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We construct a quark target model (QTM) to incorporate intrinsic glue into effective low-energy models of
QCD, which often contain only quark degrees of freedom. This method guarantees the gauge invariance of
observables order by order in the strong coupling. The quark and gluon PDFs for the dressed quarks are obtained
in the QTM at leading order. We demonstrate gauge invariance of the results by comparing both covariant
and light cone gauges, with the former including an explicit Wilson line contribution. A key finding is that in
covariant gauges the Wilson line can carry a significant amount of the light cone momentum. With coupling
strength αs = 0.5 and dressed quark mass Mq = 0.4 GeV, we find quark and gluon momentum fractions of
〈x〉q = 0.81 and 〈x〉g = 0.19, where the Wilson line contribution to the quark momentum fraction is −0.18. We
use the on-shell renormalization scheme and find that at one loop this Wilson line contribution does not depend
on the covariant gauge but does vanish in light cone gauge as expected. This result demonstrates that it is crucial
to account for Wilson line contributions when calculating quantum correlation functions in covariant gauges.
We also consider the impact of a gluon mass using the gauge invariant formalism proposed by Cornwall, and
combine these QTM results with two quark-level models to obtain quark and gluon PDFs for the pion.
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I. INTRODUCTION

Many of the open mysteries in nuclear physics—such
as the origin of hadron mass and the distribution of spin
in the proton—can be addressed through partonic correla-
tion functions, including parton distribution functions (PDFs),
transverse momentum distributions (TMDs), and general-
ized parton distributions (GPDs). However, calculating these
distributions exactly from quantum chromodynamics (QCD)
remains challenging, where even in lattice QCD approx-
imation schemes are needed [1–7]. In this milieu model
calculations such as the Dyson-Schwinger equations (DSE)
[8,9], the chiral quark soliton model [10–12], and the Nambu–
Jona-Lasinio (NJL) model [13,14] can offer important insight.

The primary emphasis of model calculations has so far
been on calculating various quark correlation functions, with
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information about the gluons either inferred indirectly or
generated entirely perturbatively by QCD evolution equa-
tions [15–18]. Such approaches are not adequate to fully
address several of the major open questions in hadron physics,
which involve significant intrinsic gluonic contributions at all
renormalization scales. In addition, a major focus of future
experimental efforts such as at the Electron-Ion Collider is the
gluon structure of hadrons and nuclei. It is therefore vital that
gluonic observables be directly calculated in effective models
of QCD.

The goal of this work is to consider one avenue for direct
calculation of gluon observables. Specifically, we take the
approach of adding intrinsic gluons to effective models of
QCD that involve only quark degrees of freedom, such as the
NJL model. Since these models have been successful in the
calculation of observables such as PDFs [19,20], form factors
[13,21], and GPDs [14,22], this success can be carried over
without constructing an entirely new effective model.

Perhaps the most straightforward method of adding in-
trinsic glue to an effective model with quark degrees of
freedom is to simply resolve the gluonic substructure of the
dressed quarks. These dressed quarks are a shared feature
of many low-energy models of QCD, and are emergent ef-
fective degrees of freedom (massive quasiparticles) with the
same quantum numbers as the almost massless current quarks
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appearing in the QCD Lagrangian. These dressed quarks are
made up of many quarks, antiquarks, and gluons, and are
connected to dynamical chiral symmetry breaking in QCD.

In this work, we construct a quark target model (QTM)
to calculate the quark and gluon substructure of a dressed
quark to leading order in the quark-gluon coupling strength
(αs). We focus on the quark and gluon PDFs of the quark
target. In general gauges, it is necessary to account for Wilson
line contributions to the quark PDF in order to respect gauge
invariance and to satisfy the momentum sum rule.1 For ex-
ample, within the Dyson-Schwinger equation approach, PDFs
have been calculated using Landau gauge [17,18]; however,
these results ignore the Wilson line contributions that must
be present in covariant gauges. We explore covariant and light
cone gauges to explicitly demonstrate the gauge independence
of the QTM quark and gluon PDFs, and the importance of the
Wilson line contribution in covariant gauges.

This work is organized as follows: In Sec. II, we con-
struct the QTM and obtain results for the quark and gluon
PDFs of the quark target. Numerical results for the PDFs
and their Mellin moments are presented for massive quarks
and massless gluons. In Sec. III, an explicit gluon mass is
introduced and its impact on the QTM PDFs is studied under
two scenarios, one where a naive mass term is added to the
Lagrangian which directly breaks gauge invariance, and in the
other scenario we use the formalism proposed by Cornwall
[23] that maintains gauge invariance and the momentum sum
rule via the introduction of an auxiliary field. In Sec. IV, we
combine the QTM PDFs with two quark-only pion PDFs mod-
els, thereby obtaining quark and gluon PDFs for the pion at
the model scale. Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution is then performed and the PDFs are com-
pared to data and an empirical PDF parametrization. Finally,
in Sec. V, we provide some conclusions and an outlook.

II. QUARK TARGET MODEL

We consider a QTM, which consists of taking the target
state to be a dressed quark, and use this model to compute
its quark and gluon PDFs at one loop in perturbative QCD.
Although quarks are not asymptotic states in QCD, a QTM
describes the properties of quarks through matrix elements of
operators between on-shell quark states, denoted by |Q(P)〉.
In the following we formulate the QTM and present the defi-
nitions of the PDFs of interest.

