
PHYSICAL REVIEW C 104, 044904 (2021)

Thermal and hard scales in transverse momentum distributions, fluctuations, and entanglement
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We analyze the transverse momentum distributions of pp, pPb, XeXe, and PbPb collisions at different RHIC
and LHC energies and centralities as well as the corresponding distributions for Higgs production decaying into
γ γ and 4l . A simple linear relation is found between the effective thermal temperature and the hard scale,
approximately valid for all processes and mainly determined by the hard scale fluctuations. To go further,
it is shown that the whole spectrum of pp collisions can be described by a single function showing that the
thermal temperature is determined solely by the hard scale and its fluctuations. The possible relation between
the multiplicities of the soft and hard scales is explored.
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I. INTRODUCTION

The apparent thermal features and the collective behavior
observed in proton-proton collisions has challenged our cur-
rent understanding of the small collision systems, where the
application of the conventional hydrodynamical explanation
seems to be questionable [1,2]. On the other hand, theoret-
ical studies of quenches in entangled systems described by
(1 + 1)-dimensional conformal field theories of expanding
quantum fields and strings, have shown that these systems
behave as a generalized Gibbs ensemble with an effective
temperature set by the energy cutoff for the ultraviolet modes
[3–6]. In the last years there has been a large activity in the
field [7–18].

In a high-energy collision a hard parton interaction pro-
duces a rapid quench of the entangled partonic state [19] and
thus the characteristic effective temperature—inferred from
the exponential shape of the transverse momentum distri-
bution (TMD) of the secondary particles produced in the
collision—can depend on the energy scale of the hard process,
which works as an ultraviolet cutoff of the quantum modes
resolved by the collision. This possibility has been recently
studied in charged particle and Higgs boson production in
pp and PbPb collisions at very different energies and mul-
tiplicities, where a relation between the hard scale and the
effective temperature has been found [20–22]. In this paper we
extend our previous analysis and perform an extensive study
of the energy and multiplicity dependence of the hard and soft
scales in pp collisions [23–29] as well as pPb [30], XeXe [31],
and PbPb [26] collisions. We show that the relation between
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both scales is determined approximately by the inverse of the
normalized fluctuations of the number of partons of the initial
wave function or, equivalently, of the normalized fluctuations
of the hard scale.

In the entanglement picture of the nucleon as the under-
lying mechanism for the fast thermalization of partons, a
hard process, with transverse momentum p⊥, probes only the
region of the space H of transverse size 1/p⊥. Let us denote
by S the region of space complementary to H . The initial state
is described by the wave function

|�〉 =
∑

n

αn

∣∣�H
n

〉 ⊗ ∣∣�S
n

〉
, (1)
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localized in the domains H and S, with different numbers n
of partons. The state (1) cannot be separated into a product
|�H 〉 ⊗ |�S〉, and therefore |�〉 is entangled. The density
matrix of the mixed state probed in the region H is
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where |αn|2 ≡ pn is the probability of having a state with n
partons. We can consider that a high-momentum partonic con-
figuration of the initial state when the interaction takes place
undergoes a rapid quench. The onset τ of this hard interaction
is given by the hardness scale, τ ∼ 1/p⊥. Because τ is small,
the quench creates a highly excited multiparticle state. The
produced particles have a thermal-like exponential spectrum
with an effective temperature which is determined by the hard
scale and the fluctuations on the number of partons. With these
considerations, we fit the different TMDs by an exponential
distribution and a power-like distribution [20,21,32]
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FIG. 1. Charged particle TMD in pp collisions at
√

snn = 7 TeV
in the centrality class 0%-5%. Fit to (3) in the interval 0.17 < p⊥ <

32.5 GeV/c. Normalized data taken from Ref. [27] with systematic
and statistical uncertainties combined. Unidentified charged particle
mass set to mX = 0.23 GeV/c2, corresponding to the weighted aver-
age mass of the π±, K±, and p channels.

where Tth is the effective temperature, Th is the hard scale, and
k a parameter that characterizes the perturbative falloff of the
distribution at high p⊥.

