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Proton number fluctuations in partial chemical equilibrium
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We calculate volume-independent ratios of cumulants of the net-proton number distribution up to sixth order in
a fireball that cools down after the chemical freeze-out. A hadron resonance gas model is used together with the
assumption of partial chemical equilibrium, which fixes the number of observed stable hadrons after the chemical
freeze-out. It is shown that, due to only weak departure from the statistical Boltzmann distribution, also the
volume-independent ratios of higher-order cumulants of the net-proton number show only weak dependence on
the temperature. This observation supports the possibility to measure noncritical cumulants at chemical freeze-
out even after subsequent cooling in the hadronic phase. Cumulants of the net-baryon number behave similarly,
while those for the kaon number vary more strongly with the temperature. Our results are relevant for the current
fluctuation studies of runs of the Beam Energy Scan program at the BNL Relativistic Heavy Ion Collider.
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I. INTRODUCTION

Mapping the structure of the phase diagram of strongly
interacting matter is a major objective of today’s high-energy
nuclear physics. According to the current understanding of
quantum chromodynamics (QCD), one expects that at small
net-baryon density and high enough temperature hadronic
matter undergoes a rapid but smooth crossover to a deconfined
quark-gluon plasma [1]. One anticipates that this crossover
ends in a critical end point (second-order phase transition)
and continues to even higher baryon densities in a first-order
transition line. Currently, a tremendous amount of theoretical
and experimental activity is focused on the search for the exact
position of this critical point ([2,3] and references therein).

Among the most promising observables in this context are
the fluctuations of the baryon number which can be accessed
for equilibrated matter within the grand canonical ensemble,
e.g., on the lattice or in a statistical model [4,5]. The fluc-
tuations are customarily quantified by the cumulants of the
net-baryon number distribution. It has been shown that the
baryon number fluctuations scale with high powers of the
correlation length; this makes higher-order cumulants particu-
larly sensitive to the vicinity of the critical point, in which the
correlation length diverges [6].

Unfortunately, connecting those theoretical findings to real
experimentally accessible observables is far from straightfor-
ward:

(i) detector efficiencies and acceptance cuts might play a
role [7,8],

(ii) cluster production may influence the results [9],
(iii) protons are used as a proxy for baryon num-

ber [10,11],
(iv) the duration and volume of the system might be too

small to reach grand canonical equilibrium [12–14],

to just name a few of the challenges.
Very interesting results were recently published by the

STAR Collaboration [15,16], which indicate a dramatic rise
of the fourth-order cumulant as the energy of Au+Au colli-
sions has been lowered to 7.7 GeV per nucleon pair in the
framework of the Beam Energy Scan (BES) program at the
BNL Relativistic Heavy Ion Collider (RHIC). No theoretical
explanations that can explain this observation exist to this
date.

In parallel to identifying the reason of this observation, it is
crucial to improve the calculations of the expected behavior,
namely the baseline of noncritical scenarios [5,9,17–21]. Only
in this way can the strength of the signal above the noncritical
background be reliably quantified. A natural choice of a base-
line is the statistical model of a hadron resonance gas [5,22–
24]. It has been frequently used in the description of the
hadron abundances produced in nuclear collisions at various
energies, where it provides a reasonable fit to measured data.
Technically, one deals with first-order cumulants in this kind
of analysis.

The statistical hadron resonance gas model combined with
lattice QCD simulations has also been used in fitting higher-
order cumulants measured by STAR in order to extract the
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freeze-out temperature from these data [25,26]. While the
overall agreement is good, a slight disagreement with the
thermal parameters obtained from fitting the abundances (first
order cumulant) has been reported. In Ref. [27] it was pointed
out that this may be a consequence of fast expansion and
cooling, which drives the particle number distribution out of
equilibrium so that its different cumulants cannot be assigned
to a unique value of the temperature.

On the other hand, since the fireball stays connected after
the chemical freeze-out and cools further down, partial chem-
ical equilibrium (PCE) [12–14] is often assumed. It keeps the
(effective) numbers of long living hadrons fixed at the values
they had at the chemical freeze-out. PCE requires fast equili-
bration between the stable hadron sort and all resonances that
decay into this sort of hadrons.

Baryon number conservation and the fact that only some
of the baryons are detected has an important impact on the
observed result. Recently, it has been shown how these effects
are built into the statistical models [21,28,29].

In this paper we explore how the cumulants behave in a
cooling fireball that obeys the partial chemical equilibrium
(PCE) scenario. The paper is structured in the following way:
First, we introduce the PCE scenario in the next section,
then we explain how the net-proton number cumulants are
calculated from a generating function and the grand-canonical
partition function. We show results for the grand canonical
PCE model applied to central Au+Au collisions from the
RHIC Beam Energy Scan program between

√
sNN = 7.7 and

200 GeV for the net-proton number, net-baryon number, and
also the number (K+ − K−) in Sec. III. Their implications are
summarized in the concluding Sec. IV. We also include two
appendices where we display in detail how the cumulants are
derived and calculated.

II. FORMALISM AND THE MODEL

A. Cumulants and moments of the number distribution

Generally, cumulants characterize a probability distri-
bution. They are calculated from the cumulant-generating
function, defined as

K (iξ ) = ln
∞∑

N=0

eiξN P(N ), (1)

where P(N ) is the (discrete) probability distribution and ξ

is an auxiliary parameter. Cumulants are obtained by taking
derivatives:

〈(�N )l〉c = dlK (iξ )

d (iξ )l

∣∣∣∣
ξ=0

. (2)

We will use the notation 〈(�N )l〉c to denote the cumulant
of lth order, for l > 1. The case l = 1 is usually denoted
differently and is called the mean of the distribution:

M = 〈N〉 = 〈N 〉c = dK (iξ )

d (iξ )

∣∣∣∣
ξ=0

. (3)

The first three cumulants are identical with the central mo-
ments, while the higher moments differ from them.