A. Definitions and Feynman rules

To formulate the QTM we begin with an effective quark-
gluon Lagrangian of the form

L =
∑

q

ψ̄q(i /D − mq)ψq − 1

4
Ga

μνGμν
a + LGF, (1)

1Beyond leading order there is also a Wilson line contribution to
the gluon PDF but it does not contribute to the gluon light cone
momentum.

where ψq denotes a quark field with mass mq, and a gauge-
fixing term LGF is necessary to quantize the theory and fully
define the gluon propagator [24]. We emphasize that the quark
and gluon fields appearing in this QTM are not the current
quark and gluon fields appearing in the QCD Lagrangian. The
QTM fields are dressed by the interactions of an underlying
low-energy effective theory of QCD, and therefore mq is not
the current quark mass. In principle, the gluons appearing
within the dressed quarks can also be dressed and behave
as if they have a dynamically generated infrared scale [25].
Nevertheless, within the context of the QTM, we shall refer to
ψq and mq as the “bare quark field” and “bare quark mass,” re-
spectively. We limit calculations within the QTM to O(g2), as
such, there are no gluon self-interactions in this work and the
leading-order QTM is effectively Abelian. Results presented
in this section are therefore leading order in αs = g2/(4π ).

A quark target of flavor Q (capital letters are used to denote
dressed quarks to distinguish them from bare quarks) has an
unpolarized quark distribution defined by

fq/Q(x) =
∫

d λ

4 π
eixλ P·n〈Q(P)|ψ̄q(0) /nW (0, nλ)

× ψq(nλ)|Q(P)〉, (2)

where n is a light-like vector defining the light cone and
x = k · n/P · n is the light cone momentum fraction carried
by the struck bare quark. The Wilson line operator, W (0, nλ),
which connects the bare quark fields and ensures the color
gauge invariance of the PDF, reads

W (0, nλ) = P e−ig
∫ 0
λ

dξ n·A(nξ ), (3)

with P denoting the path-ordering operator. The unpolarized
gluon distribution in the quark target is defined by

x fg/Q(x) = 1

P · n

∫
dλ

2π
eixλ P·n〈Q(P)|G+

μ (0)WA(0, nλ)

× Gμ+(nλ)|Q(P)〉, (4)

where WA(0, nλ) is a Wilson line in the adjoint representation.
The quark and gluon PDFs in the QTM are calculated by

evaluating Feynman diagrams. The momentum space Feyn-
man rules for the operators defining the PDFs are given by

(5)

(6)
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FIG. 1. Leading order diagrams contributing to the quark PDF
in the quark target model. The solid lines represent a quark prop-
agator and the curly lines a gluon propagator. The large vertices
are given by the Feynman rules of Eqs. (5)–(7), and the small
vertex is the standard quark-gluon interaction obtained from the
QCD Lagrangian.

(7)

where the operator insertion (large dot) can be on a quark
line, a gluon line, or a quark-quark-gluon vertex which results
from the Wilson line. The Wilson line Feynman rule can be
derived by first splitting the Wilson line appearing in Eq. (2)
into two pieces, one going to infinity and the other back to the
endpoint:

W (x, y) = W (x,+∞)W (+∞, y)

= [W (+∞, x)]†W (+∞, y). (8)

Expanding each of the Wilson lines to the first order in g gives

[W (+∞, x)]†W (+∞, y) = 1 + ig
∫ ∞

x
dξ n · A(ξ )

− ig
∫ ∞

y
dξ n · A(ξ ) + O(g2).

(9)

When this expression is inserted in Eq. (2), the first term
gives the diagram in Eq. (5), while the two order-g terms
are responsible for the Wilson line diagram in Eq. (7). The
gluon Feynman rule can be derived by writing the gluon field
strength tensor appearing in Eq. (4) in terms of the gluon field
and expanding to zeroth order in g.

B. Quark and gluon distributions in QTM

The one-loop diagrams contributing to the quark PDF of
the quark target are depicted in Fig. 1 and the quark target
gluon PDF is given by the single diagram in Fig. 2. Adding all

FIG. 2. Leading order diagram contributing to the gluon PDF in
the quark target model. The solid line represents a quark propagator
and the curly lines a gluon propagator. The large vertex are given by
the Feynman rule in Eq. (6), and the small vertices is the standard
quark-gluon interaction obtained from the QCD Lagrangian.

four diagrams in Fig. 1, the quark PDF can be written as

fq/Q(x) = Z2 δ(1 − x) + f tri
q/Q(x) + f W

q/Q(x), (10)

where the two diagrams that represent the Wilson line are
equal, and have been included as a single contribution in
Eq. (10). The quark field renormalization constant, Z2, is im-
plicitly present in every diagram, since the operator defining
the PDFs is given in terms of the unrenormalized fields [24].
However, Z2 can also be expanded as a series in g, with
the leading-order form Z2 = 1 + g2Z (2)

2 + O(g3), thus, in a
leading-order calculation Z2 effectively only contributes to
the first diagram in Fig. 1. Note, the PDF definitions given
in Eqs. (2) and (4) are gauge invariant, but the individual
diagrams in Fig. 1 need not be. For example, in light cone
gauge n · A = 0 and therefore the Wilson line contributions
vanish, which is not true in general.

The second diagram in Fig. 1 (triangle diagram) reads

f tri
q/Q(x) = ig2

2

CF

P · n

∫
d4k

(2π )4
δ

(
x − k · n

P · n

)

× ū(P) γ μ S(k) /n S(k) γ ν Dμν (P − k) u(P),
(11)

where S(k) is the quark propagator and Dμν (k) the gluon
propagator. The order-g Wilson line terms give rise to the third
and fourth diagrams in Fig. 1. These diagrams are equal and
together are given by

f W
q/Q(x) = g2 CF

P · n
nν

∫
d4k

(2π )4

[
δ

(
x − k · n

P · n

)
− δ(1 − x)

]

× i

n · (P − k) + i0
ū(P) γ μ

× S(k) /n Dμν (P − k) u(p). (12)

Note, the term 1/(n · k + i0) is part of the operator in this
Feynman diagram approach; however, it is connected to the
eikonal propagator piece of the Wilson line in the cut diagram
method [24]. The gluon PDF of the quark target, given by the
diagram in Fig. 2, reads

x fg/Q(x) = −i g2 CF

P · n

∫
d4k

(2π )4
ū(P) γ μ S(P − k) γ ν u(P)

× [
n · k gα

ρ − kρnα
]
[n · k gρβ − kρnβ]

× [δ(n[xP − k]) + δ(n[xP + k])]Dμα (k) Dνβ (k).
(13)

These expressions for the PDFs are evaluated by first taking
Mellin moments to eliminate the delta function, and then
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writing them in a form where the inverse Mellin transform
is trivial.

