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New graphical criterion for the selection of complete sets of polarization observables and its
application to single-meson photoproduction as well as electroproduction
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This paper combines the graph-theoretical ideas behind Moravcsik’s theorem with a completely analytic
derivation of discrete phase ambiguities, recently published by Nakayama. The result is a new graphical
procedure for the derivation of certain types of complete sets of observables for an amplitude-extraction problem
with N helicity amplitudes. The procedure is applied to pseudoscalar meson photoproduction (N = 4 amplitudes)
and electroproduction (N = 6 amplitudes), yielding complete sets with minimal length of 2N observables. For
the case of electroproduction, this is the first time an extensive list of minimal complete sets is published.
Furthermore, the generalization of the proposed procedure to processes with a larger number of amplitudes, i.e.,
N > 6 amplitudes, is sketched. The generalized procedure is outlined for the next more complicated example of
two-meson photoproduction (N = 8 amplitudes).
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I. INTRODUCTION

Hadron spectroscopy is and has been a very important
tool for the improvement of our understanding of nonper-
turbative QCD. Reactions among particles with spin have
always been of central importance for spectroscopy. For the
spectroscopy of baryons [1,2] in particular, most experimental
activities in the recent years have taken place at facilities
capable of measuring reactions induced by electromagnetic
probes. Well-known experiments, all capable of measuring
the photoproduction of one or several pseudoscalar mesons
(as well as vector mesons), are the CBELSA/TAPS experi-
ment at Bonn [3–8], CLAS at the Thomas Jefferson National
Accelerator Facility (Newport News) [9–15], A2 at Mainz
Microton [16–24], and LEPS at SPring-8 (Hyōgo Prefec-
ture) [25,26]. The GlueX Collaboration has started exploring
completely new kinematic regimes for single-meson photo-
production recently [27–29]. Furthermore, new datasets on
electroproduction have or will become available, measured by
the CLAS-collaboration [30–33].

The currently accepted canonical method to determine
physical properties of resonances (i.e., masses, widths and
quantum numbers) from data are analyses using so-called
energy-dependent (ED) partial-wave analysis models. Elab-
orate reaction-theoretic models are constructed in order to
obtain the amplitude as a function of energy. Then, after fit-
ting the data, the resulting amplitude is analytically continued
into the complex energy-plane in order to search for the reso-
nance poles. Well-known examples for such approaches are
the Scattering Analysis Interactive Dial-in (SAID) analysis
[34–38], the Bonn-Gatchina model [39–42], the Jülich-Bonn
model [43–47], and the Mainz Unitary Isobar Model (MAID)
analysis [48–51], among others.
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In an approach that is complementary to the above-
mentioned ED fits, one can ask for the maximal amount
of information on the underlying reaction amplitudes that
can be extracted from the data without introducing any
model assumptions. One thus considers a generic amplitude-
extraction problem, which is concerned with the extraction
of N so-called spin amplitudes (often specified as he-
licity amplitudes Hi or transversity amplitudes bi [52])
out of a set of N2 polarization observables. Such an
amplitude-extraction problem takes place at each point in
the kinematical phase space individually. For a 2 → 2 re-
action, this means at each point in energy and angle. For
a 2 → n reaction with n � 3 particles in the final state, the
amplitude-extraction problem has to be solved in each higher-
dimensional “bin” of phase space, where the phase space
is spanned by (3[2 + n] − 10) independent kinematical vari-
ables [53]. In any case, the unknown overall phase can in
principle have an arbitrary dependence on the full reaction
kinematics.

For an ordinary scattering experiment such as the ones
discussed in this work, the determination of the overall phase
from data for a single reaction alone is a mathematical impos-
sibility, due to the fact that observables are always bilinear
Hermitean forms of the N amplitudes [54,55]. Alternative
experiments have been proposed in the literature in order to
remedy this problem: Goldberger and collaborators suggested
a Hanbury-Brown and Twiss experiment to measure the over-
all phase [56], while Ivanov proposed to use Vortex beams in
order to access information on the angular dependence of the
overall phase [57]. However, both of these proposed methods
cannot be realized experimentally at the time of this writing.
The only alternative consists of the introduction of additional
theoretical constraints. As many past studies on the mathe-
matical physics of inverse scattering problems have shown
[58–66], the unitarity of the S matrix is a very powerful con-
straint for restricting the overall phase. Unitarity constraints
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are of course inherent to many of the ED fit approaches
mentioned above, since almost all of them are formulated for a
simultaneous analysis of multiple coupled channels. However,
within the context of an amplitude-extraction problem for one
individual reaction, the overall phase cannot be determined, at
least as long as the discussion remains fully model indepen-
dent.

When confronted with a general amplitude-extraction
problem, the question of minimizing the measurement effort
leads one in a natural way to the search for so-called complete
experiments [52,67] (or complete sets of observables). These
are minimal subsets of the full set of N2 observables that allow
for an unambiguous extraction of the N amplitudes up to one
overall phase. For an amplitude-extraction problem with an
arbitrary number of amplitudes N , one can find the following
compelling heuristic argument for the fact that at least 2N
observables are required in order to determine the N ampli-
tudes up to one unknown overall phase (cf. the introductions
of Refs. [68,69], as well as footnote 1 in Ref. [70]). At least
2N − 1 observables are needed in order to fix N moduli and
N − 1 relative phases. However, with 2N − 1 observables,
there generally still remain so-called discrete ambiguities
[52,71]. The resolution of these discrete ambiguities requires
at least one additional observable. In this way, one obtains a
minimum number of 2N observables. This heuristic argument
of course tells nothing about how these 2N observables have
to be selected. This is then the subject of works like the present
one.

The minimal number of 2N has indeed turned out to be true
for the specific reactions we found treated in the literature.
For pion-nucleon scattering (N = 2), the argument demon-
strating that indeed all four accessible observables have to
be measured is still quite simple (cf. Ref. [69] as well as the
introduction of Ref. [72]). The process of pseudoscalar meson
photoproduction (N = 4) has been treated at length in the
literature. Based on earlier results by Keaton and Workman
[70,71], Chiang and Tabakin found in a seminal work [52]
that 8 carefully selected observables can constitute a mini-
mal complete set for this process. The result by Chiang and
Tabakin has recently been substantiated in a rigorous alge-
braic proof by Nakayama [73], where all the discrete phase
ambiguities implied by quite arbitrary selection patterns of
observables were derived and the conditions for the resolution
of these ambiguities were clearly stated. Some of Nakayama’s
derivations will also turn out to be important for this work.
For pseudoscalar meson electroproduction (N = 6), the con-
struction of some complete sets with 12 observables has been
outlined by Tiator and collaborators [74], but an extensive list
of complete sets has not been given in the latter reference. This
is something that will be improved on in the present work.
Finally, the process of two-meson photoproduction (N = 8)
has been treated as well in some quite explicit works [75,76].
The complete sets for this process indeed have a minimal
length of 16 [76].

In mathematical treatments of complete experiments such
as the ones mentioned up to this point, one always assumes
the observables to have vanishing measurement uncertainty.
Once the mathematically “exact” complete sets have been
established in this way, one can study the influence of nonva-

nishing measurement-uncertainties using high-level statistical
methods. This has been done in a number of recent works by
Ireland [77] and the Ghent group [78–80].

An interesting alternative approach for the deduction of
complete sets of observables is given by Moravcsik’s the-
orem [68]. This theorem has been reexamined in a recent
work [69], where it has received slight corrections for the
case of an odd number of amplitudes N . The theorem is
formulated in the language of a “geometrical analog” [68],
which yields a useful representation of complete sets in the
shape of graphs. The advantages of the theorem are that it
can be applied directly to any amplitude-extraction problem
irrespective of N . Furthermore, it can be fully automated on
a computer. However, the approach also has it’s drawbacks:
For larger N (i.e., N > 6) [75,76,81,82], the number of rele-
vant graph-topologies grows very rapidly, as (N − 1)!/2 [69].
This alone makes the computations quite expensive for more
involved amplitude-extraction problems. Another drawback
of (the modified form of) Moravcsik’s theorem consists of
the fact that for N � 4, the derived complete sets do not
have the minimal length 2N any more, but are rather slightly
over-complete (see in particular Sec. VII of Ref. [69]). The
reason for the latter fact is that Moravcsik directly considered
just the bilinear products b∗

i b j of amplitudes. However, polar-
ization observables for N � 4 generally are invertible linear
combinations of such bilinear products.

The present work is an attempt to devise an approach
similar to (the modified form of) Moravcsik’s theorem [69],
but which can get the length of the derived complete sets
down to 2N , for amplitude-extraction problems with N �
4. Generally, the proposed approach can be applied to
any amplitude-extraction problem with an even number of
amplitudes N . In order to achieve this, we combine the graph-
theoretical ideas according to Refs. [68,69] with the results
derived by Nakayama [73] for the discrete phase ambiguities
implied by selections of pairs of observables. Although these
ambiguities have been originally derived by Nakayama for
photoproduction [73], we get a criterion that directly facili-
tates deriving minimal complete sets for electroproduction as
well. A crucial new ingredient for the procedure proposed in
this work is that the graphs have to be embued with additional
directional information. The graphical criterion formulated in
this work, together with the types of graphs needed for it, are
to our knowledge new.

This paper is organized as follows. The new graphical
criterion is motivated and deduced in Sec. II, as a result of
the combination of the ideas behind Moravcsik’s theorem and
the phase ambiguities as derived by Nakayama [73]. We then
illustrate the new criterion in applications to single-meson
photo- and electroproduction in Secs. III and IV. Some ideas
on the generalization of the proposed procedure to prob-
lems with a larger number of N > 6 amplitudes are stated
in Sec. V, which is followed by the conclusion in Sec. VI.
Three Appendices collect a review of the recently published
modified form of Moravcsik’s theorem [69], as well as lengthy
calculations which are however of vital importance for the
present work. Elaborate lists of the newly derived complete
sets for electroproduction can be found in the Supplemental
Material [83].
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II. THE NEW GRAPHICAL CRITERION

In this section, the new graphical criterion for complete
sets of observables is derived deductively. It is based on a
combination of the graph-theoretical ideas from Moravcsik’s
theorem [68,69], where each complete sets of observables
has a lucid representation in terms of a graph, and recent
derivations of discrete phase ambiguities given in full detail by
Nakayama [73]. Since Moravcsik’s theorem serves as a useful
reference point to the new ideas developed in this section, and
also to keep this work self-contained, a review of a recently
published slightly modified version of the theorem is given in
Appendix A. In this Appendix, also some pictorial examples
for complete graphs according to Moravcsik can be found.

We start with the standard assumption that the moduli |bi|
of the N amplitudes b1, . . . , bN have already been determined
from a set of N diagonal observables (cf. Appendix A and
Refs. [52,68,69,73]). Consider now a so-called (nondiagonal)
shape class composed of four observables, which is a math-
ematical structure that repeatedly appears in the problems
of single-meson photoproduction and electroproduction (cf.
Tables I and III). The four observables belonging to the shape
class, which we denote by the superscript “n,” are given by the
following linear combinations of bilinear amplitude products
(the notation for the observables is taken over from Ref. [73]):

On
1+ = Im[b∗

jbi + b∗
l bk]

= |bi||b j | sin φi j + |bk||bl | sin φkl , (1)

On
1− = Im[b∗

jbi − b∗
l bk]

= |bi||b j | sin φi j − |bk||bl | sin φkl , (2)

On
2+ = Re[b∗

jbi + b∗
l bk]

= |bi||b j | cos φi j + |bk||bl | cos φkl , (3)

On
2− = Re[b∗

jbi − b∗
l bk]

= |bi||b j | cos φi j − |bk||bl | cos φkl . (4)

The four indices i, j, k, l ∈ 1, . . . , N (for either N = 4 in
case of photoproduction or N = 6 for electroproduction) have
to be all pairwise distinct. In this way, every shape class
composed of four observables, which has the above-given
structure, is in one-to-one correspondence to a particular pair
of relative phases {φi j, φkl}. In the case of photoproduction
(N = 4, Sec. III), one has three shape classes of this type,
while for electroproduction (N = 6, Sec. IV), one encounters
seven such shape classes, containing four observables each.

A shape class composed of four observables such as in
Eqs. (1)–(4) really represents the simplest nontrivial example
of such a class, since any simpler combination of bilinear am-
plitude products would just amount to the real and imaginary
parts of the products b∗

i b j themselves, without any additional
linear combination (cf. discussions in Appendix A). For prob-
lems with N > 6 amplitudes, one generally encounters more
involved shape classes (cf. Sec. V).

Before discussing the discrete phase ambiguities implied
by different selections of observables picked from the shape
class given in Eqs. (1)–(4), we need to introduce another

Re

Im

φ41

b4
b3

b2

b1

φ34

φ23

φ12

FIG. 1. The general consistency relation (5) is illustrated for the
example of an amplitude-extraction problem with N = 4 amplitudes
b1, . . . , b4. The relation one deduces geometrically from the given
diagram is φ12 + φ23 + φ34 + φ41 = 2π , which up to addition of 2π

is equivalent to φ12 + φ23 + φ34 + φ41 = 0.

important part of the proofs yet to be presented, which is
given by so-called consistency relations [69,73]. In case the
connectedness criterion is fulfilled by the graphs that repre-
sent potentially complete sets of observables (cf. discussions
further below in this section and in Appendix A), one can es-
tablish a consistency relation among all the occurring relative
phases, which generally takes the shape:1

φ1i + φi j + · · · + φk1 = 0. (5)

The pairings of indices in relative phases occurring in this re-
lation is in one-to-one correspondence to the considered graph
topology. The consistency relation (5) is a natural constraint
for an arrangement of N amplitudes in the complex plane (cf.
the illustration in Fig. 1) and any valid solution of the consid-
ered amplitude-extraction problem has to satisfy it. It will turn
out to be important for this work to fix a standard convention
for writing down consistency relations: We want to isolate all
relative phases on one side of the equation sign [such as in
Eq. (5)], want all relative phases to have a positive sign and
want the index pairings in the appearing relative phases to
correspond to a definite direction of translation (or just short:
a direction) for the graph. The direction of translation is fixed
by starting at amplitude point “1,” then stepping through the
graph along direct connections of amplitudes which have to
be in one-to-one correspondence to the sequence of indices
appearing in Eq. (5), until ending up again at amplitude point
“1.” This convention will turn out to be important for the
discussion from here on.

Consistency relations such as (5) are crucial for the deriva-
tion of fully complete sets. A selection of observables picked
from several copies of the above-given shape class, with the
selection corresponding to a particular considered graph, leads
to a set of Namb. potentially ambiguous solutions.2 For each of

1The consistency relation (5), as well as all other relations among
phases appearing in this work, is only valid up to addition of multi-
ples of 2π .