Ultimately, we will be interested in the net proton number,
which is the difference of two random variables: number of
protons and number of antiprotons. For a difference of inde-
pendent random variables, the cumulants follow the relation

〈(�Np−p̄)l〉c = 〈(�Np)l〉c + (−1)l〈(�Np̄)l〉c. (4)

It follows from Eq. (2) that cumulants appear naturally in
statistical physics. In the grand-canonical formalism, cumu-
lants of the number distribution of a given sort of particles j
are calculated from the derivatives of the logarithm of the par-
tition function Z with respect to the corresponding chemical
potential μ j scaled by the temperature:

〈(�Nj )
l〉c = ∂ l lnZ (V, T, mj, μ j )

∂ (μ j/T )l
. (5)

In the grand canonical ensemble these cumulants are solely
due to fluctuations that are caused by the exchange of quantum
numbers with the heat bath. Hence, they describe fluctuations
of the baryon number or strangeness, which are conserved in
any microscopic process within the system. However, Eq. (5)
does not apply to proton number fluctuations, because proton
number fluctuations can also be caused by the stochastic de-
cays of resonances into protons.

Susceptibilities of a conserved quantum number are in-
troduced by scaling out the volume and making them
dimensionless

χ
( j)
l = 1

V T 3

∂ l lnZ (V, T, mj, μ j )

∂ (μ j/T )l
. (6)

This makes them convenient for theoretical calculations.
The cumulants of the number distribution can be exper-

imentally accessed via the event-by-event moments of the
particle number distribution. Customarily, standardized mo-
ments are used for higher orders: the variance, the skewness,
and the kurtosis (�N = Ni − 〈N〉):

σ 2 = 〈(�N )2〉c, (7)

S = 〈(�N )3〉c
〈(�N )2〉c3/2 , (8)

κ = 〈(�N )4〉c
〈(�N )2〉c2 . (9)

The next two orders are called hyperskewness and hyperkur-
tosis:

SH = 〈(�N )5〉c
〈(�N )2〉c5/2 , (10)

κH = 〈(�N )6〉c
〈(�N )2〉c3 . (11)

Such moments still depend on the volume. In order to stream-
line the comparison of measured moments and calculated
susceptibilities, volume-independent ratios are particularly
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suitable:

χ2

χ1
= 〈(�N )2〉c

〈N 〉c = σ 2

M
,

χ3

χ2
= 〈(�N )3〉c

〈(�N )2〉c
= Sσ,

χ4

χ2
= 〈(�N )4〉c

〈(�N )2〉c
= κσ 2,

χ5

χ1
= 〈(�N )5〉c

〈N 〉c = SHσ 5

M
,

χ5

χ2
= 〈(�N )5〉c

〈(�N )2〉c
= SHσ 3,

χ6

χ2
= 〈(�N )6〉c

〈N 〉c = κHσ 4.

(12)

Note that we listed two different combinations of χ5, since
both appear in the literature.

B. Cumulants of the proton number distribution

In contrast to the baryon number, the proton number is
not a conserved quantum number. Thus, the cumulants of its
distribution cannot be calculated by just taking derivatives of
the partition function. In addition to direct proton production,

protons can also originate from decays of resonances, which
are random processes that contribute to the proton number
fluctuations.

We demonstrate in Appendix A that the (anti)proton
number cumulants can be calculated from this cumulant-
generating function:

K (iξ ) =
∑

R

ln

{ ∞∑
NR=0

PR(NR)[eiξ pR + (1 − pR)]NR

}
. (13)

Here, the first sum counts all sorts of resonances that con-
tribute to proton production and the second sum runs through
the numbers of resonances of a given sort. The probability of
having NR resonances is PR(NR), and pR (0 � pR � 1) denotes
the mean number of protons produced in decays of resonance
R. If a resonance decays via a chain of subsequent decays, then
pR counts the average number after all decays have happened.
Cumulants are calculated according to Eq. (1). From this,
we derive the first six cumulants of the proton number (see
appendices for details):

〈Np〉c =
∑

R

pR〈NR〉c, (14a)

〈(�Np)2〉c =
∑

R

[
p2

R〈(�NR)2〉c + pR(1 − pR)〈NR〉c
]
, (14b)

〈(�Np)3〉c =
∑

R

[
p3

R〈(�NR)3〉c + 3p2
R(1 − pR)〈(�NR)2〉c + pR(1 − pR)(1 − 2pR)〈NR〉c

]
, (14c)

〈(�Np)4〉c =
∑

R

[
p4

R〈(�NR)4〉c + 6p3
R(1 − pR)〈(�NR)3〉c + p2

R(1 − pR)(7 − 11pR)〈(�NR)2〉c

+ pR(1 − pR)
(
1 − 6pR + 6p2

R

)〈NR〉c
]
, (14d)

〈(�Np)5〉c =
∑

R

[
p5

R〈(�NR)5〉c + 10p4
R(1 − pR)〈(�NR)4〉c + 5p3

R(1 − pR)(5 − 7pR)〈(�NR)3〉c

+ 5p2
R(1 − pR)

(
10p2

R − 12pR + 3
)〈(�NR)2〉c + pR(1 − pR)(1 − 2pR)

(
12p2

R − 12pR + 1
)〈NR〉c

]
, (14e)

〈(�Np)6〉c =
∑

R

[
p6

R〈(�NR)6〉c + 15p5
R(1 − pR)〈(�NR)5〉c + 5p4

R(1 − pR)(13 − 17pR)〈(�NR)4〉c

+ 15p3
R(1 − pR)

(
15p2

R − 20pR + 6
)〈(�NR)3〉c − p2

R(1 − pR)
(
274p3

R − 476p2
R + 239pR − 31

)〈(�NR)2〉c
+ pR(1 − pR)

(
120p4

R − 240p3
R + 150p2

R − 30pR + 1
)〈NR〉c

]
, (14f)

where the sums go through all resonance species and
〈(�NR)l〉c is the lth cumulant of the number distribution of
the resonance R:

〈(�NR)l〉c = ∂ l lnZR

∂ (μR/T )l
. (15)

Here, ZR is the partition function for the resonance species
R, and μR is the chemical potential of this resonance species.
These expressions agree with [5], where they were calculated
up to fourth order.

Note that the sums in Eqs. (14) also include direct thermal
production of protons, R = p. In that case pR = 1 and NR

becomes simply the direct proton number.

From the relations (14) one can construct all volume-
independent ratios that are being measured.