At order g2 in the QTM the gluon propagator does not get
dressed, therefore in a general covariant gauge and in light
cone (LC) gauge the gluon propagators take the standard form

Dcov
μν (k) = −1

k2 + i0

[
gμν − (1 − ξ )

kμkν

k2 + i0

]
, (14a)

DLC
μν (k) = −1

k2 + i0

[
gμν − kμnν + nμkν

(k · n)

]
. (14b)

At order g2 the quark propagator does get dressed, where
the self-energy reads

�(p) = ig2 CF

∫
d4k

(2π )4
γ μ S(p − k) γ ν Dμν (k) (15)

and takes the general form

�(p) = A(p2)/p + B(p2) + C(p2)/n, (16)

where in covariant gauges C(p2) = 0. The quark field renor-
malization constant, Z2, is given by

Z−1
2 = 1 − d �(p)

d/p

∣∣∣∣
/p=Mq

, (17)

where Mq is the renormalized (physical) dressed quark mass.
The physical dressed quark mass and quark field renor-

malization constant can be understood by considering the gap
equation for the unrenormalized quark propagator:2

S−1
0 (p) = /p − mq − �(p), (18)

where S0(p) is the unrenormalized dressed quark propagator,
mq is the bare quark mass, and �(p) is the self-energy. The
self-energy, which accounts for changes in the quark propaga-
tor due to the quark and gluons interactions, shifts the pole of
the propagator to what we identify as being the physical mass
Mq:

Mq = mq + �(/p = Mq). (19)

The shift of the quark mass also causes the residue of the
propagator to change. Near the physical pole /p � Mq,

S0(p) = 1

/p − mq − �(p)
� Z2

/p − Mq
, (20)

where Z2 is the field renormalization constant of Eq. (17).
To study the gauge dependence of the various contributions

to the quark PDF of the quark target, given by the diagrams in

2We emphasize that dressing and renormalization are distinct pro-
cedures. Dressing accounts for the incorporation of interactions
in the calculation of Green’s functions, whereas renormalization
rescales the fields through factors such as Z2. These procedures
are often done in tandem since—when an infinite UV regulator is
taken—the dressing produces UV divergences that must be contained
by renormalization. The unrenormalized and renormalized propaga-
tor are both dressed: they are defined respectively as time-ordered
two-point Green’s functions of the unrenormalized and renormalized
quark fields and differ by a factor Z2, i.e., S0(p) = Z2 S(p).

Fig. 1, we explicitly consider general covariant and light cone
gauges. For the quark field renormalization constant we find

Zcov
2 = 1 + 2 g2 CF

∫ 1

0
dx

[
x I2(wq(x))

+ 4 M2
q x(1 − x)(2 − x) I3(wq(x))

]
, (21)

ZLC
2 = Zcov

2 + 4 g2CF

∫ 1

0
dx

x

1 − x
I2(wq(x)), (22)

where wq(x) = (1 − x)2M2
q is the Feynman mass parameter.

We are using the on-shell renormalization scheme and there-
fore Zcov

2 is independent of the choice of covariant gauge
[26]. The additional term in the LC result comes from the n
dependent piece of the light cone gauge gluon propagator. We
employ a regularization scheme independent notation for the
results where details are given in the Appendix.

The covariant and light cone gauge results for the triangle
diagram contribution to the quark PDF of the quark target are

f tri, cov
q/Q (x) = −2 g2CF

[
(1 − x) I2(wq(x))

+ 4 M2
q x(1 − x) I3(wq(x))

]
, (23)

f tri,LC
q/Q (x) = f tri, cov

q/Q (x) − 4 g2CF
x

1 − x
I2(wq(x)), (24)

where again we find that the triangle diagram in covariant
gauges is independent of the gauge parameter ξ . Finally, the
Wilson line contribution to the quark PDF is given by

f W,cov
q/Q (x) = 4 g2 CF

[
x

1 − x
I2(wq(x))

− δ(1 − x)
∫ 1

0
dy

y

1 − y
I2(wq(y))

]
, (25)

f W,LC
q/Q (x) = 0, (26)

where the light cone gauge result vanishes as expected and the
covariant gauge result is independent of ξ . The appearance of
a delta function term in the covariant gauge result corresponds
to the so-called virtual diagram that appears in the cut diagram
approach [24]. It has the same divergent behavior necessary
to cancel the divergence in the first term. The gluon PDF
for the quark target, at order g2, does not have a Wilson line
contribution and reads

x fg/Q(x) = −2 g2CF
[
[1 + (1 − x)2]I2(wg(x))

+ 4 M2
q x2(1 − x) I3(wg(x))

]
, (27)

where wg(x) = x2M2
q = wq(1 − x). Explicit calculation in

any covariant gauge or light cone gauge gives the same re-
sult, as must be the case because fg/Q(x) is a gauge invariant
quantity.

Comparing the covariant and light cone gauge results for
the quark PDF we find

ZLC
2 δ(1 − x) + f tri,LC

q/Q (x)

= Zcov
2 δ(1 − x) + f tri,cov

q/Q (x) + f W,cov
q/Q (x), (28)

as expected by gauge invariance of the PDF. So while the
Wilson line is trivial in light cone gauge, covariant gauge
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Wilson line contributions must appear elsewhere and in this
calculation are split between ZLC

2 and f tri,LC
q/Q (x).