2For the ambiguities of real and imaginary parts of bilinear products
b∗

jbi considered in case of Theorem 2 in Appendix A, the discrete
phase ambiguities are always twofold for each relative phase in-
dividually and thus one always has Namb. = 2N . For the selections
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these Namb. discrete phase ambiguities, one can write down
a consistency relation, where the respective ambiguous so-
lutions are labeled by a corresponding superscript-λ on the
relative phases:

φλ
1i + φλ′

i j + · · · + φλ(N )

k1 = 0. (6)

The criteria stated in Theorem 1 derived in this section, as
well as Theorem 2 from Appendix A, are now the results of a
careful analysis of all possible cases where no degeneracies3

occur any more among the Namb. possible relations (6) (see
also Appendix A of Ref. [69] for a more detailed derivation
of Theorem 2). The only difference is that Theorem 2 is only
valid in the basis of fully decoupled bilinear products b∗

jbi,
while Theorem 1 to be deduced below holds for selections
of observables from the nondecoupled shape class given in
Eqs. (1) to (4). In case all degeneracies are indeed resolved (in
case of either Theorem 1 or Theorem 2), full completeness is
obtained and the solution of the amplitude-extraction problem
is thus unique.

We now proceed to enumerate the discrete ambiguities for
the relative phases implied by the selection of any pair of
observables from the four quantities (1) to (4). A full deriva-
tion of these ambiguities has been given by Nakayama [73],
based on earlier ideas by Chiang and Tabakin [52]. In the
following, we only cite the results. A full derivation according
to Nakayama is outlined in more detail in Appendix B, in
order to keep the present work self-contained.

One does not need any elaborate additional derivations in
case the pair of observables is selected in such a way that the
bilinear amplitude products fully decouple. This is also the
case in which Theorem 2 from Appendix A can be directly
used, i.e., the case of the two following possible selections
(see also Ref. [73]):

A.1 (On
1+,On

1−):
This particular selection of observables allows for the
isolation of both sines of the relative phases φi j and
φkl , according to the following linear combinations of
observables:

sin φi j = On
1+ + On

1−
2|bi||b j | , sin φkl = On

1+ − On
1−

2|bk||bl | .

(7)
In this way, one obtains a discrete sine-type ambiguity
for the two relative phases [cf. Eq. (A6)]:

φλ
i j = φ±

i j =
{+αi j,

π − αi j,
φλ′

kl = φ±
kl =

{+αkl ,

π − αkl ,

(8)

of observables from the nondiagonal shape class considered in this
section, Namb. may differ from 2N .

3Two equations from the Namb. possibilities (6) are called degen-
erate in case they can be transformed into each other using the
following two operations [69,76]:

(i) multiplication of the whole equation by (−1),

(ii) addition (and/or subtraction) of multiples of 2π .

where the values of the two selected observables
uniquely fix both αi j and αkl on the interval
[−π/2, π/2]. Since both λ and λ′ in Eq. (8) can take
their values ± independently, the discrete ambiguity
is fourfold.

A.2 (On
2+,On

2−):
For this particular selection of observables, one ob-
tains an isolation of the cosines according to:

cos φi j = On
2+ + On

2−
2|bi||b j | , cos φkl = On

2+ − On
2−

2|bk||bl | .

(9)
This leads to discrete cosine-type ambiguities for the
two relative phases φi j and φkl [cf. Eq. (A4)]:

φλ
i j = φ±

i j =
{+αi j,

−αi j,
φλ′

kl = φ±
kl =

{+αkl ,

−αkl ,
(10)

with αi j and αkl both fixed uniquely on the interval
[0, π ], from the values of the two selected observ-
ables. The discrete phase ambiguity is again fourfold
(due to λ, λ′ = ±).

Once a “crossed” pair of observables, i.e., with one ob-
servable chosen from On

1± and the other one from On
2± is

selected, the elaborate derivations outlined in Appendix B be-
come necessary. These are, however, also the selections which
are much more interesting and important for the graphical
criterion proposed in this work. One has to distinguish the
following four cases [73]:

B.1. (On
1+,On

2+):
For this selection of observables, one only obtains a
twofold discrete phase ambiguity. Only the following
two possible pairs of values are allowed for the rela-
tive phases φi j and φkl (see Ref. [73] and Appendix
B):4{
φi j = −ζ + αi j,

φkl = −ζ − αkl + π,
or

{
φi j = −ζ − αi j + π,

φkl = −ζ + αkl ,

(11)
where both αi j and αkl are uniquely fixed on the in-
terval [−π/2, π/2] via the values of the selected pair
of observables (cf. Eqs. (B9) and (B11) in Appendix
B).
The quantity ζ in the definition of this twofold am-
biguity (11) is the new ingredient which appears in
case of a selection of a crossed pair of observables.
As defined in Ref. [73], this quantity ζ is equal to
the polar angle in a two-dimensional coordinate sys-
tem, where On

1+ defines the x coordinate and On
2+

4The expressions for the ambiguities (11) to (14), as derived in Ap-
pendix B, are formally a bit different compared to those of Ref. [73].
However, the most important features of the derived ambiguities
(i.e., the signs of the ζ angles) remain the same and therefore the
statements of Theorem 1 developed in this section do not change, no
matter which formulas one uses. In order to keep the present work
self-contained, we stick to the expressions for the ambiguities as
derived in Appendix B.
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−σ0 σ0

σ0

−σ0

x

y

On
1+

On
2+

ζn
1+,2+

FIG. 2. The meaning of the angle ζ ≡ ζ n
1+,2+ is illustrated. This

picture directly corresponds to the definitions (B4) and (B5) in Ap-
pendix B. The modulus of the value for each observable (On

1+,On
2+)

is limited by the unpolarized differential cross section σ0 of the
considered process.

the y coordinate (see Fig. 2). We therefore call it
a “transitional angle.” This angle should actually be
denoted as “ζ n

1+,2+,” since it depends on the values of
the selected pair of observables (cf. Appendix B and
Ref. [73]). However, in order to keep the notation as
simple as possible, we only write ζ (and ζ ′, ζ ′′, . . .
for any additional transitional angles that appear in
an equation). The transitional angles are of vital im-
portance for the resolution of degenerate consistency
relations5 and therefore also for the removal of phase
ambiguities (cf. Ref. [73]). They are therefore the
central objects of interest for our proposed graphical
criterion.

B.2. (On
1+,On

2−):
In this case, one obtains the twofold discrete phase
ambiguity (cf. Appendix B){

φi j = −ζ + αi j,

φkl = ζ − αkl ,
or

{
φi j = −ζ − αi j + π,

φkl = ζ + αkl − π,

(12)
where the values of the selected pair of observ-
ables uniquely fix both αi j and αkl on the interval

5We note here that special values for the ζ angle exist where it may
generally loose its ability to resolve degenerate consistency relations,
namely ζ = 0, π

2 , π, 3π

2 , 2π , and multiples thereof. Considering
Fig. 2, we see that these values occur when at least one observable in
the pair (On

1+,On
2+) vanishes. These special configurations belong to

the surfaces of vanishing measure in the parameter space, on which
Theorem 1 can loose its validity (cf. comments made at the end of
Sec. II, as well as similar discussions in Ref. [73]). In the present
work, we disregard such special cases.

[−π/2, π/2] (see Eqs. (B28) and (B29) in Appendix
B), as well as the value of the transitional angle
ζ ≡ ζ n

1+,2−.
B.3. (On

1−,On
2+):

For this selection of observables, one obtains the
twofold discrete phase ambiguity (see Appendix B)

{
φi j = −ζ + αi j,

φkl = ζ + αkl − π,
or

{
φi j = −ζ − αi j + π,

φkl = ζ − αkl ,

(13)
where both αi j and αkl are uniquely fixed on the
interval [−π/2, π/2] from the values of the selected
pair of observables (cf. Eqs. (B38) and (B39) in
Appendix B). The selected observables also fix the
transitional angle ζ ≡ ζ n

1−,2+.
B.4. (On

1−,On
2−):

This selection of observables implies the twofold dis-
crete phase ambiguity (cf. Appendix B)

{
φi j = −ζ + αi j,

φkl = −ζ + αkl ,
or

{
φi j = −ζ − αi j + π,

φkl = −ζ − αkl + π,

(14)
where the values of the selected pair of observ-
ables uniquely fix both αi j and αkl on the interval
[−π/2, π/2] (see Eqs. (B20) and (B21) in Ap-
pendix B) and furthermore also define the value of
the transitional angle ζ ≡ ζ n

1−,2−.

The key is now to observe that the sign of the transitional
angle ζ does not change for each of the two relative phases,
i.e., φi j or φkl , individually when passing from one ambiguous
solution to the other one. This is true in all of the cases
B.1, . . ., B.4. The sign of ζ may however vary in a comparison
between φi j and φkl .

Still, when evaluating all the different cases possible for a
particular consistency relation (6), the ζ angles have a great
power for resolving discrete ambiguities or equivalently for
removing degenerate pairs of equations. Thus, one has to care-
fully keep track of the signs of the ζ ’s appearing in Eqs. (11)
to (14), when devising a graphical criterion.

There is another sign which is important: This has to do
with the index structure of the relative phases, as they appear
in our standard convention for the consistency relation (5) [or
(6)]. For instance, in case φi j appears in this equation with
reversed placement φ ji, there appears yet another sign one has
to carefully keep track of.

Our proposed graphical criterion is now, in essence, a way
to keep track of both the above-mentioned signs, in such a
way that at least one transitional ζ angle survives in all the
possible cases for the consistency relation (6) (compare this
to expressions given in Sec. III of Ref. [73]).

We always start with the standard assumption that N suit-
able observables have been measured in order to uniquely fix
the N moduli |b1|, . . . , |bN |. For the selection of the remaining
observables, which are supposed to uniquely fix all relative
phases between the N amplitudes, the criterion reads as fol-
lows:
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Theorem 1 (Proposed graphical criterion):
Start with one possible topology for a connected graph with

N vertices of order two, i.e., with exactly two edges attached
to each vertex. The vertices, or points, again represent the
N amplitudes of the problem. The chosen graph has to have
exactly N edges (or link lines) and furthermore has to satisfy
in addition the following constraint:

(i) The graph should be chosen in such a way that only
those connections of amplitude points appear which
are in direct correspondence to any pair of relative
phases {φi j, φkl} from a particular shape class of four
observables. The graph is thus constructed to exactly
match selections of observables from classes with the
structure (1) to (4).

Now, select N/2 pairs of observables from the shape
classes implied by the considered graph. The selection of N/2
pairs is the reason why the proposed approach can only be
directly applied to problems with an even number of ampli-
tudes N . Draw the following connections of points, based on
the selection made:

(i) In case the selection A.1 has been made, draw a single
dashed line which connects the respective amplitude
points (these are then two link lines, in this case). In
case a pair of observables has been chosen according
to A.2, draw the corresponding pair of link lines as
single solid lines.

(ii) In case any of the selections B.1, . . ., B.4 has been
made, draw a double line for both connections of the
corresponding amplitude points. In case multiple such
pairs of double lines appear in the graph, draw a differ-
ent style of double line for each different shape class
(i.e., normal double line, wavy double line, dashed
double line, dotted double line, . . .). This has to be
done in order to keep track of relative phases fixed by
different shape classes of observables.

Now, draw arrows into the N link lines which indicate the
direction of translation through the graph, according to our
standard convention of writing the consistency relation (5) [cf.
comments below Eq. (5)]. We call these arrows “directional
arrows.” The standard form of the consistency relation (5)
would imply directional arrows pointing as follows: 1 → i,
i → j, . . ., k → 1.

Then, draw an additional ζ -sign arrow next to each double
line or, depending on the graphic layout, into the double line
(cf. figures in Secs. III and IV). In case the considered double
line corresponds to an arbitrary relative phase φab, the ζ -sign
arrow has to point from a → b in case the ζ angle appears
with a positive sign in the ambiguity written in the corre-
sponding case from B.1–B.4 (cf. the descriptions of the cases
above). The ζ -sign arrow has to point from b → a in case the
ζ angle appears with a negative sign in the equations defining
the corresponding discrete phase ambiguity (cases B.1–B.4).

The graph constructed in this lengthy procedure, and there-
fore also the corresponding set of observables, allows for
a unique solution of the amplitude-extraction problem if it

contains at least one pair of double lines and furthermore
satisfies the following criterion:

(C1) For at least one of the pairs of double lines in the
thus constructed graph, one of the following two
conditions has to be fulfilled for the graph to be
fully complete (note that both conditions cannot be
satisfied at the same time):
(i) for both double lines, the directional arrows have

to point into the same direction as the corre-
sponding ζ -sign arrows,

(ii) for both double lines, the directional arrows have
to point into the direction opposite to the direc-
tion of the respective ζ -sign arrows.

The single dashed and solid lines are not really im-
portant any more for this criterion,6 as opposed to
Theorem 2 from Appendix A.

As in the case of the modified form of Moravcsik’s theorem
(Theorem 2 in Appendix A), the connectedness condition im-
posed on the graphs considered in our new graphical criterion
directly removes any possibilities for continuous ambiguities.
The remaining conditions stated in Theorem 1 above then
are included solely for the purpose of resolving all possible
remaining discrete phase ambiguities.

Both of the possible conditions stated in the criterion (C1)
above make sure that the transitional ζ angle belonging to the
corresponding pair of observables appears in all cases for the
consistency relation (6) with always the same sign. This is a
plus sign in case of the first condition mentioned in (C1), or
a minus sign in case of the second condition. Therefore, in
exactly these cases the transitional ζ angles do not cancel out.
This automatically removes all possible degeneracies among
the possible cases for the consistency relation (6). We will
illustrate in more detail how this works in our treatment of the
example case of single-meson photoproduction, in Sec. III.

We note that the above-stated criterion is only valid for
the special case of a selection of exactly two observables
from each shape class of four [cf. Eqs. (1) to (4)]. In the
case of Nakayama’s work [73], which treated single-meson
photoproduction, this was called the “(2+2)-case.” Certainly
this specific assumption of choosing only pairs of observables
from each shape class restricts the complete sets which we
can derive to this certain particular subset and the full set
of possible complete experiments is certainly larger. We do
not want to exclude the possibility that the graphical criterion
stated above may in the future be generalized to more gen-
eral selections of observables (such as the “(2+1+1)-case” in
Nakayama’s work [73]), but at present it does not cover such
more general possibilities.