In the next sections, we show that the relation between
the two scales is given by the size of the fluctuations of the
hard scale. This relation is universal, valid for pp, pPb, XeXe,
and PbPb for all energies and centralities. In the case of pp
collisions, we are able to describe the whole p⊥ spectrum with
a single function for energies ranging from the BNL Rela-
tivistic Heavy Ion Collider (RHIC) to the LHC. This function
provides us with the low-p⊥ fluctuations needed to improve
the universal agreement found in AA and pA collisions.

II. THE THERMAL TEMPERATURE DETERMINED BY
THE HARD SCALE AND ITS FLUCTUATIONS

A fit to (3) of the TMD of charged particles measured
by the ALICE Collaboration [27] in the most central pp
collisions at a center-of-mass energy of

√
snn = 7 TeV is

shown in Fig. 1. In Fig. 2 we show the pPb scenario, in
which the TMD of π± in collisions at

√
snn = 5.02 TeV is

shown, and in Fig. 3 the TMD of charged particles in PbPb
collisions is shown at the same center-of-mass energy. The
general behavior of these TMD in all the analyzed cases
consists in a soft thermal contribution with a characteristic
temperature Tth ∈ 0.15–0.20 GeV, representing typically the
≈80%–90% of the total inclusive cross section, plus a hard tail
dominant at high energies, with temperature Th ∈ 0.7–1 GeV
and falloff k ∈ 3–5, exhibiting the characteristic features of
the perturbative limit. The major source of uncertainty in the
determination of these three parameters by fits to experimental
data are the systematic uncertainties, the large bins usually
required to collect very-high-p⊥ events and the signals of
final-state interactions in large colliding systems. The results

FIG. 2. π± TMD in pPb collisions at
√

snn = 5.02 TeV in
the centrality class 0%–5%. Fit to (3) in the interval 0.1 < p⊥ <

19 GeV/c. Normalized data taken from Ref. [30] with system-
atic and statistical uncertainties combined. Pion mass set to mπ =
0.14 GeV/c2.

of the rest of the fits of the TMDs to (3) are shown in tables,
with the list of extracted quantities and uncertainties and the fit
parameters disclosed, and depicted also in the accompanying
figures. Systematic uncertainties are included in the fits as
random errors, thus the obtained χ2/Ndf values are generally
large and the fit parameter errors are overestimated.

In Table I, we show the values of Tth, Th, and k obtained
from the fits to the TMD of charged particles produced in
pp collisions at very different RHIC and LHC energies. In
Table II, we show the results from the fits to the TMD of
charged pions for several multiplicity bins in pp collisions at

FIG. 3. Charged particle TMD in PbPb collisions at
√

snn =
5.02 TeV in the centrality class 0%–5%. Fit to (3) in the inter-
val 0.2 < p⊥ < 17 GeV/c. Normalized data taken from Ref. [26]
with systematic and statistical uncertainties combined. Unidentified
charged particle mass set to mX = 0.23 GeV/c2, corresponding to
the weighted average mass of the π±, K±, and p channels.
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TABLE I. Temperatures, falloff k, and fit parameters of the TMD
of charged particles in pp collisions at different RHIC and LHC
colliding energies, with data taken from Refs. [23–29].

√
snn Tth (GeV) Th (GeV) k χ 2 Ndf

64 GeV 0.15 ± 0.07 0.68 ± 0.16 5.5 ± 0.1 4.5 48
200 GeV 0.16 ± 0.11 0.67 ± 0.33 4.3 ± 3.7 0.4 19
900 GeV 0.18 ± 0.02 0.72 ± 0.11 3.6 ± 1.0 6.1 50
2.76 TeV 0.19 ± 0.02 0.81 ± 0.08 3.4 ± 0.4 2.8 35
5.02 TeV 0.18 ± 0.02 0.80 ± 0.08 3.3 ± 0.4 3.2 35
7 TeV 0.18 ± 0.02 0.74 ± 0.03 3.1 ± 0.1 6.4 61
8 TeV 0.17 ± 0.01 0.74 ± 0.06 3.2 ± 0.3 3.3 40
13 TeV 0.18 ± 0.02 0.81 ± 0.20 3.2 ± 1.5 3.3 43

√
snn = 7 TeV, in the range |η| < 0.5 and 0.1 < p⊥ < 17.5

GeV/c. The obtained values of temperature are larger for
charged particles than for pions, as expected.