C. Wilson line contribution to PDF sum rules

The quark number and momentum sum rules for the QTM
can respectively be stated as∫ 1

0
dx fq/Q(x) = 1, (29)

∫ 1

0
dx[x fq/Q(x) + x fg/Q(x)] = 1. (30)

It can be shown analytically that the quark PDF in Eq. (10)
satisfies the quark number sum rule:∫ 1

0
dx fq/Q(x) = Zcov

2 +
∫ 1

0
dx

[
f tri, cov
q/Q (x) + f W, cov

q/Q (x)
]

= 1 + 2 g2 CF

∫ 1

0
dx

d

dx
[x(x − 1)I2(wq(x))]

= 1, (31)

where the Wilson line does not contribute to the quark number
sum rule as expected. However, this is not the case for the mo-
mentum sum rule, where in general the Wilson line does carry
quark momentum. (We will show this explicitly in the next
subsection.) Indeed, only when the Wilson line contribution is
included do we find

fq/Q(1 − x) = fg/Q(x) + [δ(x) terms]. (32)

This symmetry ensures the momentum sum rule when the
quark number sum rule is already satisfied, as it entails∫ 1

0
dx x[ fq/Q(x) + fg/Q(x)] =

∫ 1

0
dx fq/Q(x) = 1. (33)

The fact that the Wilson line contributes to the momentum
sum rule has important implications for the calculation of
partonic correlation functions in QCD effective theories.

D. Numerical results for the QTM

The QTM PDFs contain IR and UV divergences that
must be regularized, and therefore the numerical results are
regularization scheme dependent. We employ proper time
regularization with both UV and IR regulators [13,27,28] to
obtain the numerical results presented here; however, other
schemes such as dimensional regularization (with MS or MS
subtraction of the ε−1 divergences) or implicit regularization
can be used instead. (See the Appendix for a dictionary to
translate the formulas in this work into different regularization
schemes.) For these numerical results we use �IR = 240 MeV
and �UV = 645 MeV, which are standard values [13].

Figure 3 gives results for the quark and gluon PDFs at
different values of the coupling strength αs. Note, the δ(1 − x)
terms cannot be plotted. The gluon PDF is positive definite
and, aside from the δ(1 − x) term from the Wilson line, so
is the quark PDF. Since the PDFs are proportional to αs, we
observe that the curves within each panel simply differ by
an overall factor. At large x the quark PDF is dominated by

FIG. 3. Results for the QTM quark and gluon PDFs for several
values of αs at fixed quark mass Mq = 0.4 GeV. The quark PDF
notably has delta function contributions at x = 1 that are not shown
in this plot, and these delta function contributions are responsible for
the negative Mellin moments in Table I.

the 1/(1 − x) term coming from the Wilson line in covariant
gauges or the triangle diagram in light cone gauge. This be-
havior is different from familiar quark PDFs inside hadrons
and reflects that this quantity is a quark PDF inside itself.

The dependence of the PDFs on the physical quark mass
Mq is shown in Fig. 4. The quark PDF only has slight de-
pendence on the quark mass, with the non-delta-function
contributions being suppressed at larger quark masses. The
gluon PDF is also suppressed for large quark masses, and
therefore gluons carry less momentum for larger quark
masses.

In Table I we present Mellin moments of the quark and
gluon PDFs. To reveal the importance of the Wilson line to
the moments, especially the momentum sum rule, we split
the quark PDF into two terms: one containing Z2 and triangle
diagram contributions, and the other contribution containing
the Wilson line. In a general covariant gauge these results
are shown in the second and third columns of Table I, with
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TABLE I. Results for the s Mellin moments 〈xs−1〉 =∫ 1
0 dx xs−1 f (x) of the quark and gluon PDFs. In the second and third

columns the quark PDF is split according to Eq. (10). The fourth
and fifth columns give the total quark and gluon moments. For these
results the quark mass is set to Mq = 0.4 GeV and the coupling
strength to αs = 0.5, which gives Z2 = 0.9933 in a general covariant
gauge at one loop.

s Z2 + 〈xs−1〉tri
q 〈xs−1〉W

q 〈xs−1〉q 〈xs−1〉g

1 1 0 1
2 0.9867 −0.1775 0.8093 0.1907
3 0.9866 −0.3034 0.6832 0.0647
4 0.9877 −0.4011 0.5867 0.0351
5 0.9888 −0.4807 0.5081 0.0235
6 0.9896 −0.5479 0.4418 0.0176
7 0.9903 −0.6059 0.3843 0.0140
8 0.9908 −0.6571 0.3337 0.0118
9 0.9912 −0.7027 0.2884 0.0101
10 0.9915 −0.7440 0.2475 0.0088
...

...
...

...
...

18 0.9926 −0.9791 0.0135 0.0045
19 0.9927 −1.0010 −0.0084 0.0043
20 0.9927 −1.0219 −0.0292 0.0040

the fourth and fifth columns containing the total quark and
gluon Mellin moments, respectively, which are both gauge
independent.

The results in Table I show that the quark number sum rule
is satisfied without needing to account for the Wilson line,
a result proven earlier analytically. However, the momentum
sum rule is oversaturated without the negative contribution
from the Wilson line. With Mq = 0.4 GeV and αs = 0.5 we
find that the quarks carry about 81% of the total light cone
momentum and gluons carry about 19%. The Wilson line
contribution to the momentum sum rule is −0.1775, which
is the same in all covariant gauges, because we are working at
one loop in the on-shell remormalization scheme. This result
explicitly illustrates that Wilson line contributions can be large
in covariant gauges.