In the next section we will evaluate these expressions ac-
cording to the grand canonical hadron resonance gas model
under the assumption of partial chemical equilibrium.

C. Hadron resonance gas model

We shall work with the hadron resonance gas model, i.e.,
the interactions of the hadrons are accounted for by the in-
clusion of resonances into the partition function [22]. In this
approximation, both stable hadrons and resonances are as-
sumed to have a small width compared to the temperature,
i.e., �tot/T � 1. For the present calculation we assume a
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TABLE I. Chemical freeze-out parameters for different collision
energies [15,31]

√
sNN (GeV) Tfo (MeV) μB (MeV) μS (MeV) γs

7.7 144.3 398.2 89.5 0.95
11.5 149.4 287.3 64.5 0.92
14.5 151.6 264.0 58.1 0.94
19.6 153.9 187.9 43.2 0.96
27.0 155.0 144.4 33.5 0.98
39.0 156.4 103.2 24.5 0.94
54.4 160.0 83.0 18.7 0.94
62.4 160.3 69.8 16.7 0.86
200 164.3 28.4 5.6 0.93

vanishing �tot. The logarithm of the partition function is given
as

lnZ =
∑

R

lnZR(T,V, mR, μR)

=
∑

R

(±1)
gRV

2π2

∫ ∞

0
dk k2 ln(1 ± eμR/T e−

√
mR+k2/T ),

(16)

where the sum runs over hadronic species including reso-
nance states. The upper and lower signs are for fermionic
and bosonic species, respectively. Furthermore, gR is the spin
degeneracy (isospin is treated explicitly), mR the mass, and we
include here μR as the chemical potential for each resonance
species separately. The integral is conveniently expressed with
the help of an infinite sum:

lnZ =
∑

R

gRV

2π2
m2

RT
∞∑
j=1

(∓1) j−1

j2
e jμR/T K2

(
jmR

T

)
, (17)

where K2 is the modified Bessel function of second kind and
order 2. For large arguments, K2 can be approximated by a
(decreasing) exponential, which allows one to limit the sum
to the first terms in numerical calculations.

The cumulants can now be directly calculated using
Eq. (15) as

〈NR〉c = gRV

2π2
m2

RT
∞∑
j=1

(∓1) j−1

j
e jμR/T K2

(
jmR

T

)
, (18)

〈(�NR)l〉c = gRV

2π2
m2

RT
∞∑
j=1

(∓1) j−1 jl−2e jμR/T K2

(
jmR

T

)
.

(19)

D. Partial chemical equilibrium

A heavy ion reaction typically proceeds via three stages:
the initial stage, the compression stage and the freeze-out
stage. The freeze-out can be split into two distinct phases:
the chemical freeze-out where inelastic flavour changing pro-
cesses end and the kinetic freeze-out where all interactions
cease.

The multiplicities of identified stable hadrons observed in
ultrarelativistic nuclear collisions indicate that they have been
fixed during chemical freeze-out at a temperature close to the
transition from confined to deconfined matter. The transverse
momentum distributions indicate that the kinetic freeze-out
happens at a substantially lower temperature [30]. Hence, the
expansion and cooling between chemical and thermal freeze-
out must happen in such a way that the effective average
number of each stable species is conserved [12]. The term
“effective” number indicates the inclusion of those hadrons
which would be produced when all unstable resonances decay,
hence for hadron species h〈

Neff
h

〉
c =

∑
R

pR→h〈NR〉c. (20)

Here, the sum runs over all hadron and resonance species,
and pR→h is the average number of hadrons h resulting from
a decay of resonance R. Note that this sum also includes
directly produced h’s (R = h), for which formally pR→h = 1.
For protons, pR→h = pR.

FIG. 1. Temperature dependence of the chemical potentials for
protons (upper panel) and antiprotons (lower panel), for central
Au+Au reactions at different collision energies from

√
sNN =

7.7 GeV to
√

sNN = 200 GeV as indicated in the legend.
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In partial chemical equilibrium, resonances remain equi-
librated with their decay daughter particles. Thus, their
chemical potentials are equal to the sums of the chemical po-
tentials of their daughter particles. For example, since �++ →
p + π+, we have

μ�++ = μp + μπ+ .

For resonances with multiple decay channels, the daughter
chemical potentials are multiplied with the mean number of
stable hadrons h resulting from a decay of an R:

μR =
∑

h

pR→hμh. (21)

The sum runs through all stable hadrons (which are among the
daughters of R).

To conserve 〈Neff
h 〉c, each stable species obtains its own

μh as the system cools down. To formulate the calculation of
μh(T ), conservation of 〈Neff

h 〉c itself is not sufficient, because
one does not know the volume, which also enters into the mul-
tiplicity. This problem can be solved by assuming isentropic
expansion [12]. The entropy, calculated as

S =
∑

R

V PR + ER − 〈NR〉cμR

T
, (22)

is an extensive quantity, as well, and hence the ratio 〈Neff
h 〉c/S

does not depend on the volume. In Eq. (22), the sum includes
all hadrons and resonances, and the partial pressure and en-
ergy can be calculated as

PR = T lnZR

V
, (23)

ER = gRV

2π2

∫ ∞

0
dk k2

√
k2 + m2

R

×
⎡
⎣exp

⎛
⎝

√
k2 + m2

R − μR

T

⎞
⎠ ± 1

⎤
⎦

−1

. (24)

Hence, μh(T ) can be determined from the condition

〈
Neff

h (T )
〉
c

S(T )
=

〈
Neff

h (T )
〉
c

S(T )

∣∣∣∣∣
T =Tfo

, (25)

where Tfo is the chemical freeze-out temperature. The
chemical potential is evolved from the chemical freeze-out
temperature down to lower temperatures towards the kinetic
freeze-out.

FIG. 2. Volume-independent ratios of net-proton number cumulants as functions of temperature, for central Au+Au reactions at different
collision energies as indicated in the figure.
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Note that in this model baryons and their antibaryons are
considered separately, so that no annihilation is assumed.