As in the case of Moravcsik’s theorem in its modified
form (Theorem 2 from Appendix A), there do exist singular
subsurfaces in the parameter-space composed of the relative
phases, on which Theorem 1 as stated above looses its va-
lidity. Nakayama also mentioned such configurations in his

6The ζ angles have now taken the role of the “residual summands of
π” needed in the proof of Theorem 2 (see Appendix A of Ref. [69]).
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TABLE I. The definitions of the 16 polarization observables in pseudoscalar meson photoproduction (cf. Ref. [52]) are collected here.
The observables are written in terms of transversity amplitudes b1, b2, b3, b4. The nondiagonal observables are given in Nakayama’s symbolic
notation On

ν± (cf. Ref. [73]), but the ordinary names of the observables are given as well. The subdivision of the 16 observables into four shape
classes is explicitly shown. Furthermore, for the three nondiagonal shape classes a, b, and c, the corresponding pairs of relative phases are
indicated. The definitions and sign-conventions are chosen to be consistent with Ref. [55].

Observable Relative phases Shape class

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)

−	̌ = 1
2 (|b1|2 + |b2|2 − |b3|2 − |b4|2) S = D

−Ť = 1
2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2)

P̌ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Oa
1+ = |b1||b3| sin φ13 + |b2||b4| sin φ24 = Im[b∗

3b1 + b∗
4b2] = −Ǧ

Oa
1− = |b1||b3| sin φ13 − |b2||b4| sin φ24 = Im[b∗

3b1 − b∗
4b2] = F̌ {φ13, φ24} a = BT = PR

Oa
2+ = |b1||b3| cos φ13 + |b2||b4| cos φ24 = Re[b∗

3b1 + b∗
4b2] = −Ě

Oa
2− = |b1||b3| cos φ13 − |b2||b4| cos φ24 = Re[b∗

3b1 − b∗
4b2] = Ȟ

Ob
1+ = |b1||b4| sin φ14 + |b2||b3| sin φ23 = Im[b∗

4b1 + b∗
3b2] = Ǒz′

Ob
1− = |b1||b4| sin φ14 − |b2||b3| sin φ23 = Im[b∗

4b1 − b∗
3b2] = −Čx′ {φ14, φ23} b = BR = AD

Ob
2+ = |b1||b4| cos φ14 + |b2||b3| cos φ23 = Re[b∗

4b1 + b∗
3b2] = −Čz′

Ob
2− = |b1||b4| cos φ14 − |b2||b3| cos φ23 = Re[b∗

4b1 − b∗
3b2] = −Ǒx′

Oc
1+ = |b1||b2| sin φ12 + |b3||b4| sin φ34 = Im[b∗

2b1 + b∗
4b3] = −Ľx′

Oc
1− = |b1||b2| sin φ12 − |b3||b4| sin φ34 = Im[b∗

2b1 − b∗
4b3] = −Ťz′ {φ12, φ34} c = T R = PL

Oc
2+ = |b1||b2| cos φ12 + |b3||b4| cos φ34 = Re[b∗

2b1 + b∗
4b3] = −Ľz′

Oc
2− = |b1||b2| cos φ12 − |b3||b4| cos φ34 = Re[b∗

2b1 − b∗
4b3] = Ťx′

treatment of photoproduction [73]. However, such singular
surfaces again have negligible measure and therefore we do
not further consider such special cases in the present work.

Theorem 1 stated above allows for the graphical derivation
of minimal complete sets of 2N observables for the cases of
single-meson photoproduction (N = 4) and electroproduction
(N = 6), which has not been possible using the modified
form of Moravcsik’s theorem as stated in Appendix A (see
Ref. [69]). This fact will be illustrated in Secs. III and IV. In
case one wishes to consider problems with a larger number
of N > 6 amplitudes, new obstacles appear which mainly are
connected to the fact that the shape classes encountered in
these cases are more involved. We will comment on these
issues in Sec. V.

III. APPLICATION TO PSEUDOSCALAR MESON
PHOTOPRODUCTION (N = 4)

Pseudoscalar meson photoproduction is generally de-
scribed by N = 4 complex amplitudes, which are accompa-
nied by 16 polarization observables [52,73]. The definitions
of these observables in terms of transversity amplitudes
b1, . . . , b4 are given in Table I. There exist four shape classes
of diagonal (D), right-parallelogram (PR), antidiagonal (AD)
and left-parallelogram (PL) type (the importance of such
shape classes was originally pointed out in Ref. [52]). Every
shape class except for the class of diagonal observables (D)
has the generic form given in Eqs. (1) to (4) and thus contains
four observables. The diagonal shape class D contains the
unpolarized differential cross section and the three single-spin
observables 	̌, Ť , and P̌. Each of the three nondiagonal shape
classes is in exact correspondence to one of the three groups of
beam-target (BT ), beam-recoil (BR), and target-recoil (T R)
experiments, as indicated in Table I.

For the observables in the nondiagonal shape classes, we
use the notation introduced by Nakayama [73], which has also
been used already in Sec. II.

We mention here the fact that the 16 observables can be
written as bilinear Hermitean forms defined in terms of a basis
of 4 × 4 Dirac matrices 
̃α , which have been introduced in
Ref. [52] (see also Ref. [69]). We, however do not list these
Dirac matrices explicitly in this work, although their internal
structure is of course contained implicitly in all the mathemat-
ical facts leading to Theorem 1 of Sec. II. Furthermore, the
name “shape class” actually stems from the shapes of these
Dirac matrices [52,55].

We begin with the standard assumption that all four observ-
ables from the diagonal shape class (D) have been measured
in order to uniquely fix the four moduli |b1|, . . . , |b4|. There-
fore, the task is now to select four more observables from
the remaining nondiagonal shape classes a, b, and c, which
corresponds to the determination of complete sets with min-
imal length 2N = 8, in order to uniquely specify the relative
phases. This is where the criterion formulated in Theorem 1
of Sec. II becomes useful.

The problem with N = 4 amplitudes allows for three non-
trivial basic topologies for a connected graph (or “closed
loop”) as demanded at the beginning of Theorem 1. The three
topologies are shown in Fig. 3, where also a definite direction
of translation is indicated for each graph. If we consider for
example the first boxlike topology shown in Fig. 3, we see
that the indicated direction of the graph is in one-to-one cor-
respondence to the following standard convention for writing
the consistency relation [see Eq. (5), as well as comments
below that equation]:

I = (b, c): φ12 + φ23 + φ34 + φ41 = 0. (15)
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1

2 3

4

I = (b, c)

1

2

4

3

II = (a, c)

1

32

4

III = (a, b)

FIG. 3. The three possible start topologies for pseudoscalar me-
son photoproduction (N = 4 amplitudes) are drawn here. Each graph
is drawn with a particular direction, which is intimately connected
to our way of writing the corresponding consistency relation, i.e.,
Eqs. (15)–(17) (cf. comments made below Eq. (5) in Sec. II). Each
topology corresponds to the relative phases from a particular com-
bination of two shape classes (cf. Table I), as is indicated above the
graphs (cf. discussion in the main text).

In exactly the same way, one can write a uniquely specified
consistency relation for each of the remaining two topologies,
with their respective direction of translation. For the second
and third topology shown in Fig. 3, we have the expressions:

II = (a, c): φ12 + φ24 + φ43 + φ31 = 0, (16)

III = (a, b): φ13 + φ32 + φ24 + φ41 = 0. (17)

We again stress the fact that the sign-choices fixed in the
standard conventions (15) to (17) are crucial for the applica-
bility of the graphical criterion formulated in Theorem 1 of
Sec. II.

As already indicated in the Eqs. (15) to (17) written above,
one should note that each of the topologies shown in Fig. 3,
as well as each of the consistency relations (15) to (17) is
in direct correspondence to a particular combination of shape
classes from which the pairs of observables are to be picked
(cf. Table I). To be more precise, the first topology in Fig. 14
corresponds to the combination of shape classes (b, c), the
second topology relates to the combination (a, c) and the third
topology corresponds to (a, b).

We now consider some examples for (in-)complete graphs,
in order to illustrate how Theorem 1 (Sec. II) works. Consider
for instance the set of observables

{
Ob

1+,Ob
2−,Oc

1+,Oc
1−

}
. (18)

From this set of observables, one constructs the graph with
boxlike topology shown in Fig. 4, which satisfies the graphical
criterion posed in Theorem 1. The set (18) is composed of
a selection of type B.2 taken from the shape class b and a
selection of type A.1 taken from shape class c (cf. discussion
in Sec. II). We now write explicitly all the possible cases for
the consistency relation (15) which follow from this particular
selection of observables, and thus also correspond to the graph
shown in Fig. 4. Since the discrete ambiguity in case A.1 is
fourfold and for B.2 it is twofold, we get the following eight
relations (some multiples of 2π have already been removed

1

2 3

4

FIG. 4. The first example for a fully complete graph according to
Theorem 1 from Sec. II is shown. This graph can be inferred from
the selection of observables (18). The dashed single-lined arrows
indicate the fact that the selection A.1 has been applied for the two
observables belonging to shape class c, with corresponding relative
phases {φ12, φ34}. The dashed double-lined arrows indicate the fact
that a selection of type B has been applied for the two observables
from the shape class b, with corresponding relative phases {φ14, φ23}.
The ζ -sign arrows have been drawn into the dashed double-lined
arrows, according to the selection B.2 taken from shape class b [cf.
Eq. (12)].

by hand in the following equations):

α12 + ζ − α23 + α34 + ζ − α41 = 0, (19)

π − α12 + ζ − α23 + α34 + ζ − α41 = 0, (20)

α12 + ζ − α23 + π − α34 + ζ − α41 = 0, (21)

−α12 + ζ − α23 − α34 + ζ − α41 = 0, (22)

α12 + ζ + α23 − π + α34 + ζ + α41 − π = 0, (23)

π − α12 + ζ + α23 − π + α34 + ζ + α41 − π = 0, (24)

α12 + ζ + α23 − π + π − α34 + ζ + α41 − π = 0, (25)

−α12 + ζ + α23 − π − α34 + ζ + α41 − π = 0. (26)

It can be seen that no degenerate pair of equations exists in this
case. This is true due to the fact that the respective transitional
ζ angle (ζ ≡ ζ b

1+,2− in this case) always appears with the same
sign in each equation. One always obtains a term “2ζ” in each
equation, since the ζ angles belonging to the two different
relative phases φ23 and φ14 do not cancel out. The graph shown
in Fig. 4 is just right for such a cancellation not to occur.
Furthermore, we recognize the graphs constructed in Theorem
1 from Sec. II to be in principle just graphical summaries of
all cases for a particular consistency relation, corresponding
to a specific set of observables.

As a next example for a fully complete set, the following
selection of observables is considered:{

Oa
1+,Oa

2−,Ob
1+,Ob

2+
}
. (27)

This set implies the graph shown in Fig. 5. This graph sat-
isfies all the criteria posed by Theorem 1. The observables
from shape class a are picked according to the case B.2 from
Sec. II, while the pair of observables from the class b has
been selected according to case B.1. In both these cases, the
discrete phase ambiguity is twofold. Therefore, we have to
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1

32

4

FIG. 5. The second example for a fully complete graph according
to Theorem 1 from Sec. II is shown, which can be inferred from
the selection of observables (27). The dashed double-lined arrows
indicate a selection of type B from the shape class b (relative phases
{φ14, φ23}), while the dotted double-lined arrows represent a B-type
selection from shape class a (relative phases {φ13, φ24}). The ζ -sign
arrows have been drawn into the respective double-lined arrows
according to the selection (27).

consider the following four cases for the consistency relation
(17) (again removing possible summands of 2π by hand)

−ζ + α13 + ζ ′ + α32 − π + ζ − α24 + ζ ′ − α41

= 2ζ ′ + α13 + α32 − α24 − α41 − π = 0, (28)

−ζ + α13 + ζ ′ − α32 + ζ − α24 + ζ ′ + α41 − π

= 2ζ ′ + α13 − α32 − α24 + α41 − π = 0, (29)

−ζ − α13 + π + ζ ′ + α32 − π + ζ + α24 − π + ζ ′ − α41

= 2ζ ′ − α13 + α32 + α24 − α41 − π = 0, (30)

−ζ − α13 + π + ζ ′ − α32 + ζ + α24 − π + ζ ′ + α41 − π

= 2ζ ′ − α13 − α32 + α24 + α41 − π = 0, (31)

where the angle ζ = ζ a
1+,2− is defined from the pair

(Oa
1+,Oa

2−), while the second angle ζ ′ ≡ ζ b
1+,2+ belongs to

the observables (Ob
1+,Ob

2+). Again, no pair of degenerate
consistency-relations exists, since the ζ ′ angles remain in the
equations, while the ζ angles cancel each other out.

As a third example, we consider the following set:{
Ob

1+,Ob
2+,Oc

1+,Oc
2−

}
. (32)

This set leads to the graph shown in Fig. 6, which does not
satisfy the criteria of Theorem 1. The selection B.1 has been
picked from the shape class b, while the combination B.2 has
been picked from shape class c. In both cases, the discrete
phase ambiguity is again twofold, which implies the following
four cases for the consistency relation:

−ζ + α12 − ζ ′ − α23 + π + ζ − α34 + ζ ′ − α41

= α12 − α23 − α34 − α41 + π = 0, (33)

−ζ + α12 − ζ ′ + α23 + ζ − α34 + ζ ′ + α41 − π

= α12 + α23 − α34 + α41 − π = 0, (34)

−ζ − α12 + π − ζ ′ − α23 + π + ζ + α34 − π + ζ ′ − α41

= −α12 − α23 + α34 − α41 + π = 0, (35)

1

2 3

4

FIG. 6. The third example-graph mentioned in the main text is
shown here, which can be inferred from the set of observables (32).
The solid and dashed double-lined arrows have the same meaning as
in Fig. 4. The ζ -sign arrows, which have been drawn inside of the
double-lined arrows, correspond to the selection (32). This graph is
not fully complete according to Theorem 1 from Sec. II.

−ζ − α12 + π − ζ ′ + α23 + ζ + α34 − π + ζ ′ + α41 − π

= −α12 + α23 + α34 + α41 − π = 0. (36)

The angle ζ = ζ c
1+,2− belongs here to the pair (Oc

1+,Oc
2−),

while the second angle ζ ′ ≡ ζ b
1+,2+ is defined by the observ-

ables (Ob
1+,Ob

2+). However, now we observe that all pairs of ζ

angles cancel each other out in all the above-given equations.
Then degenerate pairs of relations emerge. For instance, it is
possible to transform the Eq. (34) into Eq. (35) via a multipli-
cation by (−1) [a similar transformation relates Eqs. (33) and
(36)]. Therefore, the considered set (32) is not fully complete.

In the same way as for the examples discussed above, we
can consider all possible selections of pairs of observables, for
each of the three start topologies shown in Fig. 3, then draw
the graphs that follow from them and check for completeness
using Theorem 1 from Sec. II. When doing this, one has 36
possible combinations for each start topology, resulting in a
total of 108 combinations to consider.