In Table III, we show the fit results for pPb collisions at√
snn = 5.02 TeV in the range −0.5 < η < 0 and 0.1 < p⊥ <

19 GeV/c. In Table IV, we show the fit results for XeXe
collisions at

√
snn = 5.44 TeV at different centralities in the

range η < 0.8 and 0.2 < p⊥ < 17 GeV/c, and in Table V for
PbPb collisions at

√
snn = 5.02 TeV at different centralities in

the range η < 0.8 and 0.2 < p⊥ < 17 GeV/c.
The general behavior of the temperatures Th and Tth in

large systems is to increase with the colliding energy and
centrality in all cases, as expected. The soft temperature Tth

seems to be less sensitive to the collision energy in small
systems. In pp collisions, the minimum-bias distributions in
Fig. 4 are well described under current uncertainties by a
constant soft temperature around Tth ≈ 0.15–0.20 GeV. The
centrality dependence of this soft temperature Tth in small
systems is different for light charged species than for kaons
and unidentified charged particles. In pp and pPb collisions,
the soft temperature Tth of pions slightly decreases or can
be considered constant with centrality, but it exhibits a clear
enhancement with centrality for inclusive kaon and charged-
particle production. On the other hand, the behavior of the
falloff index k with centrality seems to be the same as the
thermal temperature Tth: it increases with centrality except in
light-particle production in pp collisions, where it decreases

TABLE II. Characteristic temperatures and falloff k of the TMD
of π± in pp collisions at

√
snn = 7 TeV in the range |η| < 0.5 and

0.1 < p⊥ < 17.5 GeV/c [27] for several multiplicities.

dNc/dη Tth (GeV) Th (GeV) k χ 2 Ndf

21.3 0.14 ± 0.01 0.68 ± 0.07 3.1 ± 0.5 11.9 44
16.5 0.14 ± 0.01 0.67 ± 0.08 3.1 ± 0.7 10.8 44
13.5 0.14 ± 0.01 0.67 ± 0.13 3.1 ± 1.2 9.9 44
11.5 0.14 ± 0.01 0.65 ± 0.10 3.1 ± 0.8 9.2 44
10.1 0.14 ± 0.01 0.65 ± 0.10 3.1 ± 0.9 8.7 44
8.45 0.14 ± 0.01 0.64 ± 0.09 3.1 ± 0.8 7.9 44
6.72 0.14 ± 0.01 0.63 ± 0.10 3.2 ± 0.9 6.9 44
5.4 0.14 ± 0.01 0.62 ± 0.11 3.2 ± 1.0 6.0 44
3.9 0.15 ± 0.01 0.62 ± 0.12 3.3 ± 1.2 4.4 44
2.3 0.15 ± 0.01 0.61 ± 0.08 3.4 ± 0.5 2.7 44

TABLE III. Characteristic temperatures and falloff k of the TMD
of π± in pPb collisions at

√
snn = 5.02 TeV in the range −0.5 < η <

0 and 0.1 < p⊥ < 19 GeV/c for several multiplicities [28].

dNch/dη Tth (GeV) Th (GeV) k χ 2 Ndf

45.0 0.15 ± 0.01 0.72 ± 0.03 3.3 ± 0.2 12.7 54
36.2 0.15 ± 0.01 0.72 ± 0.08 3.2 ± 0.7 11.8 54
30.5 0.15 ± 0.01 0.71 ± 0.03 3.2 ± 0.2 11.2 54
23.2 0.14 ± 0.01 0.70 ± 0.05 3.2 ± 0.3 10.0 54
16.1 0.14 ± 0.01 0.68 ± 0.03 3.2 ± 0.2 8.9 54
9.8 0.14 ± 0.01 0.65 ± 0.08 3.1 ± 0.7 7.8 54
4.3 0.15 ± 0.01 0.62 ± 0.09 3.1 ± 0.9 5.8 54

or can be considered constant under current uncertainties. We
then assume that, following the entanglement thermalization
picture, a link exists between Tth, a nonperturbative parameter,
and the perturbative falloff k of the hard processes, and we
suggest the relation