We evolve the values of the chemical potentials starting
from chemical freeze-out as extracted from the multiplicity
ratios by STAR Collaboration in Ref. [31]. In that work, the
grand-canonical ensemble with strangeness undersaturation
was used, so the partition function was

lnZ =
∑

i

(±1)
grV

2π2

×
∫ ∞

0
dk k2 ln

(
1 ± γ |Si|

s eμi/T e−
√

mi+k2/T
)
, (26)

where the sum goes over all species i. The chemical potential

μi = BiμB + SiμS, (27)

where Bi and Si are the baryon number and the strangeness
of species i and μB, μS are the corresponding chemical
potentials. The chemical potential due to isospin has been
neglected. Strangeness undersaturation is expressed by the
parameter γs. The parameters for different energies [31] are
listed in Table I. For

√
sNN = 14.5 and 54.4 GeV the values

were not included in Ref. [31]. Therefore, in these cases we

have taken the temperatures and the baryochemical poten-
tials from [15]. For γs we have assumed the value given by
weighted average of the values at other energies, and μS has
been determined from the requirement of strangeness neutral-
ity.

The calculated temperature dependences of the chemical
potentials for protons and antiprotons are shown in Fig. 1 for
central Au+Au reactions at various collision energies in the
RHIC-BES energy regime.

E. Baryon number fluctuations

Ideally, of interest are fluctuations of the baryon number.
Thus, we need to inspect them in order to see how they evolve
with decreasing temperature and how they can be related to
the measurable net-proton number fluctuations.

Unfortunately, out of equilibrium one cannot define a bary-
ochemical potential, thus the cumulants cannot be expressed
shortly via one derivative of the complete partition function.
Hence, the cumulants have to be calculated by an extension of
Eq. (4):

〈(�B)l〉c =
∑

R

Bl
R〈(�NR)l〉c, (28)

FIG. 3. Volume-independent ratios of net-baryon number cumulants as functions of temperature, for central Au+Au reactions at different
collision energies as indicated in the figure.
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where the sum counts all hadron species and resonances, and
BR is the baryon number of species R.

F. Summary of the model

Cumulants of the proton number distribution are calculated
from Eqs. (14) and their volume-independent ratios via the
relations (12). Analogous results for the baryon number fluc-
tuations are obtained through Eq. (28).

The cumulants of the numbers of different resonance
species are determined through Eqs. (18) and (19), with the
chemical potentials calculated in Sec. II D.

III. RESULTS

A. Net protons

Now we are in the position to answer the question of the
evolution of the net-proton number susceptibility (cumulant)
ratios from chemical freeze-out to the final decoupling of the
system.

In Fig. 2 we present the temperature dependence of cu-
mulants for the net-proton number distribution, calculated
for different collision energies of the RHIC-BES. From top
to bottom, we show the ratios of the cumulants in increas-
ing order. The largest variation between chemical freeze-out
and the temperature of 70 MeV is for higher cumulants and

lower collision energies: 〈(�Np−p̄)6〉c/〈(�Np−p̄)2〉c = κHσ 4

decreases by about 4%.
One also notes that the ratios of odd-to-second order cumu-

lants tend to be smaller than 1 and decrease considerably as√
sNN reaches the highest values in our energy scan. Inversely

to that, the ratios of even to first-order cumulants are above 1
and increase largely as

√
sNN approaches 200 GeV. How can

we understand

(1) the apparent flatness of the curves, i.e., the very weak
temperature dependence, and

(2) the peculiar relations of the odd and even cumulant
ratios?

Let us start with the second question. This is straight-
forwardly understood from Eq. (4) that for odd orders the
antiproton term is subtracted from that of protons, while for
even orders they are added together.

The apparent flatness shows up because all cumulants are
identical in Boltzmann statistics. Then, by fixing the mean
in PCE, all higher cumulants are nearly fixed, as well. The
differences are due to departure of the appropriate quantum-
statistical distribution from the classical Boltzmann one.

Let us understand it more deeply. When discussing
Eqs. (18) and (19), we mentioned that the sums may be limited
to just a few terms. We now apply the Boltzmann approxima-
tion and only keep the first term. Then, cumulants of all orders
are equal,

〈(�NR)l〉c = gRV

2π2
m2

RT exp

(
μR

T

)
K2

(
mR

T

)
= 〈NR〉c. (29)

This universal relation can subsequently be inserted in
Eqs. (14). All the terms which multiply cumulants of different

FIG. 4. Values of the volume-independent ratios of net-proton
number for central Au+Au reactions at chemical freeze-out
(squares) and at the kinetic freeze-out (circles) according to [30].

orders can then be summed up, and one recognizes that they
all together give just pR:

〈(�Np)l〉c =
∑

R

pR〈NR〉c = 〈Np〉c. (30)

Since the first moment 〈Np〉c is temperature independent by
construction in PCE, all the higher moments are as well
constant in the Boltzmann approximation. Hence, the domi-
nant contribution to the ratios should not show a temperature
dependence. The weak observed temperature dependence is
generated solely by quantum-statistical effects. Thus, in PCE
we see that we basically can access the moments as they are
set at the chemical freeze-out even by measuring protons that
come out from a fireball that cools down further.
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FIG. 5. Resonance contributions to susceptibilities χ2 (left) and χ4 (right) for central Au+Au collisions at
√

sNN = 7.7 GeV (upper row)
and

√
sNN = 200 GeV (lower row). Different curves correspond to different upper cuts to the masses of contributing resonances.

B. Net baryons

Next, we look at the fluctuations of the net baryon number.
The cumulant ratios as functions of temperature are depicted
in Fig. 3. The ratios are very similar to those of net-proton
number. In fact, this is not entirely trivial to expect because
the moments of the proton number distribution are influenced
by the randomness of the resonance decays, while there is
no such contribution when the baryon number is studied.
Once again, the key to understanding the feature is in re-
alizing that, in the Boltzmann approximation, for cumulants
at any order contributions due to resonance decays add up
to the universal term pR〈NR〉c, as discussed in relation to
Eq. (30).