We found that 60 of these 108 combinations are fully
complete according to Theorem 1, using an automated
procedure7 in Mathematica [84]. From each start topology
I, II, and III, there originate 20 complete sets, respectively.
The 60 complete sets found in this way are listed in the
Supplemental Material [83].

In the formulation of Theorem 1 from Sec. II, as well as
in the derivations discussed in this section up to this point,
we always started with a given selection of observables, then
drew the corresponding graph and checked this graph for

7Our code is really an automated way of checking the conditions
of Theorem 1 algebraically, via specific checks on the orders of the
indices in the respective relative phases. That is, in our code the
cases for the consistency-relation are not evaluated explicitly and
rather the code is doing what a person would do when checking the
conditions for Theorem 1 by hand. For the photoproduction prob-
lem, one actually can check all 108 cases by hand in an acceptable
timespan and thus would not need a code. This is very different for
the electroproduction problem, see Sec. IV.
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1

2 3

4

I.i

1

2 3

4

I.ii

1

2 3

4

I.iii

1

2 3

4

I.iv

1

2 3

4

I.v

FIG. 7. These five types of graphs have been derived from the first (i.e., boxlike) topology I shown in Fig. 3. They correspond to different
combinations of selections of type A and B taken from the shape classes b (relative phases {φ14, φ23}) and c (relative phases {φ12, φ34}), as
described in Sec. II. At least one pair of double-lined arrows has to be contained in the graphs, i.e., at least one selection of type B has to have
been made. Graphs resulting solely from selections of type A have not been shown (there exist 4 of such graphs), since they cannot yield fully
complete sets (cf. Theorem 2 from Appendix A).

completeness. The reason for this is that the mapping be-
tween combinations of observables and graphs is actually not
bijective. On other words, when starting from a specific set
of observables, one can always arrive at a uniquely specified
graph. However, when going in the reverse direction, i.e.,
when starting from a graph, one may find multiple sets of
observables that fit this graph. For instance, the set of observ-
ables {Ob

1−,Ob
2+,Oc

1+,Oc
1−} fits the graph shown in Fig. 4,

exactly the same graph that originates from the first example
set (18).

This leads one to question whether it is possible at all
to find the above-mentioned 60 complete sets starting solely
from graphs, i.e., without selecting observables first. In the
following, we outline the individual steps for this alternative
procedure and provide arguments for the fact that the above-
mentioned nonbijectivity is actually not a problem. When
deriving complete sets solely from graphs, one can proceed
as follows:

(i) Starting from one of the basic topologies with di-
rection shown in Fig. 3, draw all possible types of
graphs that result from it by applying all possible
allowed combinations of pairs of single- and double-
lined arrows. For the considered problem with N = 4
amplitudes, this would result in nine possible graph
types originating from one particular start topology.
However, from these nine graph types, only five con-
tain double-lined arrows at all and thus can lead to
complete sets. For the boxlike topology I, these five
graph types are shown in Fig. 7.

(ii) For each graph type obtained in (i) which contains at
least one pair of double-lined arrows, draw all possi-
ble combinations of ζ -sign arrows into the given pairs
of double-lined arrows. This implies 4 new graphs in
case the graph type contains one pair of double-lined
arrows and 16 new graphs for the one graph type
shown in Fig. 7 that has two pairs of double-lined
arrows. In this step one therefore obtains (4 + 4 +
4 + 4 + 16) = 32 graphs from each start topology.
Thus, one obtains 96 graphs in total. Examples for
such graphs are shown for the start topology I in
Figs. 8 and 9.

(iii) From the graphs determined in step (ii), single out all
graphs that satisfy the completeness criterion posed in
Theorem 1. For each graph type containing one pair
of double-lined arrows shown in Fig. 7, one obtains
two complete cases of combinations of ζ signs, cf.
Fig. 8. For each graph type that has two pairs of
double-lined arrows as shown in Fig. 7, one gets 12
complete combinations of ζ signs, see Fig. 9. Thus,
one obtains (2 + 2 + 2 + 2 + 12) = 20 fully com-
plete graphs from each start topology and therefore
60 fully complete graphs in total. We observe that the
combinatorics match with the case discussed before,
where we started from selections of observables.

(iv) For each complete graph obtained in step (iii), find all
selections of observables that fit it according to the
cases A.1, A.2, and B.1–B.4 listed in Sec. II. Here,
one runs into the problem that the graphs constructed
in steps (i)–(iii) allow for more combinations of ζ

signs than exist in the cases listed in Sec. II. In the
cases B.1–B.4 from Sec. II, the possible combinations
of the signs of the ζ ’s in the ambiguity formulas for

1

2 3

4

I.i.1

1

2 3

4

I.i.2

1

2 3

4

I.i.3

1

2 3

4

I.i.4

FIG. 8. These four graphs are directly deduced from graph type
(I.i) shown in Fig. 7, by inserting all possible combinations of ζ -sign
arrows into the double-lined arrows. The two graphs (I.i.2) and (I.i.3)
satisfy all the completeness conditions posed by Theorem 1 from
Sec. II, while the graphs (I.i.1) and (I.i.4) violate these criteria.
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1

2 3

4

I.v.1

1

2 3

4

I.v.2

1

2 3

4

I.v.3

1

2 3

4

I.v.4

1

2 3

4

I.v.5

1

2 3

4

I.v.6

1

2 3

4

I.v.7

1

2 3

4

I.v.8

1

2 3

4

I.v.9

1

2 3

4

I.v.10

1

2 3

4

I.v.11

1

2 3

4

I.v.12

1

2 3

4

I.v.13

1

2 3

4

I.v.14

1

2 3

4

I.v.15

1

2 3

4

I.v.16

FIG. 9. This set of 16 graphs is directly deduced from graph type
(I.v) shown in Fig. 7, by inserting all possible combinations of ζ -sign
arrows into the double-lined arrows. From these 16 graphs, only four
violate the completeness criterion posed in Theorem 1 of Sec. II,
namely: (I.v.1), (I.v.4), (I.v.13), and (I.v.16).

(φi j, φkl ) were (−ζ ,−ζ ) and (−ζ ,+ζ ). This leads
one to question to which combinations of observables
the other two cases for the ζ signs, i.e., (+ζ ,+ζ ) and
(+ζ ,−ζ ), correspond.

As described in detail in Appendix C and sum-
marized in Table II, the “new” cases (+ζ ,+ζ ) and
(+ζ ,−ζ ) just correspond to the already known pair-
ings of observables listed in Sec. II, but with the sign
of one of the two observables flipped. Therefore, these
new cases introduce in principle redundant informa-
tion, but they still can be very useful for the derivation
of complete sets when starting solely from graphs.

As an example, consider the two complete graphs
(I.i.2) and (I.i.3) shown in Fig. 8. These graphs are
related to each by a flip of the direction of both ζ -

sign arrows within the appearing pair of double-lined
arrows. These two graphs correspond to the same
observables: The graph (I.i.3) corresponds to the sets{

Ob
1+,Ob

1−,Oc
1+,Oc

2+
}

and{
Ob

1+,Ob
1−,Oc

1−,Oc
2−

}
, (37)

while the graph (I.i.2) corresponds to the sets (cf.
Table II) {

Ob
1+,Ob

1−,Oc
1+,−Oc

2+
}

and{
Ob

1+,Ob
1−,Oc

1−,−Oc
2−

}
. (38)

In this way, we see that graphs related to each
other by the flip of one pair of ζ -sign arrows generally
introduce redundant information. However, this does
not harm our ability to derive all 60 complete sets
starting solely from graphs, since during the steps (i)
to (iii) outlined above, we have determined all pos-
sible fully complete graphs anyway. We just have to
assign all complete sets of observables to each graph
that is fully complete according to Theorem 1, using
the associations shown in Table II. Then, from the re-
sulting overall sets of observables, we have to sort out
the nonredundant ones, which should then leave only
the 60 complete sets which we already determined
when starting from the 108 possible combinations of
observables.

The steps (i)–(iv) described above can in principle be auto-
mated on a computer.

We report that all relevant complete sets found by
Nakayama in the case (2+2) (cf. [73]) have been recov-
ered using the graphical criterion devised in Theorem 1 from
Sec. II. Furthermore, we also verified the completeness of the
obtained sets with Mathematica [84], using similar methods
as those described in Appendix A of Ref. [76]. We refrain
from listing all these complete sets here again, due to reasons
of space. The sets have been collected in the Supplemental
Material [83]. The photoproduction problem has already been
treated at length in the literature. Therefore, we refer to tables
and lists already given in Refs. [52,73] for a further confirma-
tion of our results.

TABLE II. The different cases for the signs of the ζ angles are given here, as they appear in the formulas for the discrete ambiguities
for the relative phases φi j and φkl , as listed in Sec. II. The possible selections of pairs of observables (including possible sign flips for both
observables), which correspond to the different sign combinations for the ζ ’s, are given on the right. The cases (−ζ ,−ζ ) and (−ζ , +ζ ) have
been listed in Sec. II and derived explicitly in Appendix B. The other two cases (+ζ , −ζ ) and (+ζ ,+ζ ) follow from flipping the sign of one
of the two observables in the respective pairs and thus give in principle redundant information. However, the information given in this table is
still useful in case one wishes to derive complete sets of observables starting solely from graphs, as described in the main text. Further details
on how the results shown here were obtained are given in Appendix C.

(ζ sign for φi j , ζ sign for φkl ) Possible selections of observables

(−ζ , −ζ ) (On
1+,On

2+), (−On
1+, −On

2+), (On
1−,On

2−), (−On
1−, −On

2−)
(−ζ , +ζ ) (On

1+,On
2−), (−On

1+, −On
2−), (On

1−,On
2+), (−On

1−,−On
2+)

(+ζ , −ζ ) (−On
1+,On

2−), (On
1+, −On

2−), (−On
1−,On

2+), (On
1−,−On

2+)
(+ζ , +ζ ) (−On

1+,On
2+), (On

1+, −On
2+), (−On

1−,On
2−), (On

1−, −On
2−)
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It should come as no surprise that the results obtained
by Nakayama were reproduced by Theorem 1 from Sec. II,
since this theorem is basically a graphical reformulation of
derivations and criteria already contained in Ref. [73] (see
in particular Sec. III there). However, the usefulness of the
proposed graphical criterion will become apparent once we
utilize it in order to derive complete sets of minimal length
for the more involved problem of single-meson electroproduc-
tion, which will be the subject of the next section.

IV. APPLICATION TO PSEUDOSCALAR MESON
ELECTROPRODUCTION (N = 6)

Pseudoscalar meson electroproduction is described by
N = 6 amplitudes b1, . . . , b6, which are accompanied by 36
polarization observables [74]. The expressions for the observ-
ables are collected in Table III. Again, an algebra of Dirac
matrices is behind the definitions of the observables and there-
fore also behind their subdivision into different shape classes
[69]. This time, one has the 6 × 6 Dirac matrices 
̃α (these are
listed in Appendix B of Ref. [69]). For the observables in non-
diagonal shape classes, we again use the systematic notation
On

ν± introduced by Nakayama [73]. However, in Table III, we
also give the observables in the usual physical notation, which
is taken from the paper by Tiator and collaborators [74] and
which states that each observable corresponds to a so-called
response function Rβα

i . The (physical) meaning of the indices
on these response-functions is explained further in Table III.

The observables (and thus also the corresponding 
̃α ma-
trices) can be grouped into 10 overall shape classes. Two
shape classes contain diagonal observables: one of these two
classes, called D1, contains 4 observables which correspond
to matrices with nonvanishing entries in the first four diagonal
elements. The second diagonal shape class D2 contains 2 ma-
trices with nonvanishing entries in the fifth and sixth diagonal
element. The remaining 30 observables are divided into 8
nondiagonal shape classes. These nondiagonal classes com-
prise four shape classes of antidiagonal structure (AD1–AD4),
three shape classes of right-parallelogram type (PR1–PR3)
and one class of left-parallelogram structure (PL1). All non-
diagonal shape classes each contain 4 observables, apart from
the class AD2 which is composed of just two quantities.

We again make the standard assumption that all six observ-
ables {R00

T , cR00
T T , R0y

T , Ry′0
T , R00

L , R0y
L } from the diagonal shape

classes D1 and D2 have been already used to uniquely fix the
six moduli |b1|, . . . , |b6|. Then, one has to select six more
observables from the remaining nondiagonal shape classes,
which corresponds to the determination of complete sets with
minimal length 2N = 12. Such minimal complete sets should
then be able to uniquely specify the relative phases. This is
where we again use the criterion formulated in Theorem 1 of
Sec. II.

For the problem of electroproduction (N = 6 amplitudes),
there exist 60 possible topologies for fully connected graphs
with 6 vertices, where every vertex has order 2 (i.e., is touched
by two edges). We refrain here from showing all these 60
topologies, due to reasons of space. They can be found in
Sec. VI of Ref. [69]. The additional constraints formulated

for the considered graphs in the beginning of Theorem 1 from
Sec. II place further restrictions on the topologies. We have
only to consider those topologies which correspond to three
pairs of relative phases from three different shape classes of
four (cf. Table III). From the above-mentioned total of 60
possible topologies, only 8 topologies remain that satisfy this
constraint. These 8 possibilities are shown in Fig. 10. They
constitute the possible start topologies for our application of
Theorem 1 to electroproduction.

Each of the eight start topologies corresponds to a partic-
ular combination of observables from three different shape
classes. Furthermore, the directions for the graphs shown in
Fig. 10 stand in a one-to-one correspondence to our conven-
tion for writing the consistency relations (cf. the comments
made below Eq. (5) in Sec. II). The consistency relations
corresponding to the 8 topologies shown in Fig. 10 read as
follows:

I = (a, e, g): φ13 + φ36 + φ62 + φ24 + φ45 + φ51

= 0, (39)

II = (a, f , h): φ13 + φ35 + φ52 + φ24 + φ46 + φ61

= 0, (40)

III = (b, e, f ): φ14 + φ45 + φ52 + φ23 + φ36 + φ61

= 0, (41)

IV = (b, g, h): φ14 + φ46 + φ62 + φ23 + φ35 + φ51

= 0, (42)

V = (c, e, f ): φ12 + φ25 + φ54 + φ43 + φ36 + φ61

= 0, (43)

VI = (c, e, g): φ12 + φ26 + φ63 + φ34 + φ45 + φ51

= 0, (44)

VII = (c, f , h): φ12 + φ25 + φ53 + φ34 + φ46 + φ61

= 0, (45)

VIII = (c, g, h): φ12 + φ26 + φ64 + φ43 + φ35 + φ51

= 0. (46)

We stress again the fact that the sign conventions fixed by
these directions are of vital importance for the applicability
of Theorem 1.