Th

k + 1
= Tth, (4)

which approximately holds universally for all the analyzed
energies, centralities, and colliding systems. In Fig. 4 we
plot Tth and Th/(k + 1) for pp collisions at different ener-
gies. In Figs. 5–7 we plot the cases of pp, pPb, XeXe, and
PbPb collisions at

√
snn = 7, 5.02, and 5.44 TeV for differ-

ent identified charged particles as a function of multiplicity.
We have looked at the transverse momentum distribution of
Higgs production decaying into γ γ and 4l , as reported in
Ref. [20], obtaining Tth = 3.5 ± 0.7 GeV, Th = 14.4 ± 0.3,
and k = 3.7 ± 0.4. Hence we obtain a quenched hard scale
Th/(k + 1) = 3.1 ± 0.4 GeV to compare with Tth = 3.5 ± 0.7
GeV. In the same line, studies of the p⊥ distribution of the
W s produced in pp̄ collisions have found similar behavior
[33,34]. An overall agreement is observed in all cases, except
in very low multiplicity events and very low colliding ener-
gies in pp collisions, where the discrepancies between both
quantities becomes substantial. This agreement is remarkable
considering the large number of TMDs studied and the large
differences presented in the temperatures for different projec-
tiles and targets, as well as centralities and energies.

To improve the agreement with pp data, we devise also a
convenient and simple parametrization of the whole soft and
hard spectrum for the full range of energies explored at RHIC

TABLE IV. Characteristic temperatures and falloff k of the TMD
of charged particles in XeXe collisions at

√
snn = 5.44 TeV for

several centrality classes in the range η < 0.8 and 0.2 < p⊥ <

17 GeV/c, data taken from Ref. [31].

dNch/dη Tth (GeV) Th (GeV) k χ 2 Ndf

1167 0.14 ± 0.02 0.68 ± 0.08 3.4 ± 0.8 27 48
706 0.13 ± 0.02 0.68 ± 0.03 3.3 ± 0.2 17 48
478 0.13 ± 0.02 0.66 ± 0.03 3.3 ± 0.2 12 48
118 0.13 ± 0.02 0.64 ± 0.10 3.2 ± 0.9 3 48
65 0.13 ± 0.02 0.63 ± 0.30 3.1 ± 3.0 5 48
32 0.13 ± 0.02 0.65 ± 0.13 3.2 ± 1.1 5 48
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TABLE V. Characteristic temperatures and falloff k of the TMD
of charged particles in PbPb collisions at

√
snn = 5.02 TeV in

the range η < 0.8 and 0.2 < p⊥ < 17 GeV/c for several centrality
classes, data taken from Ref. [26].

dNch/dη Tth (GeV) Th (GeV) k χ 2 Ndf

1942 0.14 ± 0.02 0.68 ± 0.03 3.5 ± 0.2 38 48
1585 0.14 ± 0.02 0.68 ± 0.03 3.5 ± 0.2 32 48
1180 0.13 ± 0.02 0.68 ± 0.03 3.4 ± 0.2 28 48
786 0.13 ± 0.02 0.67 ± 0.03 3.3 ± 0.2 20 48
512 0.13 ± 0.02 0.66 ± 0.03 3.3 ± 0.2 15 48
318 0.13 ± 0.02 0.65 ± 0.03 3.2 ± 0.2 10 48
183 0.13 ± 0.02 0.64 ± 0.03 3.2 ± 0.2 6 48
96 0.13 ± 0.02 0.63 ± 0.04 3.2 ± 0.2 2 48
45 0.13 ± 0.01 0.62 ± 0.03 3.1 ± 0.1 3 48

and the LHC. The hard part of the TMD (3) can be rewritten
as

1

(1 + p2
⊥/γ )k

=
∫ ∞

0
dxe−p2

⊥x γ


(k)
(γ x)k−1e−γ x

:=
∫ ∞

0
dxe−p2

⊥xWp(x, γ ), (5)

with γ ≡ kT 2
h . Here, the function e−p2

⊥x can be interpreted as
the probability of production of a particle as a function of p⊥
for a given occurrence of the hard momentum scale x, and
then Wp(x) is the distribution of these hard scales, in particular
a Gamma distribution. Hence, 1/k can be understood as the
normalized fluctuations of the resulting hard scale Th, since

1

k
= 〈x2〉 − 〈x〉2

〈x〉2
, (6)

and 〈x〉 and 〈x〉 are momenta of Wp(x). Next, in order to im-
plement the quench relation and the emergence of the thermal
temperature, we can add an additional source of fluctuations

FIG. 4. Thermal scale Tth compared with the quenched hard scale
Th/(k + 1) of particles produced in pp collisions at RHIC [23,24] and
LHC [25–29] as a function of collision energy.