C. Energy dependence

We further study the effects of cooling within the PCE
model on the values of cumulant ratios, as they are observed
experimentally. It is clear that there is a tension between
the statistical model and the observed data which indicate a
strong enhancement of κσ 2 as the collision energy reaches
down to 7.7 GeV per colliding NN pair. The collision energy
dependence of selected ratios is plotted in Fig. 4. With de-
creasing energy, there is always only a small decrease of all
the studied ratios evaluated at chemical freeze-out. It becomes
more pronounced with the higher order moments, getting to
almost 10% for κHσ 4. The values are then slightly lowered if
also cooling and PCE down to kinetic freeze-out is taken into
account. Again, the decrease is largest for κHσ 4, where it is
about 1%.

FIG. 6. The ratio κσ 2 as function of temperature for central
Au+Au reactions at

√
sNN = 7.7 GeV (upper panel) and 200 GeV

(lower panel). Different curves show results where the number of
resonances included into calculation was constrained by an upper
cut on the resonance mass. The curves range from no resonances
included (dash-double-dotted curves) up to all resonances included
(solid curves).
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From Fig. 2 one could have guessed that a different behav-
ior would be expected if we would have plotted the energy
dependence of SHσ 3(=χ5/χ2). With some effort it can be
read off Fig. 2. That behavior, however, is caused by a dif-
ferent mechanism: according to Eq. (4), in odd orders of
cumulants the contributions of antiprotons are subtracted from
those of the protons, while in even orders they are added
together. Since the relative importance of antiprotons grows
with collision energy, the numerator of χ5/χ2 decreases. This
mechanism largely dominates the energy dependence of SHσ 3

and we leave out the corresponding figure for brevity.

D. Resonance contribution

Cumulants of proton and antiproton number distribu-
tions are calculated in Eqs. (14) by summing contributions
to (anti)proton production from decays of many sorts of
resonances. One may then wonder how important the individ-
ual contributions are to the overall result.

To gain an insight into this question we plot in Fig. 5
the second- and fourth-order susceptibilities as functions of
temperature, after accounting for resonance contributions up
to varying mass cut. We look at the fourth order because
the higher orders are more sensitive to the precision of the

calculation and so may be more influenced by the cutoff in
the inclusion of higher-mass resonances. Nevertheless, for the
illustration we have not chosen the fifth and sixth orders, since
they are not yet measured at all energies. Calculations for two
collision energies are done from the extremes of the interval
that we investigate: 7.7 and 200 GeV per NN pair. Note that,
according to Eq. (6), cumulants would be obtained from these
susceptibilities by multiplying with T 3 and the volume. These
factors cancel out in the ratios defined in Eqs. (12). We ob-
serve in Fig. 5 that different even orders of the susceptibilities
are extremely similar in this model, and therefore their ratios
will be close to 1. The fraction of resonance contribution
makes up a large part of the total result at the high-temperature
ends of the curves, while it brings about one third of the
total result at T = 70 MeV. These features are valid at
both investigated collision energies. At low temperatures
almost all resonance contribution comes from the two lowest
resonances, � and N (1440) resonance, while at the high tem-
perature end they yield about one half of the total resonance
contribution.

The ratios of the cumulants (χ4/χ2 =)κσ 2 are presented
in Fig. 6. Again, we plot them as functions of temperature
and show different curves that correspond to different upper
mass cuts on the resonance contribution. One can observe

FIG. 7. Volume-independent ratios of the (K+ − K−) number cumulants as functions of temperature, for central Au+Au reactions at
different collision energies as indicated in the figure.
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FIG. 8. Contributions from resonance decays to χ2 of K+ − K− (upper row) and κσ 2(= χ4/χ2) (lower row) for central Au+Au collisions
at

√
sNN = 7.7 GeV (left column) and

√
sNN = 200 GeV (right column). Different curves correspond to different upper cuts on the masses of

contributing resonances.

that limiting calculations to only direct proton production
even leads to qualitatively incorrect conclusions: with low-
ering the temperature the ratio grows instead of decreasing.
Its value is smaller than that of the full calculation and the
largest deviation of about 2% is there at low

√
sNN . Just

the inclusion of � and N (1440) resonances improves the
ratio considerably. Including all resonances up to the mass
of 2.1 GeV practically yields to the same results as the full
calculation.

E. Kaons

We have discussed above that the temperature dependence
of the cumulant ratios is nonconstant only as a result of
the difference between the Boltzmann and the appropriate
quantum-statistical distribution. Due to the high proton mass
as compared to the temperature scale, that difference is rather
small. However, it might be larger for particles with lower
mass. Hence, we look at the cumulants of the (K+ − K−)
number distribution. The same formalism may be used as
we did for protons, because there is no resonance that would
produce two K+’s or K−’s. The only caveat is that we have to
leave out the decays of φ meson from kaon production. Since
it may decay into a K+K− pair, it introduces a correlation
between K+ and K− yields. However, it does not change the
difference of K+ − K− multiplicities, and so is justifiably left
out. Having the list of resonances, the calculation is straight-
forward and we show the results in Fig. 7. Numerically, the
results are different from those for the net-proton number dis-
tribution, but the change of the ratios due to the decrease of the
temperature is not bigger than 5% even in the most “extreme”
case of SHσ 5/M, In contrast to the net-proton number fluctua-
tions, the cumulant ratios of the K+ − K− number distribution

generally increases when the temperature is lowered from its
chemical freeze-out value to the thermal freeze-out.

In order to better understand this qualitative difference,
we also investigate resonance contributions to (K+ − K−)
susceptibilities and their ratios. Recall that susceptibilities of
different orders are similar, as we argued previously. Thus,
for brevity, we decided to show only χ2 for the two ener-
gies 7.7 and 200 GeV (upper row of Fig. 8) and the ratio
κσ 2(=χ4/χ2) (lower row of the same figure). Again, at high
temperature, resonances make up to 50% of the result for
χ2, with the contribution from K∗ being about a half of
it. The relative contribution of resonances is lowered as the
temperature drops. And again, we see that resonances also
change the temperature dependence of κσ 2 qualitatively. It
increases with temperature if only direct kaon production
is considered, while resonances change the dependence to
decreasing.

IV. CONCLUSIONS

We have analyzed the evolution of ratios of net-proton
number cumulants and net-kaon number cumulants from the
chemical freeze-out to the kinetic freeze-out. To this aim, we
employed a hadron resonance gas model with the assumption
of partial chemical equilibrium.

