids, the GL equation
was utilized to investigate topological objects such as spon-
taneously magnetized vortices [24,42,43,77,78], vortices with

Majorana fermions [91], solitonic excitations on a vortex [80],
coreless vortices [92], non-Abelian half-quantum vortices
[43,73], and topological defects (boojums) on the boundary
of 3P2 superfluids [82]. The boojums on the boundary of 3P2

superfluids have similarities to the objects on the boundary of
spin-2 BECs [93] and liquid crystals [94]. The GL equation
was adopted to investigate the quasistable domain walls in
the neutron 3P2 superfluids [83]. At lower density, the neutron
1S0 superfluid plays the important role. Around the boundary
region of the 1S0 and 3P2 superfluids, both phases can coexist
as shown by the GL equation [95]. The effect of the spin-
polarized 3P2 phase on the 1S0 superfluids is an interesting
subject left for future works.
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