This has important implications for model calculations in
covariant gauges that do not explicitly include gauge link
contributions to quantum correlation functions. For example,
if one were to calculate only quark local operators, and in-
fer the momentum fraction carried by gluons by imposing
the momentum sum rule, then one must include Wilson line
contributions in order to obtain the correct gluon momentum
fraction. Had we not accounted for the Wilson line in this
calculation, for instance, and had inferred gluon momentum
by what was missing from the momentum sum rule, we would
have underestimated the gluon momentum fraction by 0.1775,
that is, obtaining 〈x〉g = 0.0133 instead of the correct value
of 〈x〉g = 0.1907. This clearly indicates the importance of
accounting for the Wilson line contributions.

An interesting feature of the QTM is that the Mellin mo-
ments of the quark PDF become negative starting at s = 19 for
the parameters used in Table I. This occurs in covariant gauges
specifically because of the Wilson line contribution, and in

FIG. 4. Results for the QTM quark and gluon PDFs for several
values of Mq at fixed coupling strength αs = 0.5. Note, the quark
PDF also has delta function contributions at x = 1 which are not
shown.

light cone gauge because of the extra term in the triangle dia-
gram in Eq. (24). This has a major implication for applying the
QTM to calculating hadron PDFs. That is, if a standard convo-
lution model is used in the impulse approximation, and if the
PDFs for the hadron that come from a quark-only effective
theory are positive definite (body PDFs), then incorporating
the QTM PDFs will make the hadron’s quark PDF become
negative near x ≈ 1. We illustrate this explicitly for the pion
in Sec. IV.

Table II gives the second Mellin moment of the quark
and gluon PDFs for various values of the coupling strength.
The momentum carried by the gluons increases with the cou-
pling strength, and it is worth highlighting that the gluons
contribute approximately 28% of the quark target light cone
momentum with αs = 0.75. This is approximately equal to
the gluon momentum fraction found empirically for the pion
in Ref. [29]. Therefore, this simple one-loop QTM can give a
physically reasonable value for the gluon momentum fraction
for realistic values of αs.
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TABLE II. Results for the second Mellin moment 〈x〉 =∫ 1
0 dx x f (x) of the quark target model PDFs for several values of

the coupling strength αs, given at a fixed quark mass Mq = 0.4 GeV.
In the second and third columns the quark PDF is split according to
Eq. (10). The fourth and fifth columns give the total quark and gluon
moments.

αs Z2 + 〈x〉tri
q 〈x〉W

q 〈x〉q 〈x〉g

0.25 0.9934 −0.0887 0.9046 0.0954
0.50 0.9867 −0.1775 0.8093 0.1907
0.75 0.9800 −0.2662 0.7139 0.2861
1.00 0.9735 −0.3549 0.6185 0.3815

III. QUARK TARGET MODEL WITH A GLUON MASS

In this section we introduce a gluon mass in order to study
its impact on the QTM PDFs. Results from both lattice QCD
[30–32] and Dyson-Schwinger equations [33–35] suggest that
the gluon in QCD may acquire an dynamically generated
effective mass at low momentum. The mass is apparently
generated by the full structure of QCD, including gluon self-
interactions to all orders in αs. Therefore it is not possible to
reproduce dynamical gluon mass generation in an effective
model of gluons at any finite order in αs. Nonetheless, the
effect of a gluon mass can be incorporated in a model by
placing an explicit gluon mass term in the Lagrangian, and
it has been shown to provide good agreement with lattice
results for the gluon and ghost propagators already at one loop
[36,37]. Therefore, it is worthwhile to explore the QTM PDFs
using a finite gluon mass.

A. Formalism for a gauge invariant gluon mass

A naive Lagrangian mass term for gluons reads [36,38]

L(naive)
mass = m2

g Tr[Aμ(x)Aμ(x)], (34)

which has been widely used to describe lattice QCD results
on gluon and ghost two-point functions [36,37] but this term
notoriously violates gauge invariance. In addition, as we shall
see explicitly, including this mass term in QTM PDF calcu-
lations violates the momentum sum rule in any gauge. This
occurs because a gauge transformation can be used to intro-
duce explicit dependence on spacetime coordinates x into the
Lagrangian, nullifying conservation of the energy-momentum
tensor.

A gauge-invariant Lagrangian mass term for gluons has
been suggested by Cornwall [23]:

Lmass = m2
g Tr

[(
Aμ(x) − 1

ig
(∂μV (θ (x)))V −1(θ (x))

)2]
,

(35)

where the field V (θ (x)) = exp{iθ (x)} transforms under the
fundamental representation of the color group. This mass term
makes the theory nonrenormalizable, which would render the
model inapplicable beyond one loop, but since the calcula-
tions herein are done at one loop this is not an issue for this
work.

Including the mass term of Eq. (35) has primarily two
effects on the calculation of PDFs in the QTM. The first is
that a gluon mass now appears in the gluon propagator, which
for covariant gauges and light cone gauge take the form

Dcov
μν (k) = −1

k2 − m2
g + i0

[
gμν − (1 − ξ )

kμkν

k2 − ξm2
g

]
, (36a)

DLC
μν (k) = −1

k2 − m2
g + i0

[
gμν − kμnν + nμkν

(kn)

]
. (36b)

The gluon propagators given in Eqs. (36) take the same
form if either the naive gluon mass term of Eq. (34) or the
Cornwall mass term of Eq. (35) is added to the QTM La-
grangian. Nevertheless, in general the covariant gauge result
violates the QCD Slavnov-Taylor identity for the gluon propa-
gator [39,40], which states pμ Dμν (p) = ξ pν/p2, and follows
from Becchi-Rouet-Stora-Tyutin (BRST) symmetry. It im-
plies that only the transverse piece of the gluon propagator
is dressed in covariant gauges. Coincidentally, in the Landau
gauge (ξ = 0) the gluon propagator does remain transverse,
even with an explicit gluon mass term in the Lagrangian.