FIG. 5. Thermal scale Tth compared with the quenched hard
scale Th/(k + 1) extracted from ALICE collected data [27] on pp
collisions at

√
snn = 7 TeV, as a function of the charged particle

multiplicity. Fits to (3) from 0.1 < p⊥ < 17.5 GeV/c using mπ =
0.14 GeV/c2, mK = 0.49 GeV/c, and mX = 0.23 GeV/c2, corre-
sponding to the weighted averaged mass of the π±, K±, and p
channels.

for Th using a Gaussian distribution G(Th). The final TMD is
then given by, using (5),

dN2
ev

d p2
⊥

=
∫ ∞

0
dThG(Th)

1

(1 + p2
⊥/γ )k

=
∫ ∞

0
dThG(Th)

∫ ∞

0
dxWp(x, γ )e−p2

⊥x

:=
∫ ∞

0
dxW (x)e−p2

⊥x, (7)

FIG. 6. Thermal scale Tth compared with the quenched hard scale
Th/(k + 1) of π± and K± extracted from ALICE collected data [30]
on pPb collisions at

√
snn = 5.02 TeV as a function of the charged-

particle multiplicity. Fit to (3) in the interval 0.1 < p⊥ < 19 GeV/c,
with masses set to mπ = 0.14 GeV/c2 and mK = 0.49 GeV/c2.
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FIG. 7. Thermal scale Tth compared with the quenched hard scale
Th/(k + 1), extracted from a fit of (3) to ALICE collected data
[26,31] on XeXe collisions at

√
snn = 5.44 TeV in the interval 0.2 <

p⊥ < 17 GeV/c and PbPb collisions at
√

snn = 5.02 TeV in the
interval 0.2 < p⊥ < 17 GeV/c, as a function of the charged-particle
multiplicity. Unidentified charged particle mass set to mX = 0.23
GeV/c2, corresponding to the averaged weighted mass of the π±,
K±, and p channels.

where the fluctuation of the hard scale is encoded now in the
new distribution W (x), and it can be well approximated by

W (x) =
∫ ∞

0
dThG(Th)Wp(x, γ ) � N xk−1

(1 + x/x̄)k′ , (8)

where N is a normalization constant, x̄ is the scale of x,
and k′ = k + 1/2 is required to obtain Gaussian fluctuations
at high x. The above equation has the correct asymptotic
behavior for both low and high x. In this way the TMD in
(7) becomes

dN2
ev

d p2
⊥

= N x̄k 
(k) U (k; 1/2; x̄ p2
⊥), (9)

where U is the confluent hypergeometric function. The
asymptotic limits for p⊥ → 0 are

dN2
ev

d p2
⊥

= C

(
1 − 2
(k + 1/2)


(k)
x̄1/2 p⊥

)
, (10)

and for p⊥ → ∞,

dN2
ev

d p2
⊥

= C′

(x̄p2
⊥)k

. (11)

At high p⊥, a power-like behavior is obtained with power 2k,
and at low p⊥ the thermal behavior is exp(−p⊥/Tth ) with

Tth = 
(k)

2
(k + 1/2)

1

x̄1/2
. (12)

As the fluctuations encoded in the function W (x) depend only
on the scale x̄ and k, we can say that the effective thermal
temperature depends only on the scale x̄ and its fluctuations. In
Fig. 8, we show the fit using the whole soft and hard spectrum

FIG. 8. TMD in (9) as a function of p⊥ for pp collisions at
different energies (symbols, as marked) together with the fit to
the hyper-geometric function (lines), using RHIC [24] and ALICE
[25–28] data.

cast in the form (9) to pp data at different energies. A good
description is obtained in all cases.