As a first example for a selection of six observables from
the nondiagonal shape classes (i.e., of three pairs of observ-
ables), we consider the following set:{

Oa
1+,Oa

2+,Oe
1+,Oe

1−,Og
2+,Og

2−
}
, (47)

which implies the graph shown in Fig. 11. This specific graph
fulfills the completeness criterion posed in Theorem 1 and
therefore the set (47) is in fact complete. When combined with
the six observables from the diagonal shape classes D1 and
D2, the set (47) thus forms a complete set of minimal length
2N = 12. We refrain here from writing all the cases for the
consistency relation (39) explicitly and instead again mention
the fact that the graph shown in Fig. 11 constitutes a useful
summary of all these cases.
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TABLE III. The definitions of electroproduction observables are collected here for the diagonal observables of types D1 and D2, as well as
for the nondiagonal shape classes {a, b, c, d, e, f , g, h}. The specific combinations of relative phases belonging to each individual nondiagonal
shape class are indicated as well. The definitions and sign conventions for the observables have been adopted from Ref. [74]. Every observable
from a nondiagonal shape class is written in the systematic symbolic notation On

ν± introduced by Nakayama [73]. Furthermore, we also give
for the observables the usual physical notation, which is defined as follows [74]: Every observable corresponds to a “response function,”
Rβα

i . The superscript index α represents the target polarization, the index β indicates the recoil polarization and the subscript i represents the
polarization of the virtual photon in electroproduction, which can take the following configurations: i ∈ {T, L, T L, T T, T L′, T T ′} (meaning
purely longitudinal, purely transverse or “mixed” interference contributions to the differential cross section). In case the letter “s” or “c” is
written as an additional superscript on the left of the respective response function, then this indicates a possible sine or cosine dependence of the
respective contribution to the differential cross section (with the sine or cosine depending on the azimuthal angle of the produced pseudoscalar
meson).

Observable Relative phases Shape class

R00
T = 1

2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)
− cR00

T T = 1
2 (|b1|2 + |b2|2 − |b3|2 − |b4|2) D1

−R0y
T = 1

2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2)
−Ry′0

T = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Oa
1+ = |b1||b3| sin φ13 + |b2||b4| sin φ24 = Im[b∗

3b1 + b∗
4b2] = − sR0z

T T

Oa
1− = |b1||b3| sin φ13 − |b2||b4| sin φ24 = Im[b∗

3b1 − b∗
4b2] = R0x

T T ′ {φ13, φ24} a = PR1
Oa

2+ = |b1||b3| cos φ13 + |b2||b4| cos φ24 = Re[b∗
3b1 + b∗

4b2] = R0z
T T ′

Oa
2− = |b1||b3| cos φ13 − |b2||b4| cos φ24 = Re[b∗

3b1 − b∗
4b2] = sR0x

T T

Ob
1+ = |b1||b4| sin φ14 + |b2||b3| sin φ23 = Im[b∗

4b1 + b∗
3b2] = − sRz′0

T T

Ob
1− = |b1||b4| sin φ14 − |b2||b3| sin φ23 = Im[b∗

4b1 − b∗
3b2] = −Rx′0

T T ′ {φ14, φ23} b = AD1
Ob

2+ = |b1||b4| cos φ14 + |b2||b3| cos φ23 = Re[b∗
4b1 + b∗

3b2] = Rz′0
T T ′

Ob
2− = |b1||b4| cos φ14 − |b2||b3| cos φ23 = Re[b∗

4b1 − b∗
3b2] = − sRx′0

T T

Oc
1+ = |b1||b2| sin φ12 + |b3||b4| sin φ34 = Im[b∗

2b1 + b∗
4b3] = −Rx′z

T

Oc
1− = |b1||b2| sin φ12 − |b3||b4| sin φ34 = Im[b∗

2b1 − b∗
4b3] = Rz′x

T {φ12, φ34} c = PL1
Oc

2+ = |b1||b2| cos φ12 + |b3||b4| cos φ34 = Re[b∗
2b1 + b∗

4b3] = Rz′z
T

Oc
2− = |b1||b2| cos φ12 − |b3||b4| cos φ34 = Re[b∗

2b1 − b∗
4b3] = Rx′x

T

R00
L = |b5|2 + |b6|2 D2

R0y
L = |b5|2 − |b6|2

Od
1 = 2|b5||b6| sin φ56 = 2Im[b∗

6b5] = Rz′x
L {φ56} d = AD2

Od
2 = 2|b5||b6| cos φ56 = 2Re[b∗

6b5] = −Rx′x
L

Oe
1+ = |b3||b6| sin φ36 + |b4||b5| sin φ45 = Im[b∗

6b3 + b∗
5b4] = − sR00

LT ′
Oe

1− = |b3||b6| sin φ36 − |b4||b5| sin φ45 = Im[b∗
6b3 − b∗

5b4] = sR0y
LT ′ {φ36, φ45} e = AD3

Oe
2+ = |b3||b6| cos φ36 + |b4||b5| cos φ45 = Re[b∗

6b3 + b∗
5b4] = cR00

LT

Oe
2− = |b3||b6| cos φ36 − |b4||b5| cos φ45 = Re[b∗

6b3 − b∗
5b4] = − cR0y

LT

O f
1+ = |b1||b6| sin φ16 + |b2||b5| sin φ25 = Im[b∗

6b1 + b∗
5b2] = − sR0z

LT

O f
1− = |b1||b6| sin φ16 − |b2||b5| sin φ25 = Im[b∗

6b1 − b∗
5b2] = cR0x

LT ′ {φ16, φ25} f = AD4
O f

2+ = |b1||b6| cos φ16 + |b2||b5| cos φ25 = Re[b∗
6b1 + b∗

5b2] = cR0z
LT ′

O f
2− = |b1||b6| cos φ16 − |b2||b5| cos φ25 = Re[b∗

6b1 − b∗
5b2] = sR0x

LT

Og
1+ = |b1||b5| sin φ15 + |b2||b6| sin φ26 = Im[b∗

5b1 + b∗
6b2] = − sRz′0

LT

Og
1− = |b1||b5| sin φ15 − |b2||b6| sin φ26 = Im[b∗

5b1 − b∗
6b2] = − cRx′0

LT ′ {φ15, φ26} g = PR2
Og

2+ = |b1||b5| cos φ15 + |b2||b6| cos φ26 = Re[b∗
5b1 + b∗

6b2] = cRz′0
LT ′

Og
2− = |b1||b5| cos φ15 − |b2||b6| cos φ26 = Re[b∗

5b1 − b∗
6b2] = − sRx′0

LT

Oh
1+ = |b3||b5| sin φ35 + |b4||b6| sin φ46 = Im[b∗

5b3 + b∗
6b4] = sRx′x

LT ′
Oh

1− = |b3||b5| sin φ35 − |b4||b6| sin φ46 = Im[b∗
5b3 − b∗

6b4] = − cRz′x
LT {φ35, φ46} h = PR3

Oh
2+ = |b3||b5| cos φ35 + |b4||b6| cos φ46 = Re[b∗

5b3 + b∗
6b4] = − cRx′x

LT

Oh
2− = |b3||b5| cos φ35 − |b4||b6| cos φ46 = Re[b∗

5b3 − b∗
6b4] = − sRz′x

LT ′

As a second example set, we consider the following selec-
tion of six observables

{
Oa

1+,Oa
2−,Oe

1−,Oe
2+,Og

2+,Og
2−

}
, (48)

which implies the graph shown in Fig. 12. This graph violates
the completeness criterion from Theorem 1 and therefore the
set (48) is not complete.

The search for all complete sets using Theorem 1 can
again proceed via considerations of all relevant combinations
of observables (cf. the discussion in Sec. III). For each of
the 8 possible start topologies shown in Fig. 10, one then
has to consider 216 combinations, which are made up of
all the possibilities to select three pairs of observables us-
ing the cases A.1–B.4 outlined in Sec. II. Thus, there exists
a total of (8 ∗ 216) = 1728 combinations that have to be
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1
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I = (a, e, g)

1

3

52

4

6

II = (a, f , h)

1

4

52

3

6

III = (b, e, f )

1

4

6

2

3

5

IV = (b, g , h)

1

2 5

43

6

V = (c , e, f )

1

2

6

3 4

5

VI = (c , e, g)

1

2 5

3 4

6

VII = (c , f , h)

1

2

6

43

5

VIII = (c , g , h)

FIG. 10. The 8 possible start topologies for pseudoscalar meson
electroproduction (N = 6 amplitudes), which allow for a selection
of three pairs of observables from three different shape classes, are
shown here. The direction of translation is indicated for each graph
as well. This direction is intimately connected to our convention
of writing the corresponding consistency relation, i.e., Eqs. (39) to
(46) (see also the comments made below Eq. (5) in Sec. II). Each
of the shown topologies corresponds to the relative phases from a
particular combination of three shape classes for electroproduction
(cf. Table III). The combinations of shape classes are also indicated
above the graphs (cf. discussion in the main text).

considered. Using the Mathematica routines already men-
tioned in Sec. III, we found 1216 combinations from these
1728 different possibilities to be fully complete. These com-
plete sets are composed of 152 sets for each of the 8 start
topologies shown in Fig. 10. One example set for each start
topology is given in Table IV. The full list of 1216 complete
sets is given in the Supplemental Material [83].

Conversely, one can also derive the 1216 complete sets
starting solely from considerations of graphs, similar to the
steps (i) to (iv) described at the end of Sec. III. From each
of the 8 start topologies shown in Fig. 10, one can derive
19 different types of graphs that contain at least one pair of
double-lined arrows. These 19 graph types are plotted for
the first start topology ‘I’ in Fig. 13. Then, one has to draw

1

3

6

2

4

5

FIG. 11. The first example for a graph in electroproduction (N =
6 amplitudes) is shown. This graph is fully complete according to
Theorem 1 from Sec. II. It can be inferred from the selection of ob-
servables (47). The dashed single-lined arrows indicate the selection
of type A.1 for the shape class e, while the solid single-lined arrows
represent the selection of type A.2 for the shape class g. The solid
double-lined arrows indicate the fact that a selection of type B has
been applied for the two observables from the shape class a. The
ζ -sign arrows have been drawn into the solid double-lined arrows
according to the selection (47).

1

3

6

2

4

5

FIG. 12. The second example graph for electroproduction is
shown. This graph violates the completeness criterion posed in
Theorem 1 from Sec. II. It can be inferred from the selection of
observables (48). The solid single-lined arrows indicate the selection
of type A.2 for the shape class g. The solid double-lined arrows
indicate the fact that a selection of type B has been applied for the two
observables from the shape class a, while the dashed double-lined
arrows represent the same fact for the relative phases belonging to
shape class e. The ζ -sign arrows have been drawn into the double-
lined arrows according to the selection (48).

all possible combinations of ζ -sign arrows into the double-
lined arrows in the relevant graph types. For each graph type
with one pair of double-lined arrows, one thus obtains 4
graphs with ζ -sign arrows, each graph type with two pairs
of double-lined arrows implies 16 graphs with ζ -sign arrows
and for the one possible graph type (one per start topology)
which contains three pairs of double-lined arrows, one gets
64 possible graphs with ζ -sign arrows. Therefore, for each
start topology, (12 ∗ 4 + 6 ∗ 16 + 1 ∗ 64) = 208 graphs have
to be considered (cf. Fig. 13). From these 208 graphs, 152 turn
out to fulfill the completeness criteria8 posed in Theorem 1
from Sec. II. For all start topologies, this leads to (8 ∗ 152) =
1216 complete graphs. Again, the combinatorics in the purely
graphical approach match exactly the number of complete sets
which has been determined by starting from all possible com-
binations of observables, i.e., in the first approach outlined
above.

In the following, we discuss the general structure of the
1216 derived complete sets in a bit more detail and also
compare them to complete sets for electroproduction already
discussed in the literature [69,74]. Due to the basic structure
of the 8 start topologies shown in Fig. 10, one always obtains
a combination of two observables from one of the shape
classes with purely transverse photon polarization {a, b, c}
with four observables from two of the shape classes with
mixed transverse-longitudinal photon polarization {e, f , g, h}
(cf. also Table IV). These observables of course always
have to be combined with the six “diagonal” observables

8In more details: Each graph type with one pair of double-lined
arrows implies 2 complete graphs, each graph type with two pairs
of double-lined arrows implies 12 complete graphs, and the one
graph type (one per start topology) with three pairs of double-lined
arrows implies 56 complete graphs. Thus, one gets (12 ∗ 2 + 6 ∗
12 + 1 ∗ 56) = 152 complete graphs from each of the 8 possible start
topologies (see also Fig. 13).
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FIG. 13. These nineteen types of graphs arise from the first topology with direction shown in Fig. 10. They correspond to different
combinations of selections of types A and B (cf. Sec. II) for the three pairs of relative phases belonging to the shape classes (a, e, g) (i.e., pairs
of relative phases {φ13, φ24}, {φ36, φ45} and {φ15, φ26}, respectively), with at least one pair of double-lined arrows, i.e., at least one selection of
type B. The solid double-lined arrows mark relative phases belonging to the shape class a, dashed double-lined arrows mark relative phases
from the shape class e and the dotted double-lined arrows refer to the shape class g. Graphs resulting solely from selections of type A are not
shown in this plot (there exist eight such graphs), since they cannot yield fully complete sets according to Theorem 2 from Appendix A.

{R00
T , cR00

T T , R0y
T , Ry′0

T , R00
L , R0y

L }, where the latter six quantities
are composed of both purely transverse and purely longitu-
dinal observables. Furthermore, for each of the shape class
combinations corresponding to one of the 8 start topologies
shown in Fig. 10, there always occurs at least one shape class
that contains only observables with recoil polarization, i.e.,
one of the shape classes {b, c, g, h}. This means that just as
in the case of photoproduction [52,73], double-polarization
observables with recoil polarization cannot be avoided for a
minimal complete set in electroproduction, at least within the
context of the search strategy employed in the present work.
This fact has also been pointed out in the work on electro-
production by Tiator and collaborators [74]. Furthermore, the
unavoidability of double-polarization observables with recoil
polarization has also turned out to be true for the Moravcsik-
complete sets9 consisting of 13 as well as 14 observables,
which have been derived and listed for electroproduction in
Ref. [69].

9We denote complete sets of observables derived using Theorem 2
from Appendix A as “Moravcsik-complete sets,” cf. Ref. [69].