Including a gluon mass in the gluon propagators, as in
Eqs. (36), and calculating the diagrams in Figs. 1 and 2 gives
the following gauge invariant results for the quark and (naive)
gluon PDFs:

fq/Q(x; mg) = fq/Q(x) − 4 g2CF m2
g x(1 − x) I3(wq(x)),

(37)

x f naive
g/Q (x; mg) = x fg/Q(x) − 4 g2CF m2

g [x2(1 − x)

+ 2 (1 − x)2] I3(wg(x)), (38)

where in these expressions wq(x) = (1 − x)2M2
q + x m2

g and
wg(x) = wq(1 − x). The functions fq/Q(x) and fg/Q(x) are our
earlier results given in Eqs. (10) and (27), except with this new
Feynman mass parameter that includes a gluon mass in the
basic integrals. The quark field renormalization constant, Z2

from Eqs. (21) and (22), is also updated accordingly.
The quark PDF given in Eq. (37), together with the sim-

ilarly modified Z2, exactly satisfies the quark number sum
rule for any mg. However, the quark and gluon PDF results
of Eqs. (37) and (38) do not satisfy the momentum sum
rule for any finite mg. This can easily be seen because the
symmetry fq/Q(x; mg) = f naive

g/Q (1 − x; mg) is violated by the
last term in Eq. (38), which is proportional to m2

g. As such,
using the naive gluon mass term of Eq. (34) not only vio-
lates gauge invariance but also momentum conversation as
expressed via the momentum sum rule. This is the reason why
the superscript “naive” is applied to the massive gluon PDF
of Eq. (38).

The Cornwall mass term of Eq. (35) not only introduces an
explicit gluon mass (mg) but also the additional auxiliary field
θ (x). As we shall see, this theta field also has a PDF which
will restore the momentum sum rule. We find that the bilocal
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light cone correlator defining the theta-field PDF is

x fθ/Q(x) = −2 m2
g

g2

nμnν

P · n

∫
dλ

2π
eixλ P·n

× 〈Q(P)|[DμV (θ (0))]V −1(θ (0))WA(0, nλ)

× [DνV (θ (nλ))]V −1(θ (nλ))|Q(P)〉. (39)

Explicit calculation gives the following theta-field PDF:

x fθ/Q(x) = 8 g2 CF m2
g (1 − x)2 I3(wg(x)). (40)

Since the theta field is interpreted as an instanton in the gluon
field [23], fθ/Q(x) should be considered a contribution to the
gluon PDF. Therefore, the full gluon PDF with the Cornwall
mass term is given by the sum of f naive

g/Q (x; mg) and fθ/Q(x; mg),
and reads

fg/Q(x; mg) = fg/Q(x) − 4 g2CF m2
g x (1 − x) I3(wg(x)). (41)

This expression satisfies fq/Q(x; mg) = fg/Q(1 − x; mg) which
guarantees the momentum sum rule as the quark number sum
rule is satisfied. Therefore, the theta-field contribution to the
gluon PDF must be accounted for to ensure observance of
the momentum sum rule. Further, since fθ/Q(x; mg) is gauge
invariant there is no choice of gauge that can restore the
momentum sum rule when only the naive gluon mass term
is considered.

B. Numerical results with gluon mass

Results for the QTM quark and gluon PDFs, for several
values of the Cornwall gluon mass, are presented in Fig. 5.
The plotted quark PDF does not show the δ(1 − x) terms
which contribute to the quark number and momentum sum
rules. The introduction of a gluon mass suppresses both PDFs,
with the quark number and momentum sum rules preserved
specifically by an increase in the δ(1 − x) terms. Physically,
this occurs because it costs more to radiate a gluon when the
gluon has mass. Therefore, with all other parameters fixed, a
larger gluon mass results in gluons carrying a smaller fraction
of the quark target’s light cone momentum. On the other hand,
once a gluon is radiated, it is more likely to carry a large
fraction of light cone momentum owing to its mass. This has
the effect of reshaping the gluon PDF, so that as mg increases
a larger fraction of the support for the gluon PDF is at large x.
This can be observed in the shapes of the curves in the lower
panel of Fig. 5.

In Fig. 6, we separate the gluon PDF into naive and theta-
field contributions, where mg = 0.6 GeV is used for the gluon
mass to illustrate an extreme case, and we take αs = 0.5 and
Mq = 0.4 GeV. In general, the naive diagram makes more
significant positive contributions at large x, while the theta
field dominates at small x. For this large value of the gluon
mass, the naive contribution goes negative at small x, however,
the sum of both contributions remains positive definite.

The relative importance of the theta-field contribution to
the total gluon PDF and momentum fraction are presented in
Table III. When the gluon is massive, a significant portion of
the gluon’s light cone momentum is contained in the theta-
field PDF, rather than in the traditional gluon PDF. In fact, for
mg = 0.6 GeV, the theta field carries about 90% of the gluon’s

FIG. 5. Quark and gluon PDFs in the QTM for several values of
the Cornwall gluon mass mg, with the gluon PDF defined to include
the theta-field contribution. The plotted quark PDF also includes
δ(1 − x) contributions, and αs = 0.5 and Mq = 0.4 GeV were used
in these calculations.