III. MULTIPLICITY DISTRIBUTION SCALES

In what concerns to the multiplicity distribution, we note
that a gamma distribution on the number of partons is also
obtained for events which have at least one high-p⊥ particle
due to a hard parton collision. In fact, if P(n) is the probability
of having n partons in a given collision, the probability Pc(n)
of having n partons with at least one hard is [35,36]

Pc(n) = n

〈n〉P(n). (13)

This selection procedure can be repeatedly applied, forming
the chain

P(n) → n

〈n〉P(n) → n2

〈n2〉P(n) → nk

〈nk〉P(n). (14)

Similarly, we also notice that a gamma distributed multiplicity
density convoluted with a Poisson process produces a negative
binomial distribution (NBD) for the multiplicity, broadly used
to describe the experimental data. Namely


(n + kn)


(n + 1)
(kn)

γ kn
n

(1 + γn)kn+n

=
∫ ∞

0
dN

e−N Nn

n!
(γnN )kn−1 exp (−γnN )

=
∫ ∞

0
dNP(n, N )Wn(N ), (15)

where as before

1

kn
= 〈N2〉 − 〈N〉2

〈N〉2
, γn ≡ kn

〈N〉 . (16)
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TABLE VI. Relation between the mean multiplicities for events
having at least one hard parton and the mean multiplicity for the rest
of the events extracted from Ref. [37].

√
snn (TeV) 〈Ns〉 〈Nh〉 〈Nh〉/(k − 1)

0.9 2.1 ± 1.9 5 ± 4 1.9 ± 1.5
2.76 2.5 ± 1.0 7 ± 2 3.1 ± 0.9
7 3.6 ± 1.4 12 ± 3 5.8 ± 1.4

Since the mean multiplicity and the p⊥ distribution are related
as follows:

〈n〉 =
∫

d2 p⊥
∫

dx f (p⊥, x)Wp(x), (17)

the following relation between the two gamma distributions
can be written:

Wp(x) = γn

γ
Wn(x), (18)

with k = kn + 2. The convolution of the gamma distribution
with a Poisson distribution gives rise to a negative binomial
distribution for the multiplicity distribution, see formula (15).
As far as the gamma distribution is obtained for at least one
hard parton, the resulting multiplicity distribution describes
the multiplicity distribution events with at least one hard par-
ton. For the rest of events another distribution is required.
There are several fits to the pp data at different colliding
energies using two negative binomial distributions [37–40].
Each of these distributions has two parameters, k fixing the
fluctuations and 〈n〉 the mean multiplicity. The two mean
multiplicities can be seen as the two multiplicity scales cor-
responding to the two transverse momentum scales Tth and
Th, and we can look for a relation between these scales similar
to the relation (4).

According to formula (18), the parameter k of the gamma
distribution is two units larger than the one corresponding to
the gamma distributions on the number of partons, thus we
expect that instead of the equation (4) for the p⊥ distribution,
we should have

〈Nh〉
k − 1

= 〈Ns〉. (19)

This equation must be seen with caution because in the case of
multiplicities longitudinal momentum fluctuations add to the
p⊥ fluctuations. To avoid these contributions we look at the
data on small rapidity range. In Table VI we show the results
of a fit [37] using two negative binomial distributions to the
multiplicity distributions of pp collisions in the pseudorapid-
ity range |η| � 0.5 for different energies. The comparison of
columns two and four shows a reasonable agreement.

IV. DISCUSSION

In the left-hand side of equation (4), Th and k are pa-
rameters related to hard collisions and thus described by
perturbative QCD. On the other hand Tth has to do with non-
perturbative QCD. Thus, to some extent, equation (4) links
perturbative and nonperturbative physics. The factor k + 1 in
equation (4) determines the falloff of the probability of having

an additional hard parton normalized by the hard scale T 2
h .

Such probability is just the variation of the hard transverse
momentum distribution.