Another interesting property of the minimal complete sets
given for electroproduction in Table IV as well as the sup-
plemental material [83] is that they contain no observables
from the purely longitudinal shape class AD2, i.e., none of
the observables {Rz′x

L , Rx′x
L }. This fact is a consequence of the

shapes of the 8 start topologies, since the relative phase φ56

is never present in any of them. This is very different from
the Moravcsik-complete sets with 13 observables derived in
Ref. [69], since one observable from the pair {Rz′x

L , Rx′x
L } is

contained in all of them.
Furthermore, it is interesting to analyze the 1216 mini-

mal complete sets regarding their recoil-polarization content.
For each of the shape class combinations (a, e, g), (a, f , h),
(b, e, f ), and (c, e, f ), or equivalently for each of the four
corresponding start topologies (cf. Fig. 10), one obtains a
complete set that contains exactly two recoil-polarization ob-
servables, apart from the observable Ry′0

T which is contained
in the six “diagonal” observables and thus always measured,
of course. For each of the two shape class combinations
(c, e, g) and (c, f , h), one gets a complete set with four
recoil-polarization observables (apart from Ry′0

T ) and for each
of the combinations (b, g, h) and (c, g, h), one gets a com-
plete set with the maximal recoil-polarization content of six
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TABLE IV. Here we collect 8 selected examples for the minimal
complete sets composed of 12 observables. One example has been
chosen for each of the 8 different start topologies shown in Fig. 10.
The 6 observables given here in each case have to be combined with
the 6 diagonal observables {R00

T , cR00
T T , R0y

T , Ry′0
T , R00

L , R0y
L } in order to

form a complete set of 12. Every example is given in the response
function notation Rβα

i and also in Nakayama’s [73] systematic no-
tation On

ν± (cf. Table III). The labeling scheme for the set number
contains the combination of shape classes for each of the 8 start
topologies, as well as the number that the respective set has been
given in the full lists contained in the Supplemental Material [83].
This Table contains the first example set (47) (i.e., the graph shown
in Fig. 11) discussed in the main text, which is here the exam-
ple for the shape class combination “(a, e, g).” The Supplemental
Material [83] contains all 1216 minimal complete sets derived for
electroproduction in this work. These 1216 minimal complete sets
can be further subdivided into 152 complete sets for each of the 8
relevant shape-class combinations, i.e., for each of the 8 relevant start
topologies.

Set number Observables

(a, e, g) : 42 sR0z
T T R0z

T T ′
sR00

LT ′ sR0y
LT ′

cRz′0
LT ′

sRx′0
LT

Oa
1+ Oa

2+ Oe
1+ Oe

1− Og
2+ Og

2−
(a, f , h) : 10 sR0z

T T R0x
T T ′ sR0z

LT
cR0z

LT ′
cRz′x

LT
sRz′x

LT ′

Oa
1+ Oa

1− O f
1+ O f

2+ Oh
1− Oh

2−
(b, e, f ) : 100 Rx′0

T T ′ Rz′0
T T ′

cR00
LT

cR0y
LT

cR0x
LT ′ sR0x

LT

Ob
1− Ob

2+ Oe
2+ Oe

2− O f
1− O f

2−
(b, g, h) : 150 Rx′0

T T ′ sRx′0
T T

cRx′0
LT ′ sRx′0

LT
sRx′x

LT ′ sRz′x
LT ′

Ob
1− Ob

2− Og
1− Og

2− Oh
1+ Oh

2−
(c, e, f ) : 30 Rz′z

T Rx′x
T

sR00
LT ′ cR0y

LT
sR0z

LT
sR0x

LT

Oc
2+ Oc

2− Oe
1+ Oe

2− O f
1+ O f

2−
(c, e, g) : 80 Rx′z

T Rx′x
T

cR00
LT

cR0y
LT

cRx′0
LT ′ cRz′0

LT ′

Oc
1+ Oc

2− Oe
2+ Oe

2− Og
1− Og

2+
(c, f , h) : 1 Rx′z

T Rz′x
T

sR0z
LT

cR0x
LT ′ sRx′x

LT ′ sRz′x
LT ′

Oc
1+ Oc

1− O f
1+ O f

1− Oh
1+ Oh

2−
(c, g, h) : 50 Rx′z

T Rz′z
T

sRz′0
LT

sRx′0
LT

sRx′x
LT ′ sRz′x

LT ′

Oc
1+ Oc

2+ Og
1+ Og

2− Oh
1+ Oh

2−

recoil-polarization observables. The statements made here are
reflected in the 8 example sets shown in Table IV.

Further interesting facts arise as soon as we compare the
1216 minimal complete sets derived in this work to the 96
possible Moravcsik-complete sets composed of 14 observ-
ables, which have been derived and listed in Ref. [69]. For
the Moravcsik-complete sets with 14 observables, also some
examples exist that contain only 2 observables with recoil
polarization (apart from Ry′0

T ). Furthermore, interestingly the
combinations of shape classes that lie at the heart of the
Moravcsik-complete sets with 14 observables are exactly the
same combinations as for the minimal complete sets derived
in this work (cf. lists in Appendix D of Ref. [69]). In other
words, the Moravcsik-complete sets of 14 are derived from the
exact same graph-topologies shown in Fig. 10, but using The-
orem 2 from Appendix A instead of Theorem 1 from Sec. II.
Furthermore, we suspect that many of the 1216 minimal com-

plete sets with 12 observables, which have been derived in
this work, are in fact subsets of the Moravcsik-complete sets
of 14 from Ref. [69]. In Sec. VI from Ref. [69], this has been
illustrated explicitly for the minimal complete set

{
Oc

1+,Oc
2−,Og

2+,Og
2−,Oh

2+,Oh
2−

}
, (49)

which is numerated as the set “(c, g, h) : 68” in the lists of
the Supplemental Material [83], which result from the cal-
culations performed in the present work. Furthermore, it has
been demonstrated explicitly in Ref. [69] how this minimal
complete set with 12 observables can be deduced from a
Moravcsik-complete set of 14 via a mathematical reduction
procedure. We assume that similar facts are true for many
more cases, but have not checked all cases explicitly in the
course of this work.

When comparing to the statements made on minimal com-
plete sets for electroproduction in the work by Tiator and
collaborators [74], we have to state that our findings corrobo-
rate their statements. Still, our work complements Ref. [74]
by giving an explicit graphical construction procedure for
minimal complete sets, which has implied an extensive list
of 1216 such sets [83]. Such a graphical procedure was not
given in Ref. [74] and neither has been a list of complete sets.
However, as a final remark, we recite here a useful alternative
construction procedure for complete sets in electroproduction,
which has in fact been proposed in Ref. [74]. This alternative
procedure consists of combining a complete photoproduction
set with one full shape class of electroproduction observables
from the four possibilities {e, f , g, h}. We see that the defi-
nitions of the shape classes D1, a, b, and c are algebraically
identical to the definitions of the photoproduction observables
(compare Tables I and III). Thus, one can take for instance
any of the complete sets derived in Sec. III and combine it
for example with the full shape class e. This yields then a
set of (8 + 4) = 12 observables. The four complex ampli-
tudes b1, . . . , b4 are determined uniquely up to one overall
phase from the complete photoproduction set. The 2 moduli
and the 2 relative phases which are missing from just the
8 observables in the complete photoproduction set are then
uniquely fixed via the 4 quantities from the shape class e,
as has been already pointed out in Ref. [74]. Therefore, this
method of combining complete photoproduction sets with a
full shape class from {e, f , g, h} represents a powerful and ele-
gant alternative scheme for the derivation of complete sets for
electroproduction, which is complementary to the approach
followed in the present work.

This concludes our discussion of the case (2+2+2) for
pseudoscalar meson electroproduction. By this we mean
complete sets emerging from selections of three pairs of ob-
servables from three different shape classes, based on the 8
start topologies shown in Fig. 10. Although a quite extensive
list of 1216 complete sets of minimal length was found this
way, we acknowledge that many more such sets exist for elec-
troproduction (cf. statements made in Ref. [74]). We continue
our discussion with comments on a possible generalization of
the graphical criterion to problems with N > 6 amplitudes.
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V. GENERALIZATION TO PROBLEMS INVOLVING
N > 6 AMPLITUDES

In order to provide an idea on how the new graphical
criterion proposed in this work can be generalized to pro-
cesses with larger numbers of N > 6 amplitudes, we consider
here the next more complicated case of two-meson photopro-
duction, which is generally described by N = 8 amplitudes
[76,81]. We do not list here the definitions of all the N2 =
64 polarization observables for two-meson photoproduction,
due to reasons of space. Their definitions, as well as an
explanation of their physical meaning in terms of actual mea-
surements, can be found in Refs. [76,81]. It is clear that
a minimal complete set for two-meson photoproduction has
to contain at least 2N = 16 observables (cf. remarks in the
introduction, Sec. I, as well as Ref. [76]).

The general structure encountered in this case is as follows:
The 64 observables contain one shape class with 8 diagonal
observables, which are capable of uniquely fixing the moduli
|b1|, . . . , |b8| of the transversity amplitudes. The remaining
56 observables can be grouped into 7 distinct shape classes,
containing 8 observables each, which all have the same repeat-
ing mathematical structure. For each of the nondiagonal shape
classes n = 1, . . . , 7, the 8 observables have the following
generic form [76]

On
s1 = |bi||b j | sin φi j + |bk||bl | sin φkl + |bm||bp| sin φmp

+ |bq||br | sin φqr, (50)

On
s2 = |bi||b j | sin φi j + |bk||bl | sin φkl − |bm||bp| sin φmp

− |bq||br | sin φqr, (51)

On
s3 = |bi||b j | sin φi j − |bk||bl | sin φkl + |bm||bp| sin φmp

− |bq||br | sin φqr, (52)

On
s4 = |bi||b j | sin φi j − |bk||bl | sin φkl − |bm||bp| sin φmp

+ |bq||br | sin φqr, (53)

On
c1 = |bi||b j | cos φi j + |bk||bl | cos φkl + |bm||bp| cos φmp

+ |bq||br | cos φqr, (54)

On
c2 = |bi||b j | cos φi j + |bk||bl | cos φkl − |bm||bp| cos φmp

− |bq||br | cos φqr, (55)

On
c3 = |bi||b j | cos φi j − |bk||bl | cos φkl + |bm||bp| cos φmp

− |bq||br | cos φqr, (56)

On
c4 = |bi||b j | cos φi j − |bk||bl | cos φkl − |bm||bp| cos φmp

+ |bq||br | cos φqr, (57)

where the indices i, j, k, l, m, p, q, r ∈ 1, . . . , 8 have to be
all pairwise distinct. The 7 nondiagonal shape classes
are otherwise only distinguished in the combinations of
indices i, j, . . . , r which appear in the above-given defini-
tions. Every shape class composed of 8 observables, which
has the structure given above, is in one-to-one correspon-

dence to the particular combination of four relative phases
{φi j, φkl , φmp, φqr}. We mention the fact that an algebra of
8 × 8 
̃α matrices is behind the shape class structure shown
in Eqs. (50) to (57), as is described in more detail in Ref. [76].

When confronted with a more elaborate structure such as
the one given in Eqs. (50) to (57), one can at first make
an attempt to reduce the problem to already known cases
(cf. Theorems 1 and 2 in Sec. II and Appendix A). Such a
reduction can be achieved in the following two ways:

(i) Full decoupling
Considering the definitions of the eight observables
in the two-meson photoproduction shape class (50) to
(57), one can see quickly that the real and imaginary
parts of the bilinear amplitude products, or equiv-
alently the cosines and sines of the corresponding
relative phases, can be isolated by defining certain
linear combinations of observables. For instance, the
sines of the relative phases φi j, . . . , φqr can be isolated
via evaluation of the combinations:

|bi||b j | sin φi j = 1
4

(
On

s1 + On
s2 + On

s3 + On
s4

)
, (58)

|bk||bl | sin φkl = 1
4

(
On

s1 + On
s2 − On

s3 − On
s4

)
, (59)

|bm||bp| sin φmp = 1
4

(
On

s1 − On
s2 + On

s3 − On
s4

)
, (60)

|bq||br | sin φqr = 1
4

(
On

s1 − On
s2 − On

s3 + On
s4

)
. (61)

In exactly the same way, one can isolate the cosines
of the relative phases, by defining analogous linear-
combinations for the observables On

c1, . . . ,On
c4. We

say that the bilinear combinations appearing in the
original shape class have been fully decoupled. In other
words, one has reduced the ambiguity-problem pro-
vided by the bilinear-forms defined in terms of 8 × 8

̃α matrices [76] for two-meson photoproduction to
the ambiguities implied by certain two-dimensional
subalgebras of said 
̃α matrices.

It is now possible to apply Moravcsik’s theorem
in the modified form (Theorem 2 in Appendix A) to
the fully decoupled shape class. This has been done in
Ref. [76], where complete sets containing at least 24
observables were found using this method.

(ii) Partial decoupling
Instead of trying to isolate the real and imaginary
parts of bilinear products alone, one can try to only
isolate sub shape classes with four elements, of the
same structure as the one given in Eqs. (1) to (4) of
Sec. II, which are contained in the 8 observables given
above [i.e., in Eqs. (50) to (57)]. For instance, we can
find such a subclass, indicated by the symbol Õn,a,
i.e., with an additional “a” in the superscript, via the
following linear combinations of pairs of observables,
which contain only the two relative phases φi j and φkl

(cf. Ref. [76]):

Õn,a
1+ = 1

2

(
On

s1 + On
s2

)
= |bi||b j | sin φi j + |bk||bl | sin φkl , (62)
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Õn,a
1− = 1

2

(
On

s3 + On
s4

)
= |bi||b j | sin φi j − |bk||bl | sin φkl , (63)

Õn,a
2+ = 1

2

(
On

c1 + On
c2

)
= |bi||b j | cos φi j + |bk||bl | cos φkl , (64)

Õn,a
2− = 1

2

(
On

c3 + On
c4

)
= |bi||b j | cos φi j − |bk||bl | cos φkl . (65)

In the same way, one can isolate a subclass Õn,b for
the remaining two relative phases φmp and φqr :

Õn,b
1+ = 1

2

(
On

s1 − On
s2

)
= |bm||bp| sin φmp + |bq||br | sin φqr, (66)

Õn,b
1− = 1

2

(
On

s3 − On
s4

)
= |bm||bp| sin φmp − |bq||br | sin φqr, (67)

Õn,b
2+ = 1

2

(
On

c1 − On
c2

)
= |bm||bp| cos φmp + |bq||br | cos φqr, (68)

Õn,b
2− = 1

2

(
On

c3 − On
c4

)
= |bm||bp| cos φmp − |bq||br | cos φqr . (69)

This pair of disjoint subclasses is not the only such pair
which can be formed from the eight observables (50)
to (57). One can actually split the full shape class into
three possible pairs of disjoint subclasses, for which
the above-given two (“n, a” and “n, b”) are just the first
example. The second possibility would be given by
disjoint shape classes “n, c” and “n, d” with associated
pairs of relative phases {φi j, φmp} and {φkl , φqr}, re-
spectively. The precise definitions of the classes “n, c”
and “n, d” then proceed analogously to the Eqs. (62) to
(69). Furthermore, one can also form a third combina-
tion of disjoint shape classes, we call them “n, e” and
“n, f ,” which correspond to the pairs of relative phases
{φi j, φqr} and {φkl , φmp}, respectively. This exhausts
all the possibilities to achieve a partial decoupling of
the full shape class shown in Eqs. (50) to (57). We see
that some freedom on how to achieve this decoupling
indeed exists.