FIG. 6. Gluon PDFs in the quark target model, separated into
naive and theta-field contributions. We use αs = 0.5, Mq = 0.4 GeV,
and mg = 0.6 GeV.
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TABLE III. Contributions to the quark and gluon momentum
fractions for various values of the Cornwall gluon mass (in GeV).
The quark momentum fractions are separated according to Eq. (10)
and the gluon momentum fractions are separated into naive and
theta-field contributions. The other parameters are αs = 0.5 and
Mq = 0.4 GeV.

mg Z2 + 〈x〉tri
q 〈x〉W

q 〈x〉q 〈x〉naive
g 〈x〉θ 〈x〉g

0 0.9867 −0.1775 0.8093 0.1907 0 0.1907
0.2 0.9885 −0.1454 0.8431 0.1293 0.0276 0.1569
0.4 0.9920 −0.0878 0.9042 0.0434 0.0524 0.0958
0.6 0.9951 −0.0462 0.9489 0.0045 0.0466 0.0511

light cone momentum; however, as mg become large both the
naive and theta-field contribution tend to zero and the quark
PDF approaches δ(1 − x).

Through these numerical examples we observe that the
auxiliary theta field is essential to accommodate massive glu-
ons, since it carries a significant portion of the gluons’ light
cone momentum and because it is necessary to guarantee that
the gluon PDF is positive definite.

IV. PION PDFs

In this section, we combine the QTM results for the quark
and gluon PDFs for a dressed quark, with existing results
for hadron PDFs from low-energy effective models with only
quark degrees of freedom. We consider the pion as a concrete
example, because of its prominent role in QCD as the Nambu-
Goldstone boson associated with dynamical chiral symmetry
breaking. In addition, both experimental data [41] and phe-
nomenological PDF parametrizations [29] are available.

The QTM-modified pion PDFs are obtained by taking
a convolution of the pion PDF obtained from the effective
model, fQ/π (x), which only includes dressed quark degrees of
freedom, with the QTM PDFs, fq,g/Q(x), which include quark
and gluon distributions inside the dressed quarks. That is,
the quark target is identified with the effective theory’s quark
degrees of freedom, both denoted by Q. The complete quark
and gluon PDFs of the pion are then given by the convolution

fq,g/π (x) =
∑

Q

∫∫ 1

0
dz dy δ(x − yz) fq,g/Q(y) fQ/π (z). (42)

Since the QTM PDFs satisfy the quark number and momen-
tum sum rules for the dressed quark target, this convolution
guarantees that these fundamental sum rules are also satisfied
for the total pion PDFs, fq,g/π (x), provided the pion “body
PDF” fQ/π (x) from the effective model also obeys these sum
rules.

As a concrete example, we consider the quark PDF of the
π+ in the NJL model, which is calculated via:

fQ/π (x) = − Zπ

4 P · n

∫
d4k

(2π )4
δ

(
x − k · n

P · n

)

× Tr[γ5 τ− iS(k) /n (1 ± τ3) iS(k) γ5 τ+ iS(k − p)],
(43)

where the trace is over color, flavor and Dirac indices. The
result for Q = U, D̄ is found to be [21]:

fQ/π (x) = 3 Zπ

[
8 x(1 − x) m2

π − 4 I2(wπ (x))
]
, (44)

where wπ (x) = M2
q − x(1 − x)m2

π , mπ is the pion mass, and
Zπ can be calculated directly or obtained from the baryon
number sum rule.

To fully define the model, it is necessary to determine
a value for αs to use both in the QTM calculations and in
the DGLAP evolution equations to connect the low-energy
effective theory to large-Q2 experiments and phenomenology.
It is also necessary to pick a value for mg. We consider both
the cases of zero gluon mass, mg = 0, and a finite Corn-
wall mass, mg = 0.4 GeV. The model scale is determined by
requiring that the pion’s gluon momentum fraction content
match that found by the JAM analysis of Ref. [29] after NLO
DGLAP evolution, where at the charm threshold is around
30%. For the mg = 0 case this gives αs0 = 0.579 and, us-
ing the NLO equation for αs(Q2), a model scale of Q2

0 =
0.82 GeV2. Similarly, for mg = 0.4 GeV we find a model scale
of Q2

0 = 0.58 GeV2. It is worth mentioning that, already at
the model scale for mg = 0, gluons carry 22% of pion’s light
cone momentum and the model scale is much larger than
typically used in models with only dressed quarks [19,42].
With mg = 0.4 GeV the gluon light cone momentum fraction
is 7% at the corresponding model scale.

To illustrate how the PDF results depend on the underlying
model body PDFs, we also consider a naive pion body PDF of
fQ/π (x) = 30x2(1 − x)2 as a reference. The results using both
body PDFs are presented in Fig. 7. As anticipated in Sec. II,
the quark PDF becomes negative at x ∼ 1. This domain of
negative support occurs regardless of the pion body PDF used,
and the reference body PDF actually presents worse behavior
in this regard than the NJL model, as the full PDF becomes
negative at smaller values of x in this case.

The fact that the impulse approximation PDFs are negative
at large x is inevitable in the QTM, and can be understood in
relation to the DGLAP evolution equations [43]. The DGLAP
kernels can be found from the QTM PDFs by differentiating
with respect to the renormalization scale. In fact, one can see
the familiar form of the leading order DGLAP kernels in the
factors multiplying I2(wq/g(x)) in Eqs. (2), (25), and (27). The
DGLAP kernels, when convoluted with a PDF, result in a
function which is negative for x near 1— which is necessary
for the evolved PDF to decrease with evolution at x ∼ 1. It is
therefore inevitable that the QTM combined with the impulse
approximation will produce a negative PDF for hadrons. One
must go beyond the impulse approximation for the hadron
PDFs to be positive-definite.