We found only a weak dependence of the cumulant ra-
tios when decreasing the temperature while keeping the
partial chemical equilibrium, as it is dictated by the ob-
served average-hadron abundance ratios. Nevertheless these
improved statistical model estimates provide a better baseline
for the comparison of theory to data and we have demon-
strated that the conclusions based on cumulants calculated at
chemical freeze-out remain valid after cooling.
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As discussed in the Introduction, further effects may also
contribute to the baseline prediction which are not included in
our model:

(1) The grand-canonical formalism behind the hadron res-
onance gas model does not include the total baryon
number conservation, which has been worked out in
detail recently [21,28,29].

(2) Also, the impact of limited acceptance and effectivity
of the detector, for which a formalism has been pub-
lished recently [21], was not included here. These first
two effects are interconnected, because the limited ac-
ceptance introduces fluctuations by looking at a subset
of a larger sample of baryons with fixed total baryon
number. Nevertheless, we can expect that the impact
due to those two effects on our results would be similar
as at the chemical freeze-out. Tiny modifications may
be expected due to a narrower momentum distribution
of hadrons at lower temperature and a smaller propor-
tion of protons coming from resonance decays.

(3) Full chemical equilibrium is assumed between one
sort of stable hadrons and all heavier resonance states
which may decay into that hadron. For example,
protons, �’s, N (1440)’s, etc. are always in relative
chemical equilibrium. In contrast to them, in order
to keep the total produced number of stable hadrons
constant, no processes are allowed which would mod-
ify their numbers, e.g., K+� ↔ pπ0 is assumed not
to run. The particularly striking consequence is then
that also pp̄ annihilation does not exist in this model.
This is a strong and simplifying assumption made in
the present model, which must be remembered when
interpreting these results.

(4) Finally, to keep track of the expanding volume, the
total entropy is assumed to remain constant during the
expansion. This is also a rather simplifying assumption
which might be revised.

(5) Note also that recently the whole concept of the hadron
resonance gas was put under scrutiny. The representa-
tion of interactions through the presence of resonances
is imprecise and has been replaced by a more direct
treatment with the help of the S-matrix. So far, this
approach has been used in the description of mean
numbers of particles [32]. The question of what con-
sequences this improved formulation of the model has
on the higher order cumulants remains open.

Nevertheless, in spite of all potential shortcomings of the
model used in our study, we expect that our reasoning would
stay unchanged: that there is only a modification on the level
of per cent of the volume-independent cumulant ratios in
cooling fireball after the chemical freeze-out.
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APPENDIX A: DETERMINATION OF THE PROTON
NUMBER CUMULANTS

1. Fixed number of resonances

We shall start our derivation from the proton production by
a single species of baryon resonances with a fixed number NR.
(There are no protons in decays of mesonic resonances.)

Due to baryon number conservation, at most one proton
can be produced in a decay of a resonance with mass smaller
than three times the proton mass. A resonance can decay via
various channels. Some of them are accounted for here as
chain decays, so a channel is understood to sum up all stable
hadrons. Since there is either 0 or 1 proton in the final state of
the decay, the probability that there is a proton after the decay
equals the mean number of protons from the decay,

pR =
∑

r

brnr, (A1)

where the sum goes through all decay channels (including
all subsequent chain decays), br is the probability (branching
ratio) of a certain decay channel r, and nr is the number of
protons produced in the specific channel r (either 0 or 1).

Therefore, the probability of producing N protons by the
decays of NR resonances is given by a binomial distribution,

P(N ; NR) =
(

NR

N

)
pN

R (1 − pR)NR−N . (A2)

Using Eq. (1) one derives the corresponding cumulant-
generating function as

Kb(iξ ) = ln

{
NR∑

N=0

eiξN

(
NR

N

)
pN

R (1 − pR)NR−N

}

= ln

{
NR∑

N=0

(
NR

N

)
eiξN pN

R (1 − pR)NR−N

}

= ln

{
NR∑

N=0

(
NR

N

)
(eiξ pR)N (1 − pR)NR−N

}

= ln[eiξ pR + (1 − pR)]NR

= NR ln[eiξ pR + (1 − pR)]. (A3)

2. Single sort of resonances with fluctuating number

In a grand-canonical system the number of resonances fluc-
tuates. Let us, for the moment, assume that the probability to
have NR resonances is PR(NR), which is properly normalized:

∞∑
NR=0

PR(NR) = 1.

To get the probability that N protons appears, we have to
sum up over all NR which fulfill NR � N :

P(N ) =
∞∑

NR=N

PR(NR)P(N ; NR), (A4)
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where P(N ; NR) is the binomial distribution, as in Eq. (A2).
The cumulant-distribution function, according to defini-

tion (1), is

K (iξ ) = ln

{ ∞∑
N=0

eiξN P(N )

}

= ln

{ ∞∑
N=0

eiξN
∞∑

NR=N

PR(NR)P(N ; NR)

}

= ln

{ ∞∑
N=0

∞∑
NR=N

eiξN PR(NR)P(N ; NR)

}
. (A5)

The trick is now to switch the order of summations,

K (iξ ) = ln

{ ∞∑
NR=0

NR∑
N=0

eiξN PR(NR)P(N ; NR)

}

= ln

{ ∞∑
NR=0

PR(NR)
NR∑

N=0

eiξN P(N ; NR)

}
. (A6)

We know how to do the second summation, because this is
exactly what was done in deriving Eq. (A3). We arrive at

K (iξ ) = ln

{ ∞∑
NR=0

PR(NR)[eiξ pR + (1 − pR)]NR

}
. (A7)

From this cumulant-generating function we can now derive
the cumulants of the proton number distribution by taking
derivatives. To simplify the notation and the calculation, let
us introduce some shorthand notation. The argument of the
logarithm shall be denoted by

M = M(ξ ) =
∞∑

NR=0

PR(NR)[eiξ pR + (1 − pR)]NR , (A8)

where it is easy to see that

M(0) = 1. (A9)

We will also need derivatives of M. (We assume that the
function is as many times differentiable as we need.)