To the partially decoupled shape classes with
four elements, such as those described above, our
new graphical criterion (Theorem 1 from Sec. II)
can be directly applied. Thus, one would search for
(2+2+2+2)-combinations selected from four of the
partially decoupled shape classes, i.e., four shape
classes in the Õ basis. However, due to basic topo-
logical reasons, it is only possible to derive complete
sets with at least 20 observables in this way, when
considering observables in the O basis. This is true
due to the fact that at least three shape classes in
the O basis have to be combined in order to get a
connected graph when combining the indices from all
their relative phases [76]. This means that the above-
mentioned (2+2+2+2)-combinations in the Õ basis

have to correspond to at least 12 observables in the O
basis. Together with the 8 “diagonal” observables for
two-meson photoproduction, this implies 20 observ-
ables in total.

Last, we mention the fact that the observables in
the partially decoupled shape classes (i.e., in the Õ
basis) can be used for an explicit algebraic derivation
of minimal complete sets of 16 observables in the O
basis, as has been done in Ref. [76]. However, in this
derivation, a selection-pattern was used which does not
correspond to Theorem 1 from Sec. II.

The approaches (i) and (ii) described above clearly exhaust
all the possibilities of directly applying the criteria stated in
Sec. II and Appendix A to the problem of two-meson pho-
toproduction. In case one wishes to make statements about
more general combinations of observables, one has no other
choice but to execute a new dedicated derivation of the general
structure of the phase ambiguities allowed by the definitions
(50) to (57).

(iii) Full derivation of new phase-ambiguity structure
A full dedicated derivation of the phase ambiguities
implied by more general selections from a combi-
nation of shape classes such as the one defined in
Eqs. (50) to (57) has not been performed in the course
of this work. Therefore, in the following we can only
speculate how such a derivation might look like.

The most nearby option would be to try patterns
of (2+2+2+2)-combinations in the O basis, i.e.,
selections of 8 nondiagonal observables with 2 ob-
servables picked from each individual shape class.
These selections do not fit the patterns outlined in
point (ii) above. Therefore, some algebraic ingenuity
is needed in the derivation and it is likely that trying
to exactly replicate the derivation shown in detail in
Appendix B might not be enough. Since the deriva-
tions from Appendix B are already quite involved, we
only expect the new calculations needed for the larger
shape classes to be more complicated. However, once
the derivation of the discrete phase ambiguities im-
plied by, for instance, the (2+2+2+2)-combinations
mentioned above has been completed, we expect that
again a graphical criterion similar to the one formu-
lated in Theorem 1 from Sec. II can be used in order
to derive complete sets. These complete sets then have
the minimal length of 2N = 16 observables.

The discussion in this section has illustrated the problems
which are encountered when trying to generalize the criterion
posed in Theorem 1 from Sec. II to more involved problems
with N > 6 amplitudes. Theorem 1 has been able to directly
yield minimal complete sets of length 2N for photoproduction
and electroproduction, i.e., for N � 6. Therefore, in these
cases it has outperformed the modified form of Moravcsik’s
theorem (Theorem 2 from Appendix A). However, the price
one has to pay for this achievement is that a simple selection
of minimal complete sets for N > 6 is not so easily possible.
Instead, the advantage of deriving minimal complete sets is
paid with new and quite involved algebraic derivations, which
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have to be performed for more complicated amplitude extrac-
tion problems, with larger and more involved shape classes.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a generalization of the graphs origi-
nally introduced by Moravcsik [68], which has lead to a new
graphical criterion that allows for the determination of mini-
mal complete sets of length 2N , for an amplitude extraction
problem with N � 6 complex amplitudes, where furthermore
N has to be even. The new method rests heavily on the
known discrete phase ambiguities implied by the selection
of any pair of observables from a nondiagonal shape class
composed of four quantities. In order to achieve the selection
of minimal complete sets for N � 6, the considered graphs
must be provided with additional directional information. Our
new criterion has been applied to single-meson photoproduc-
tion (N = 4 amplitudes) as well as electroproduction (N = 6
amplitudes), with success. In particular, we were able to deter-
mine for the first time an extensive list of complete sets with
minimal length 2N = 12 for the case of electroproduction.

However, the generalization of our new criterion to prob-
lems involving a larger number of N > 6 amplitudes is
difficult, due to the fact that one has to perform new and
more involved algebraic derivations for the ambiguity struc-
ture implied by the then appearing larger shape classes, i.e.,
with more than four observables in each class. It is possible to
decouple such a problem, in order to reduce it to the already
known case of the above-mentioned shape classes of four.
However, the complete sets of observables determined in this
way are generally not of minimal length 2N any more.

Once the algebraic derivation of the full ambiguity struc-
ture allowed by such larger shape classes has been performed
successfully, the selection of complete sets according to a
graphical criterion similar to the one proposed in this work
is straightforward. The derivation of the ambiguity structure
is actually the only significant hurdle in the treatment of the
more complicated problems. Once this hurdle is taken, graph-
ical criteria can be applied with full effect.

This work can be extended into multiple directions. The
obvious first choice would be to work out the new graphical
criteria for more complicated reactions with N > 6 ampli-
tudes, such as two-meson photoproduction (N = 8) or even
vector-meson photoproduction (N = 12), and to try to extract
minimal complete sets with length 2N for these reactions. For
this, some algebraic ingenuity is needed to treat the larger
shape classes. Another possible direction of research would be
to try to establish a closer contact to mathematicians, in order
to see whether they have deeper insights into the discussed
matters. When Moravcsik published his paper in 1985 [68],
he called the mathematical theory for the ambiguities of a
set of bilinear algebraic equations for several unknowns to
be “nonexistent” (see the second-last paragraph in the intro-
duction of Ref. [68]). However, this may have changed in the
most recent years and it could be that mathematicians use
the objects and approaches introduced in this work, but in
different guises. Nevertheless, we have to admit that also the
present work seems to lead to a kind of more general theory
for the unique solvability of systems of bilinear equations.
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APPENDIX A: REVIEW OF MORAVCSIK’S THEOREM

This Appendix provides a review of Moravcsik’s theorem
[68] in a slightly modified form, which resulted from a recent
reexamination [69]. The review is included both to keep the
present work self-contained and also because Moravcsik’s
theorem serves as a useful reference point to the new graphical
criterion, which is developed in Sec. II of the main text.

Consider an amplitude-extraction problem formulated in
terms of N complex transversity-amplitudes10 b1, . . . , bN . For
such a problem, one can consider the N2 bilinear amplitude
products

b∗
jbi, for i, j = 1, . . . , N. (A1)

Due to the bilinear structure of the products (A1), as well
as the fact that polarization observables are most generally
linear combinations of such products, the amplitudes gener-
ally can only be determined up to one unknown overall phase
[52,54,55,73], which can depend on all kinematic variables
describing the considered process. Therefore, the maximal
amount of information which can be extracted is contained
in the moduli and relative phases of the N amplitudes.

An important initial standard assumption is that all the N
moduli,

|b1|, |b2|, . . . , |bN |, (A2)

have already been determined from a suitable subset com-
posed of N “diagonal” observables. This assumption makes
the algebraic analysis of complete experiments easier (cf.
Refs. [52,68,69,73]) and therefore we shall always adopt it
in this paper.

When introducing polar coordinates (i.e., modulus and
phase) for each amplitude, the real parts of the generally
complex bilinear products become

Re[b∗
jbi] = |bi||b j | cos φi j . (A3)

The real parts thus fix their corresponding relative phase
φi j := φi − φ j up to the discrete ambiguity [68,73]

φλ
i j = φ±

i j =
{+αi j,

−αi j,
(A4)

10One can also formulate all statements made in this work for he-
licity instead of transversity amplitudes. However, in the transversity
basis, the observables which can uniquely fix amplitude moduli are
generally most easily measured [52,73,74] (cf. discussions on photo-
production in Sec. III and electroproduction in Sec. IV). Therefore,
we have decided to choose the latter basis.
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where αi j can be extracted uniquely from the value of
Re[b∗

jbi], and on the interval αi j ∈ [0, π ]. We call a discrete
ambiguity of the form (A4) a “cosine-type” ambiguity [69].

The imaginary part of a bilinear product is written as

Im[b∗
jbi] = |bi||b j | sin φi j, (A5)

and it yields the corresponding relative phase φi j up to the
discrete phase ambiguity [68,73]

φλ
i j = φ±

i j =
{+αi j,

π − αi j,
, (A6)

where αi j can be extracted uniquely from the quantity
Im[b∗

jbi], and on the interval αi j ∈ [−π/2, π/2]. We refer
to a discrete ambiguity of the form (A6) as a “sine-type”
ambiguity [69].

The original theorem by Moravcsik is formulated as a
“geometrical analog” [68]. In this analog, every amplitude is
represented by a point and each bilinear amplitude product
is thus given as a line connecting the points that correspond
to the amplitudes among which the product is taken [cf.
Eq. (A1)]. Furthermore, a solid line represents the real part
Re[b∗

jbi] and a broken (dashed) line denotes the imaginary
part Im[b∗

jbi].
Moravcsik’s theorem has been recently reexamined [69],

which has lead to a slight modification of the original state-
ment. The modified form of Moravcsik’s theorem has then
been applied to single-meson photo- and electroproduction
[69], and also very recently to two-meson photoproduction
[76]. It reads as follows [69]:

Theorem 2 (Modified form of Moravcsik’s theorem):
Consider the following “most economical” [68] situation

in the geometrical analog: a large open chain which contains
all amplitude points and thus consists of N − 1 lines for a
problem with N amplitudes. This open chain is now turned
into a fully complete set, by adding one additional connecting
line which turns it into a closed loop of N lines, which has
to contain all amplitude points exactly once. Furthermore,
in such a closed loop every amplitude point is touched by
exactly 2 link lines. In other words, we have generated a
fully connected graph with N vertices and N edges, where all
vertices have to have exactly the order 2.

Such a connected graph (or closed loop) corresponds to a
unique solution for the amplitude-extraction problem, which
does not permit any residual discrete ambiguities, in case it
satisfies the following criterion:

(C2) The connected graph has to contain an odd number
of dashed lines nd � 1.
In particular, the graph does not have to contain any
solid lines at all. For an odd number of links N , the
connected graph with nd = N therefore still repre-
sents a fully complete set.
It is irrelevant which of the bilinear amplitude prod-
ucts are represented by the dashed lines, as long as
the overall number of dashed lines is odd.

A detailed proof of this theorem can be found in Ap-
pendix A of Ref. [69]. As an illustration of the somewhat
abstract criterion formulated in Theorem 2, we show three

1

2 3

4 1

2

4

3

1

3

4

2

FIG. 14. The diagrams show three connected graphs which meet
all the criteria posed by Theorem 2. These graphs with 4 vertices
correspond to the well-known example case of pseudoscalar meson
photoproduction, which is a problem with N = 4 amplitudes. Green
dashed lines denote the imaginary part of a bilinear amplitude prod-
uct, while the real part of such a product is represented by a blue solid
line. These graphs have been taken over identically from Ref. [69].

fully complete example graphs for pseudoscalar meson pho-
toproduction (N = 4 amplitudes) in Fig. 14. In the following,
we comment on some features of the theorem which are im-
portant for the present work.

The requirement of a connected topology for the graph
considered in Theorem 2 is crucial, due to the fact that it
directly forbids combinations of relative phases corresponding
to multiple disconnected subsets of amplitudes in the complex
plane, where the relative phases among all amplitudes within
one subset are uniquely fixed, but the multiple subsets are
still allowed to rotate freely relative to each other. The latter
case occurs when at least one relative phase connecting at
least two such subsets is missing, and it leads to so-called
continuous ambiguities. The connectedness criterion for the
graph directly removes such continuous ambiguities.

Furthermore, in case the connectedness criterion is ful-
filled, one can establish a so-called consistency relation
[69,73] among all the occurring relative phases. The generic
form as well as the importance of such consistency relations
is elaborated in more detail in the beginning of Sec. II of the
main text.

We note that there can exist certain singular surfaces in the
parameter space composed of the relative phases, on which
Theorem 2 no longer holds. Such singular configurations have
been mentioned in Sec. III and Appendix A of Ref. [69].
However, we will disregard such cases in the following dis-
cussion, since the measure of such singular surfaces is always
negligible, when compared to the full parameter space.

The modified form of Moravcsik’s theorem (i.e., Theorem
2) has turned out to be very useful, since it leads to a fully
automated procedure for the construction of complete sets for
in principle any amplitude extraction problem with a general
number of N complex amplitudes. However, when applied to
realistic processes with N � 4 amplitudes, this theorem has
lead to sets which are slightly overcomplete when compared
to complete sets of minimal length 2N (see in particular
Sec. VII of Ref. [69], as well as the discussion in Ref. [76]).
This happens essentially due to fact that isolated real and
imaginary parts of bilinear amplitude products [Eqs. (A3) and
(A5)] enter the statement of Theorem 2, while the observables
encountered in processes with N � 4 amplitudes are generally
linear combinations of such bilinear products. The new graph-
ical criterion, which is developed in Sec. II of the main text,
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represents an attempt to improve this situation by allowing for
a direct selection of fully complete sets with minimal length
2N .