In order to effectively use the DGLAP equations to evolve
these results, we set the negative values of the pion’s quark
PDF to zero and reweight the quark and gluon distributions
to maintain the baryon number and momentum sum rules.
We evolve these model PDFs to the empirically relevant
scale of Q2 = 27 GeV2 using next-to-leading order (NLO)
DGLAP equations, and compare to experimental Drell-Yan
data from the E615 experiment [41], and the phenomenologi-
cal parametrization from the JAM analysis [29]. These results
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FIG. 7. Quark (top panel) and gluon (bottom panel) PDFs of the
pion at the model scales. For the body PDFs we use the NJL model
result and the simple parameterization 30 x2x̄2, where x̄ = 1 − x. For
the QTM we show results for mg = 0 and mg = 0.4 GeV, which cor-
respond to model scales of Q2

0 = 0.82 GeV2 and Q2
0 = 0.58 GeV2,

respectively.

are given in Fig. 8. The first thing to be noticed is that, while
it is interesting as a concept to be incorporated into the model,
we found that a finite gluon mass makes discrepancy with data
worse.

For zero gluon mass, we find that our gluon PDF result
has good agreement with the JAM result but the result for the
pion valence quark PDF is less satisfactory. The discrepancy
with data is an indication of the need to go beyond some of
the approximations used in the QTM. Improvements include
keeping the quarks off mass shell and thereby removing the
impulse approximation. In addition, in the pion there can be
gluon exchange between the dressed quark and antiquark at
order αs and the gluon from the Wilson line can also couple
to the spectator quark. These improvements should remove
the domain of negative support in the quark PDF. Making
these improvements represents a significant calculation and
is therefore left for future work.

FIG. 8. The results presented in Fig. 7 evolved from the model
scale to Q2 = 27 GeV2. These results are contrast with the JAM
Collaboration results from Ref. [29] and the Conway et al. data [41].

V. SUMMARY AND OUTLOOK

We have constructed a QTM at leading order in the quark-
gluon coupling strength. Quark and gluon PDFs of the quark
target were calculated directly, including Wilson line contri-
butions in covariant gauges. Gauge invariance of the results
was demonstrated by explicitly calculating the PDFs in both
covariant and light cone gauges. The quark target PDFs were
then combined with a NJL model result and a phenomeno-
logical parametrization for the pion PDF via a convolution
formalism, and the resulting quark and gluon PDFs were
evolved via NLO DGLAP equations and compared to empiri-
cal and phenomenological results. We found good agreement
between the empirical and calculated gluon PDFs; however,
the agreement for the quark PDF is less satisfactory.

This study has produced several interesting results. Per-
haps most significant is the finding that the Wilson line can
make sizable contributions to the quark PDFs in covariant
gauges, providing as much as a 20% correction to the quark
momentum fraction. Therefore, approaches that do not in-
clude the Wilson lines may be failing to account for a large
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contribution to the quark light-cone momentum. Following
indications from lattice QCD that gluons may acquire an
effective mass at low-momentum, we explored two methods
of including effects from an explicit gluon mass in these cal-
culations. A naive mass term for the gluons is known to violate
gauge invariance and we also find that such a term violates
the momentum sum rule. We also studied the gluon mass term
proposed by Cornwall [23], which maintains gauge invariance
by also introducing an auxiliary (theta) field. This mass term
for the gluon field is found to observe the momentum sum rule
as the auxiliary theta field carries gluon momentum. While
exploring the impact of an explicit gluon mass is theoretically
interesting—we found that a gluon mass reduces the gluon
light-cone momentum fraction—including such a mass term
did not provide improved agreement with existing data.

When using the QTM as a method to include intrinsic
gluons into low-energy effective theories, one shortcoming
was identified. This is the unavoidable domain of negative
support in the quark PDFs at x ≈ 1. In covariant gauges this is
directly connected to the bilocal operator that defines the PDF
and the associated Wilson line contribution. Likely, this can
be attributed to the limited way in which gluons were incorpo-
rated in the model. For observables defined by local operators
this shortcoming will not materialize. The general challenge
remains however: How can gluon degrees of freedom be
best incorporated in low-energy effective theories of QCD?
In principle, the inclusion of gluons into an effective model
with just quarks—even if the gluons are only incorporated at
leading order—will have effects not only on the inner struc-
ture of the dressed quarks, but will also modify the hadron
wave functions (e.g., their Bethe-Salpeter amplitudes). After
all, introducing a gluon into the model will now make gluon
exchange part of the force that binds quarks into hadrons.
The QTM+convolution approach taken in this work does not
account for gluon exchange between the quarks. Including
these effects may provide the necessary ingredients to include
intrinsic gluons in effective quark theories and avoid the single
shortcoming found in this study.
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APPENDIX: REGULARIZED INTEGRALS

We use the following notation for basic regularized inte-
grals:

In(w) ≡ i
∫

d4k

(2π )4

1

[k2 − w]n
, (A1)

to keep the results general and avoid committing to a partic-
ular regularization scheme. The specific values of n = 2 and
n = 3 appear, where the former is logarithmically divergent
and the latter convergent. Specific results in several common
regularization schemes follow.

In the proper time regularization scheme these basic inte-
grals become

I2(w) = − 1

16π2
�

(
0,w/�2

UV,w/�2
IR

)
, (A2)

I3(w) = 1

32π2

1

w

(
e−w/�2

UV − e−w/�2
IR
)
, (A3)

where �(s, a, b) = ∫ b
a dt t s−1 e−t is the generalized incom-

plete gamma function. Using implicit regularization methods
such as constrained differential regularization [44] and con-
strained implicit regularization [45] gives the results

I2(w) = 1

16π2
ln

(
w

�2

)
, I3(w) = 1

32π2

1

w
. (A4)

When using dimensional regularization it is generally im-
portant to work in d = 4 − 2ε dimensions from the outset,
however, for these simple calculations we can make the re-
placements

I2(w) = − 1

16π2
[ε−1 − ln(w/μ2) + ln(4π ) − γE ], (A5)

I3(w) = 1

32π2

1

w
, (A6)

to obtain results in dimensional regularization. The terms
[ε−1 + ln(4π ) − γE ] can be removed from I2(W ) by the com-
mon MS subtraction scheme.
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