M ′ ≡ dM(ξ )

d (iξ )

=
∞∑

NR=0

PR(NR)NR pR[eiξ pR + (1 − pR)]NR−1eiξ (A10)

M ′(0) = pR

∞∑
NR=0

PR(NR)NR = pR〈NR〉c. (A11)

Higher derivatives will follow. Since factorial moments of
the distribution PR(NR) will appear frequently, we introduce
a notation

Fi =
〈

NR!

(NR − i)!

〉
, (A12)

where F1 = 〈NR〉.

Using this notation, the derivatives of M evaluated at ξ = 0
are

M ′′(0) = p2
RF2 + pRF1, (A13a)

M (3)(0) = p3
RF3 + 3p2

RF2 + pRF1, (A13b)

M (4)(0) = p4
RF4 + 6p3

RF3 + 7p2
RF2 + pRF1, (A13c)

M (5)(0) = p5
RF5 + 10p4

RF4 + 25p3
RF3

+ 15p2
RF2 + pRF1, (A13d)

M (6)(0) = p6
RF6 + 15p5

RF5 + 65p4
RF4

+ 90p3
RF3 + 31p2

RF2 + pRF1. (A13e)

This notation is then used in the derivatives of the cumulant-
generating function. We also need the relations between
factorial moments and cumulants, which are summarized in
Eqs. (B6). The cumulants of the proton number distribution
are then calculated via Eq. (2) with the cumulant-generating
function defined in Eq. (A7). We obtain

〈N 〉c = M ′(0)

M(0)
= M ′(0), (A14a)

〈(�N )2〉c = M ′′(0)M(0) − [M ′(0)]2, (A14b)

〈(�N )3〉c = M (3)(0) − 3M ′′(0)M ′(0) + 2[M ′(0)]3, (A14c)

〈(�N )4〉c = M (4)(0) − 4M (3)(0)M ′(0) + 12M ′′(0)[M ′(0)]2

− 3[M ′′(0)]2 − 6[M ′(0)]4, (A14d)

〈(�N )5〉c = M (5)(0) − 5M (4)(0)M ′(0) − 10M (3)(0)M ′′(0)

+ 20M (3)(0)[M ′(0)]2 − 60M ′′(0)[M ′(0)]3

+ 30[M ′′(0)]2M ′(0) + 24[M ′(0)]5, (A14e)

〈(�N )6〉c = M (6)(0) − 6M (5)(0)M ′(0) − 15M (4)(0)M ′′(0)

+ 30M (4)(0)[M ′(0)]2 − 10[M (3)(0)]2

+ 120M (3)(0)M ′′(0)M ′(0)

− 120M (3)(0)[M ′(0)]3

− 270[M ′′(0)]2[M ′(0)]2 + 30[M ′′(0)]3

+ 360M ′′(0)[M ′(0)]4 − 120[M ′(0)]6. (A14f)

The last steps are tedious but straightforward. First, the
derivatives of M are expressed via Eqs. (A13) and inserted
into Eqs. (A14). Then, the factorial moments in those expres-
sions are rewritten in terms of the cumulants of the resonance
number distribution, which are derived in Eqs. (B6). This
leads to the following expressions for the proton number cu-
mulants:

〈Np〉c = pR〈NR〉c, (A15a)

〈(�Np)2〉c = p2
R〈(�NR)2〉c + pR(1 − pR)〈NR〉c, (A15b)

〈(�Np)3〉c = p3
R〈(�NR)3〉c + 3p2

R(1 − pR)〈(�NR)2〉c
+ pR(1 − pR)(1 − 2pR)〈NR〉c, (A15c)

〈(�Np)4〉c = p4
R〈(�NR)4〉c + 6p3

R(1 − pR)〈(�NR)3〉c
+ p2

R(1 − pR)(7 − 11pR)〈(�NR)2〉c
+ pR(1 − pR)

(
1 − 6pR + 6p2

R

)〈NR〉c, (A15d)
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〈(�Np)5〉c = p5
R〈(�NR)5〉c + 10p4

R(1 − pR)〈(�NR)4〉c
+ 5p3

R(1 − pR)(5 − 7pR)〈(�NR)3〉c
+ 5p2

R(1 − pR)
(
10p2

R − 12pR + 3
)〈(�NR)2〉c

+ pR(1 − pR)(1 − 2pR)
(
12p2

R

− 12pR + 1
)〈NR〉c, (A15e)

〈(�Np)6〉c = p6
R〈(�NR)6〉c + 15p5

R(1 − pR)〈(�NR)5〉c
+ 5p4

R(1 − pR)(13 − 17pR)〈(�NR)4〉c
+ 15p3

R(1 − pR)
(
15p2

R − 20pR + 6
)〈(�NR)3〉c

− p2
R(1 − pR)

(
274p3

R − 476p2
R

+ 239pR − 31
)〈(�NR)2〉c + pR(1 − pR)

(
120p4

R

−240p3
R + 150p2

R − 30pR + 1
)〈NR〉c. (A15f)

Since cumulants are additive for random numbers that are
added together, if protons are produced from decays of many
sorts of resonances, we have to sum the above expressions
through all of them. This leads to Eqs. (14).

APPENDIX B: RELATIONS BETWEEN FACTORIAL
MOMENTS, CUMULANTS, AND MOMENTS

Here, we review the relations which are useful if one set
of statistics is needed to be replaced by another one. These
relations are generic and can be derived by taking derivatives
of the characteristic function

ϕ(iξ ) =
∞∑

N=0

eiξN P(N ),

and the cumulant-generating function defined in Eq. (1),

K (iξ ) = ln[ϕ(iξ )].