In this thermalization scenario implemented by the nu-
cleon wave-function collapse in the hard process, the exact
form of the relation between the soft and hard sectors is
nevertheless unknown. Hence the proposed relation (4) has
to be understood as a phenomenological finding satisfying the
qualitative features of this rapid quench picture. In addition,
the relation for the hard and soft scales seems to be consistent
within the energy and the multiplicity distributions. We notice
that Eq. (4) may hold also for a thermalization procedure in
which the equilibrium temperature Tth is proportional to the
number of hard events or collisions, encoded in the quotient
Th/(k + 1). That is, the number of hard events in the inclusive
cross section is proportional to the width of the distribution Th

and inversely proportional to the falloff k.
Relations between these two regimes have been recently

put forward in different quantum problems [41] and, more
recently, have been suggested as entropy constraints in an
entangled nucleon, relating the final-state multiplicity of the
fragmenting nucleon with the parton distribution function
probed by hard processes in pp and ep collisions [7]. Testing
the implications of this entanglement, the H1 collaboration
has measured very recently the charged particle distribution
in DIS at HERA [42]. The hadron entropy found in data does
not confirm, however, these entanglement predictions.

It is convenient to discuss if this disagreement is related to
the way in which the entanglement entropy of the nucleon has
to be obtained. There is not, to our knowledge, a known way of
computing from first principles the distribution of weights in
the entangled nucleon. Cascade models, not including satura-
tion and nonlinear evolution [19], may not be sensitive enough
to correctly describe the initial entanglement entropy. Thus the
observed entropy in the multiplicity distribution of hadrons
may not be in an one-to-one correspondence with the entropy
of the cascade.

However, we notice that the observed multiplicity distribu-
tions in data are well described by NBDs. We can devise then
a way of reconstructing the cascade process under these phe-
nomenological considerations. We may assume the weights
of the entangled state to be formed according to a Poisson
process, with a given mean value λ. Then each of these partons
gives rise to a cascade with a geometric distribution [19],
with parameter p = 〈n〉/(〈n〉 + kn) (kn = 1 for a geometric
distribution). For the case of DIS at the energies explored
by the H1 collaboration [42], the falloff parameter kn is large
enough to transform back the final NBD to the initial Poisson
distributed multiplicity. Following this observation, p has to
be small and the final-state multiplicity mirrors the initial
weight distribution instead of being geometrically distributed.
At larger energies, however, p must increase so that the part
of the cascade becomes more important.

At the level of the von Neumann entropy, this energy evo-
lution corresponds to the passage from a Poisson distributed
entropy to a geometric or Gamma

ln〈n〉1/2 → ln〈n〉 (20)
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the falloff k of the NBD interpolating between these two limits
[21]. At LHC energies for pp collisions we expect that the
parameter p is large enough that the entropy is dominated
by the geometric term and S ∝ ln〈n〉, as was pointed out in
Ref. [7]. At even larger energies due to saturation of partons
we expect to recover a behavior S ∝ ln〈n〉1/2. Accordingly,
the number of microstates is no longer n but saturates as

√
n

when the colliding energy increases, following the expecta-
tions of the glasma picture of the CGC [43] or the string
percolation model [44]. Recently, a re-analysis of the H1
collaboration data [45] with the adequate corrections for the
different kinematical regions has produced agreement with the
entanglement predictions. These corrections are in line with
the above discussion.

V. CONCLUSIONS

Summarizing, the analysis of the transverse momentum
distributions of pp, pPb, XeXe, and PbPb collisions at dif-
ferent RHIC and LHC energies and centralities together with
Higgs production decaying into γ γ and 4l suggest that a
hard collision provides an ultraviolet scale that quenches the
spectrum by means of fluctuations of the hard scale. A simple
relation between the effective temperature and the hard scales
is obtained which is approximately satisfied in the different

cases in study. In this way, a nonperturbative scale Tth has been
related to two perturbative quantities, Th and k. A Gamma
distribution is found, in agreement with phenomenological
descriptions, for the distribution of the hard scale as well as
the number of partons. The normalized fluctuations of both
distributions are related and give rise to a relation between the
multiplicities of the soft and hard spectrum. These findings are
in line with the possibility that a hard parton collision works
as an ultraviolet cutoff producing a quench of the rest of the
entanglement partons of the initial wave function. Such entan-
glement may be at the origin of the apparent thermalization of
the colliding hadrons.
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