APPENDIX B: DERIVATION OF THE PHASE
AMBIGUITIES FOR THE SIMPLEST NONTRIVIAL

SHAPE SLASS [Eqs. (1)–(4)]

In the following, we repeat the derivations from Sec. III of
Nakayama’s work [73]. First, we consider the example case
B.1 [selection of (On

1+,On
2+)] mentioned in Sec. II. We define

Bi j := |bi||b j | and consider the following pair of observables:

On
1+ = Bi j sin φi j + Bkl sin φkl , (B1)

On
2+ = Bi j cos φi j + Bkl cos φkl . (B2)

When combining both of these definitions, a basic addition
theorem for the cosine leads to the following expression:

(
On

1+
)2 + (

On
2+

)2 = B2
i j + B2

kl + 2Bi jBkl cos (φi j − φkl ).
(B3)

We define the length

N ≡ Nn
1+,2+ :=

√(
On

1+
)2 + (

On
2+

)2
. (B4)

Then, we formally introduce the transitional angle ζ ≡ ζ n
1+,2+

via:

cos ζ ≡ On
1+

N
, sin ζ ≡ On

2+
N

. (B5)

Compare this definition to the comments made below
Eq. (11), as well as to the graphical representation shown in
Fig. 2, in Sec. II. One should always keep in mind that the
general angle ζ n

ν±,ν ′± and the length Nn
ν±,ν ′± both depend on

the considered pair of observables.
With these definitions, the observables given above can be

re-expressed as

N cos ζ = Bi j sin φi j + Bkl sin φkl , (B6)

N sin ζ = Bi j cos φi j + Bkl cos φkl . (B7)

Next, we multiply the first of these equations by sin φkl and
the second one by cos φkl and then add both equations, which

leads to:

cos (φi j − φkl ) = −Bkl + N sin (ζ + φkl )

Bi j
. (B8)

Inserting this result in Eq. (B3), one obtains:

sin (ζ + φkl ) = N2 − B2
i j + B2

kl

2NBkl
. (B9)

Applying the arcsin function to this equation, one can derive
the phase ambiguity

φkl =
{−ζ + αkl ,

−ζ − αkl + π,
(B10)

where the right-hand side of Eq. (B9) uniquely fixes αkl on the
interval [−π/2, π/2].

In exactly the same way that has lead to Eq. (B9), one can
prove the following constraint:

sin (ζ + φi j ) = B2
i j − B2

kl + N2

2NBi j
. (B11)

This constraint leads to the following discrete phase ambigu-
ity:

φi j =
{−ζ + αi j,

−ζ − αi j + π,
(B12)

where the right-hand side of Eq. (B11) uniquely specifies αi j

on the interval [−π/2, π/2].
Up to now, the discrete phase ambiguity given by

Eqs. (B10) and (B12) looks like a fourfold one, but this
is not true due to the fact that the relative phases φi j and
φkl are not independent. Rather, Eq. (B3) fixes a constraint
for cos(φi j − φkl ). In other words, one has ±α̃ ≡ φi j − φkl ,
where α̃ is uniquely specified on the interval [0, π ]. The ambi-
guities (B10) and (B12) leave the following four possibilities
for the difference of the relative phases:

φi j − φkl =

⎧⎪⎨
⎪⎩

αi j − αkl ,

αi j + αkl − π,

−αi j − αkl + π,

−αi j + αkl .

(B13)

After taking out the indeterminacy of the sign of ±α̃, which
is true due to the symmetry of the cosine, one is left with the
following set of two nonredundant cases for the quantity α̃:

α̃ =
{
αi j − αkl ,

αi j + αkl − π.
(B14)

We evaluate the cosine of the second possibility for α̃, as
follows:

cos (φi j − φkl ) = cos (αi j + αkl − π ) = − cos αi j cos αkl + sin αi j sin αkl = −
√

(1 − sin2 αi j )(1 − sin2 αkl ) + sin αi j sin αkl

= −
√√√√(

1 −
[

B2
i j − B2

kl + N2

2NBi j

]2)(
1 −

[
N2 − B2

i j + B2
kl

2NBkl

]2)
+ B2

i j − B2
kl + N2

2NBi j

N2 − B2
i j + B2

kl

2NBkl

= N2 − B2
i j − B2

kl

2Bi jBkl
. (B15)
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The calculation needed to get from the third to the fourth
step in Eq. (B15) is quite involved. The numerator of the
square-root term becomes the absolute value |B4

i j + (B2
kl −

N2)2 − 2B2
i j (B

2
kl + N2)|. Once we insert the equation for N2,

i.e., Eq. (B3), into the term within the absolute value, we
see that this term equals −4B2

i jB
2
kl sin2(φi j − φkl ), which is

definitely a negative number. Thus, evaluating the absolute
value amounts to flipping the sign of this term. Keeping track
of this sign change, it is then possible to derive the correct
result (B15).

We observe that the second of the two nonredundant possi-
bilities (B14) satisfies the correct constraint (B3) for cos(φi j −
φkl ). In exactly the same way as done above, one can check
that the first possibility in (B14) leads to an equation which is
different from (B3). Thus, we have derived that the difference
of the relative phases φi j and φkl always has to satisfy:

φi j − φkl = ±(αi j + αkl − π ). (B16)

The fact that this relation has to hold reduces the fourfold
discrete ambiguity derived initially to a twofold one. The
remaining constraint (B16) is only generally fulfilled by the
following two cases:{

φi j = −ζ + αi j,

φkl = −ζ − αkl + π,
or

{
φi j = −ζ − αi j + π,

φkl = −ζ + αkl .
(B17)

Consider next the case B.4 described in Sec. II, i.e., the com-
bination of observables (On

1−,On
2−). From their definitions

On
1− = Bi j sin φi j − Bkl sin φkl , (B18)

On
2− = Bi j cos φi j − Bkl cos φkl , (B19)

we see that the entire derivation given above for the case B.1
can be mimicked, with the only change needed being a flip of
the sign of Bkl in every intermediate step. Thus, we can infer
the following two constraints:

sin (ζ + φkl ) = −N2 + B2
i j − B2

kl

2NBkl
, (B20)

sin (ζ + φi j ) = N2 + B2
i j − B2

kl

2NBi j
. (B21)

Applying the arcsin function yields here again an apparent
fourfold discrete phase ambiguity, with formally the same
expressions as given in Eqs. (B10) and (B12). However, now
the derivation (B15) changes. We again consider the two
nonredundant cases for the α̃ variable given in Eq. (B14).
However, now some quite involved algebra shows that:

cos(φi j − φkl ) = cos (αi j − αkl ) = cos αi j cos αkl + sin αi j sin αkl

=
√

(1 − sin2 αi j )(1 − sin2 αkl ) + sin αi j sin αkl

=
√√√√(

1 −
[

B2
i j − B2

kl + N2

2NBi j

]2)(
1 −

[−N2 + B2
i j − B2

kl

2NBkl

]2)
+ B2

i j − B2
kl + N2

2NBi j

−N2 + B2
i j − B2

kl

2NBkl

= −N2 + B2
i j + B2

kl

2Bi jBkl
. (B22)

The second possibility mentioned in Eq. (B14) leads to
the wrong constraint for cos(φi j − φkl ). Therefore, in the case
B.4, the following constraint has to hold:

φi j − φkl = ±(αi j − αkl ). (B23)

This constraint leaves only the following twofold phase ambi-
guity for the case B.4:{

φi j = −ζ + αi j,

φkl = −ζ + αkl ,
or

{
φi j = −ζ − αi j + π,

φkl = −ζ − αkl + π.
(B24)

Now, we treat the case B.2 from Sec. II, i.e., we consider the
following pair of observables:

On
1+ = Bi j sin φi j + Bkl sin φkl , (B25)

On
2− = Bi j cos φi j − Bkl cos φkl . (B26)

The derivation for this case corresponds to the expressions
derived for B.1 above, with both the signs of Bkl and φkl

flipped. The expression (B3) changes as follows:

(
On

1+
)2 + (

On
2−

)2 = B2
i j + B2

kl − 2Bi jBkl cos (φi j + φkl ).
(B27)

One has to keep in mind that now the constraint for the cosine
holds for cos(φi j + φkl ). Following the derivation further, one
obtains the following pair of constraints:

sin (ζ − φkl ) = −N2 + B2
i j − B2

kl

2NBkl
, (B28)

sin (ζ + φi j ) = N2 + B2
i j − B2

kl

2NBi j
. (B29)

These two constraints fix the relative phases φi j and φkl up to
the following discrete ambiguities

φkl =
{
ζ − αkl ,

ζ + αkl − π,
and φi j =

{−ζ + αi j,

−ζ − αi j + π.
(B30)
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For the sum of both relative phases, one thus obtains the
following four possible cases:

φi j + φkl =

⎧⎪⎨
⎪⎩

αi j − αkl ,

αi j + αkl − π,

−αi j − αkl + π,

−αi j + αkl .

(B31)

One again has to single out the nonredundant cases

α̃ =
{
αi j − αkl ,

αi j + αkl − π.
(B32)

In a calculation which is formally quite similar to (B22),
one can check that the correct constraint for cos(φi j + φkl )
is satisfied by:

φi j + φkl = ±(αi j − αkl ). (B33)

This relation for the sum of the relative phases singles out the
following twofold discrete phase ambiguity for the case B.2:{

φi j = −ζ + αi j,

φkl = ζ − αkl ,
or

{
φi j = −ζ − αi j + π,

φkl = ζ + αkl − π.
(B34)

Finally, we consider the case B.3 from Sec. II, i.e., the selec-
tion of the following pair of observables:

On
1− = Bi j sin φi j − Bkl sin φkl , (B35)

On
2+ = Bi j cos φi j + Bkl cos φkl . (B36)

Here, one can follow the steps in the derivation for the case
B.1, which has been described above, and only has to flip the
sign of the relative phase φkl . Thus, Eq. (B3) turns into:(

On
1−

)2 + (
On

2+
)2 = B2

i j + B2
kl + 2Bi jBkl cos (φi j + φkl ),

(B37)
The constraint for the cosine is again valid for the sum of both
relative phases φi j and φkl .

For this case B.3, one can derive the following set of
constraints:

sin (ζ − φkl ) = N2 − B2
i j + B2

kl

2NBkl
, (B38)

sin (ζ + φi j ) = N2 + B2
i j − B2

kl

2NBi j
. (B39)

The two relative phases φi j and φkl are thus fixed up to the
following discrete ambiguities

φkl =
{
ζ − αkl ,

ζ + αkl − π,
and φi j =

{−ζ + αi j,

−ζ − αi j + π.
(B40)

The thus implied possible cases for the sum φi j + φkl are
formally the same as in Eq. (B31) and the nonredundant cases
for the quantity α̃ are formally the same as in Eq. (B32).

One has again to be careful with the constraint for
cos(φi j + φkl ). In a calculation which is formally similar to
the steps taken in (B15), one can deduce that for the case B.3,
the following constraint has to hold:

φi j + φkl = ±(αi j + αkl − π ). (B41)

This relation singles out the following twofold discrete phase
ambiguity for the case B.3:{

φi j = −ζ + αi j,

φkl = ζ + αkl − π,
or

{
φi j = −ζ − αi j + π,

φkl = ζ − αkl .
(B42)

APPENDIX C: DISCRETE PHASE AMBIGUITIES OF THE
SIMPLEST NONTRIVIAL SHAPE CLASS [Eqs (1)–(4)] FOR

COMBINATIONS OF OBSERVABLES
WITH FLIPPED SIGNS

In this Appendix, we derive the discrete phase ambigui-
ties for observables selected from the shape class given in
Eqs. (1)–(4) in Sec. II, provided that at least one of the ob-
servables has a flipped sign. We will see that this leads to
more general combinations of signs for the ζ angles in the
ambiguity-formulas (more general compared to those listed in
Sec. II). Although this derivation yields in principle redundant
information, the obtained results are still useful in case one
wishes to derive complete sets starting solely from consider-
ations of graphs, as discussed in more detail in Sec. III. The
results derived in the following have been collected in Table II
of the main text.

The first and simplest way of deriving the phase ambi-
guities for combinations of observables with flipped signs
proceeds via consideration of Eq. (B5) from Appendix B.
Suppose we reverse the sign of the second observable in
this formula, i.e., we consider the observables (On

1+,−On
2+).

Then, Eq. (B5) becomes

cos ζ ≡ On
1+

N
, sin ζ ≡ −On

2+
N

. (C1)

Suppose now that another angle, called ‘ζ̃ ’, exists for which
the equation retains its original form:

cos ζ̃ ≡ On
1+

N
, sin ζ̃ ≡ On

2+
N

. (C2)

Then, we have

cos ζ̃ = cos ζ , and sin ζ̃ = − sin ζ , (C3)

or

ζ̃ = −ζ . (C4)

We see that the ζ angle has reversed its sign when going
from (On

1+,On
2+) to (On

1+,−On
2+). This can also be seen via

consideration of Fig. 2.
Alternatively, consider now the combination

(−On
1+,On

2+), which leads to the following equations:

cos ζ ≡ −On
1+

N
, sin ζ ≡ On

2+
N

. (C5)

In the same way as before, one derives for this case:

ζ̃ = π − ζ . (C6)

An additional summand of π appears now in the ambiguity-
formulas, which is however irrelevant. The important point
is that also in this case, the sign of the ζ angle has been
reversed. In exactly the same way, one can show that for the
combination (−On

1+,−On
2+), the ζ angle retains its original

sign.
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The second possible way of deriving the ambiguities for
flipped signs of observables proceeds by going through the
steps for case B.1 as discussed in Appendix B. However, this
time we flip the sign of the first observable: (−On

1+,On
2+).

Considering the definitions in Eqs. (B1) and (B2), we observe
that flipping the sign of On

1+ is tantamount to reversing the
signs of both relative phases φi j and φkl . Following the deriva-
tion through, we obtain the following constraints:

sin (ζ − φkl ) = N2 − B2
i j + B2

kl

2NBkl
. (C7)

sin (ζ − φi j ) = B2
i j − B2

kl + N2

2NBi j
. (C8)

These two constraints directly imply the following discrete
phase ambiguities:

φkl =
{
ζ − αkl ,

ζ + αkl − π,
and φi j =

{
ζ − αi j,

ζ + αi j − π.
(C9)

We see that from then on the ζ ’s appear with reversed signs
in all formulas compared to the original derivation for case

B.1, given in Appendix B (cf. Eqs. (B10) and (B12)). The
same is true when one considers the combination with the
sign of the second observable flipped: (On

1+,−On
2+). The

latter case can be obtained from the original derivation for
B.1 by reversing the signs of all the quantities φi j , φkl , Bi j ,
and Bkl [cf. Eqs. (B1) and (B2)]. However, in case one would
consider the combination (−On

1+,−On
2+), all one would have

to do is reverse the signs of the modulus factors Bi j and Bkl ,
which would leave the signs of the ζ angles in the ambiguity
formulas untouched.

By repeating the arguments given above for the case ’B.4’
considered in Appendix B, one can derive the remaining as-
sociations between the ζ -sign combinations “(−ζ ,−ζ )” and
“(+ζ ,+ζ )” and specific pairs of observables, which are given
in Table II of the main text.

Finally, in order to obtain all the associations of pairs
of observables to the ζ -sign combinations “(−ζ ,+ζ )” and
“(+ζ ,−ζ ),” one has to repeat the steps described above
for the cases B.2 and B.3 discussed in Appendix B. In
this way, the full set of associations given in Table II is
obtained.
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