The moments are obtained as

μ′
m ≡ 〈Nm〉 = dmϕ(iξ )

d (iξ )m

∣∣∣∣
ξ=0

, (B1)

and the cumulants are obtained as

〈(�N )m〉c = dmK (iξ )

d (iξ )m

∣∣∣∣
ξ=0

. (B2)

Systematically applying the derivatives in Eq. (B2) and
using Eq. (B1) to express them with the help of the moments
μ′

m yields

〈N 〉c = μ′
1, (B3a)

〈(�N )2〉c = μ′
1

2 + μ′
2, (B3b)

〈(�N )3〉c = 2μ′
1

3 − 3μ′
1μ

′
2 + μ′

3, (B3c)

〈(�N )4〉c = −6μ′
1

4 + 12μ′
1

2
μ′

2 − 3μ′
2

2 − 4μ′
1μ

′
3 + μ′

4,

(B3d)

〈(�N )5〉c = 24μ′
1

5 − 60μ′
1

3
μ′

2 + 30μ′
1μ

′
2

2 + 20μ′
1

2
μ′

3

− 10μ2μ′
3 − 5μ′

1μ
′
4 + μ′

5, (B3e)

〈(�N )6〉c = −120μ′
1

6 + 360μ′
1

4
μ′

2 − 270μ′
1

2
μ′

2
2 + 30μ′

2
3

− 120μ′
1

3
μ′

3 + 120μ′
1μ

′
2μ

′
3 − 10μ′

3
2 + 30μ′

1
2
μ′

4

− 15μ′
2μ

′
4 − 6μ′

1μ
′
5 + μ′

6. (B3f)

These relations can be inverted:

μ′
1 = 〈N 〉c, (B4a)

μ′
2 = 〈N 〉2

c + 〈(�N )2〉c, (B4b)

μ′
3 = 〈N 〉3

c + 3〈N 〉c〈(�N )2〉c + 〈(�N )3〉c, (B4c)

μ′
4 = 〈N 〉4

c + 6〈N 〉2
c 〈(�N )2〉c + 3〈(�N )2〉2

c

+ 4〈N 〉c〈(�N )3〉c + 〈(�N )4〉c, (B4d)

μ′
5 = 〈N 〉5

c + 10〈N 〉3
c 〈(�N )2〉c + 15〈N 〉c〈(�N )2〉2

c

+ 10〈N 〉2
c 〈(�N )3〉c + 10〈(�N )2〉c〈(�N )3〉c

+ 5〈N 〉c〈(�N )4〉c + 〈(�N )5〉c, (B4e)

μ′
6 = 〈N 〉6

c + 15〈N 〉4
c 〈(�N )2〉c + 45〈N 〉2

c 〈(�N )2〉2
c

+ 15〈(�N )2〉3
c + 20〈N 〉3

c 〈(�N )3〉c
+ 60〈N 〉c〈(�N )2〉c〈(�N )3〉c + 10〈(�N )3〉2

c

+ 15〈N 〉2
c 〈(�N )4〉c + 15〈(�N )2〉c〈(�N )4〉c

+ 6〈N 〉c〈(�N )5〉c + 〈(�N )6〉c. (B4f)

Factorial moments are defined in Eq. (A12), and can be ex-
pressed through the moments as

F1 = μ′
1, (B5a)

F2 = −μ′
1 + μ′

2, (B5b)

F3 = 2μ′
1 − 3μ′

2 + μ′
3, (B5c)

F4 = −6μ′
1 + 11μ′

2 − 6μ′
3 + μ′

4, (B5d)

F5 = 24μ′
1 − 50μ′

2 + 35μ′
3 − 10μ′

4 + μ′
5, (B5e)

F6 = −120μ′
1 + 274μ′

2 − 225μ′
3 + 85μ′

4 − 15μ′
5 + μ′

6.

(B5f)

Finally, inserting from Eqs. (B4) into these equations we can
express factorial moments with the help of the cumulants:

F1 = 〈N 〉c, (B6a)

F2 = −〈N 〉c + 〈N 〉2
c + 〈(�N )2〉c, (B6b)

F3 = 2〈N 〉c + 〈N 〉3
c + 3〈N 〉c〈(�N )2〉c

− 3
(〈N 〉2

c + 〈(�N )2〉c
) + 〈(�N )3〉c, (B6c)

F4 = −6〈N 〉c + 〈N 〉4
c + 6〈N 〉2

c 〈(�N )2〉c
+ 3〈(�N )2〉2

c + 11
(〈N 〉2

c + 〈(�N )2〉c
) + 4〈N 〉c〈(�N )3〉c

− 6
(〈N 〉3

c + 3〈N 〉c〈(�N )2〉c + 〈(�N )3〉c
) + 〈(�N )4〉c,

(B6d)

F5 = 24〈N 〉c + 〈N 〉5
c + 10〈N 〉3

c 〈(�N )2〉c
+15〈N 〉c〈(�N )2〉2

c − 50
(〈N 〉2

c + 〈(�N )2〉c
)

+ 10〈N 〉2
c 〈(�N )3〉c + 10〈(�N )2〉c〈(�N )3〉c + 35(〈N 〉3

c

+ 3〈N 〉c〈(�N )2〉c + 〈(�N )3〉c)

+ 5〈N 〉c〈(�N )4〉c − 10(〈N 〉4
c

+ 6〈N 〉2
c 〈(�N )2〉c + 3〈(�N )2〉2

c
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+ 4〈N 〉c〈(�N )3〉c + 〈(�N )4〉c) + 〈(�N )5〉c, (B6e)

F6 = −120〈N 〉c + 〈N 〉6
c + 15〈N 〉4

c 〈(�N )2〉c
+45〈N 〉2

c 〈(�N )2〉2
c + 15〈(�N )2〉3

c

+ 274
(〈N 〉2

c + 〈(�N )2〉c
)

+ 20〈N 〉3
c 〈(�N )3〉c

+ 60〈N 〉c〈(�N )2〉c〈(�N )3〉c + 10〈(�N )3〉2
c

− 225(〈N 〉3
c + 3〈N 〉c〈(�N )2〉c

+〈(�N )3〉c) + 15〈N 〉2
c 〈(�N )4〉c

+ 15〈(�N )2〉c〈(�N )4〉c
+ 85(〈N 〉4

c + 6〈N 〉2
c 〈(�N )2〉c

+ 3〈(�N )2〉2
c + 4〈N 〉c〈(�N )3〉c

+〈(�N )4〉c) + 6〈N 〉c〈(�N )5〉c
− 15

[〈N 〉5
c + 10〈N 〉3

c 〈(�N )2〉c
+ 10〈N 〉2

c 〈(�N )3〉c + 10〈(�N )2〉c〈(�N )3〉c
+ 5〈N 〉c

(
3〈(�N )2〉2

c + 〈(�N )4〉c
)

+〈(�N )5〉c
] + 〈(�N )6〉c. (B6f)
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