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Elliptic flow splittings in the Polyakov–Nambu–Jona-Lasinio transport model
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To incorporate the effect of gluons on the evolution dynamics of the quark matter produced in relativistic
heavy-ion collisions, we extend the three-flavor Nambu–Jona-Lasinio (NJL) transport model to include the
contribution from the Polyakov loops. Imbedding the resulting pNJL partonic transport model in an extended
multiphase transport (extended AMPT) model, we then study the elliptic flow splittings between particles
and their antiparticles in relativistic heavy-ion collisions at beam energy scan energies. We find that a weak
quark vector interaction in the partonic phase is able to describe the elliptic flow splitting between protons and
antiprotons in heavy-ion collisions at

√
sNN = 7.7 to 39 GeV. Knowledge of the quark vector interaction is useful

for understanding the equation of state of quark matter at large baryon chemical potentials and thus the location
of the critical point in the QCD phase diagram.
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I. INTRODUCTION

Understanding the properties of the quark-gluon plasma
(QGP) and the phase diagram of quantum chromodynamics
(QCD) is among the main goals of the experiments with heavy
ions at relativistic energies. For a QGP of low baryon chemical
potentials produced in ultrarelativistic heavy-ion collisions, its
transition to hadronic matter is a smooth crossover according
to lattice QCD (LQCD) calculations [1–3]. Although LQCD
has not been able to determine the properties of the QGP
at high baryon chemical potentials, it was shown in various
effective models for QCD, such as the Nambu–Jona-Lasinio
(NJL) model [4–7], the Dyson-Schwinger approach [8,9], and
the functional renormalization-group method [10,11], that its
transition to the hadronic matter could be a first-order tran-
sition. Searching for the QCD critical point, at which the
smooth crossover changes to a first-order transition, and de-
termining its location in the QCD phase diagram are currently
topics of great interest in high-energy nuclear physics, partic-
ularly in relativistic heavy-ion collisions that are carried out
in the beam energy scan (BES) program at the Relativistic
Heavy Ion Collider (RHIC) and will also be carried out in the
compressed baryonic matter (CBM) experiment at the Facility
for Antiproton and Ion Research (FAIR) as well as at the
Nuclotron-Based Ion Collider Facility (NICA) and the High
Intensity Heavy-Ion Accelerator Facility (HIAF). On the other
hand, observables measured in heavy-ion collisions at lower

*xujun@zjlab.org.cn

energies can also provide information on the properties of
quark matter, especially its equation of state (EOS) at large
baryon chemical potentials. Such information is helpful for
understanding the properties of strange quark stars [12,13] and
gravitational waves from compact-star mergers. We note that
the QCD phase diagram and the quark matter EOS at large
baryon chemical potentials are related through the underlying
quark interactions.

To search for the QCD critical point from the many
interesting phenomena observed in the experiments of the
BES program at RHIC, there have been great theoretical
efforts based on various transport [14–16] or hydrodynamic
[17,18] approaches. Assuming that the trajectory traversed
by the produced matter with a certain temperature and a
baryon chemical potential in the QCD phase diagram could
pass through the QCD critical region or the spinodal region,
there will then be observational effects on conserved charge
fluctuations [19–23] and light cluster productions [24–26]
as well as other physical quantities. These studies also
provide the possibility to study the quark-matter EOS and
the underlying quark interactions, especially at finite baryon
chemical potentials. For example, from the collective flow
splittings between particles and their antiparticles, one can
determine the different mean-field potentials acting on quarks
and antiquarks in the baryon-rich quark matter and thus
their interactions. Using a QCD effective model with these
constrained quark interaction, one can then construct the QCD
phase diagram in the temperature and chemical-potential
plane, besides determining the location of the critical
point.
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Using an extended multiphase transport (extended AMPT)
model with its partonic stage replaced by the partonic
transport model based on the three-flavor NJL model [27–29],
we have previously studied the elliptic flow splittings between
particles and their antiparticles in relativistic heavy-ion col-
lisions at RHIC-BES energies. We have found that the data
measured by the STAR Collaboration [30] can be explained
by choosing a proper strength for the vector interaction in the
NJL model. The vector interaction extracted from our study
puts a significant constraint not only on the EOS of quark
matter at finite baryon chemical potentials but also on the
properties of the QCD phase diagram. It is, however, well
known that the NJL model gives a relatively low temperature
for the critical point due to the lack of the effects from glu-
ons. This drawback can be resolved by modifying the NJL
model to include the contribution from the Polyakov loops
[31], which then allows for the existence of the deconfinement
transition besides the chiral transition in the NJL model. In the
present paper, we report on the results from an improved trans-
port model study of relativistic heavy-ion collisions based
on the Polyakov-loop extended NJL (pNJL) model. Details
on the extended AMPT model as well as the NJL and the
pNJL model are provided in Sec. II. Section III gives detailed
results on the beam-energy dependence of heavy-ion collision
dynamics and the v2 splittings between particles and their
antiparticles, as well as those on the QCD phase diagram.
We conclude our study in Sec. IV and also include in the Ap-
pendixes the details on the treatment of the collision integral
in the partonic transport model, particularly the one based on
the pNJL model.

II. THEORETICAL FRAMEWORK

The present study is based on the framework of an ex-
tended AMPT model with its description of the partonic
dynamics using the NJL transport model. The extended
AMPT model has been used previously to study the splittings
between the elliptic flows [28,29] as well as directed flows
[32] of particles and their antiparticles in heavy-ion collisions
at RHIC-BES energies. In the present study, we further extend
the NJL transport model to include the effect of Polyakov
loops and make additional improvements to the extended
AMPT model.

A. An extended multiphase transport model

As in the original string-melting AMPT model [33], the
momentum distribution of initial partons in the present study
is obtained from the constituent quarks and antiquarks of
hadrons that are produced from elastic and inelastic scatter-
ings of participant nucleons in the heavy-ion jet interaction
generator (HIJING) model [34]. The positions of these initial
partons in the transverse plane are set to be the same as
those of the colliding nucleons from which they are produced.
For their longitudinal positions, they are taken to be uni-
formly distributed within (−lmN/

√
sNN , lmN/

√
sNN ), where

mN = 0.938 MeV is nucleon mass,
√

sNN is the collision
energy per nucleon pair in the center-of-mass frame, and l =
(D2 − b2)1/2 fm is the thickness parameter with D being the

diameter of the colliding nucleus (D = 14 fm for Au nucleus
in the present study) and b being the impact parameter. With
the initial partons gradually formed according to their forma-
tion time [33], the evolution of these partons is then described
by the NJL transport model or its extension by the inclusion
of Polyakov loops, where both the mean-field potentials on
partons and their scatterings are properly taken into account.
For the mean-field potentials, they are calculated by using
the test-particle method with parallel events, while scatterings
between partons are treated with the stochastic method [35]
using an isotropic cross section determined by the specific
shear viscosity of the quark matter and including the Pauli
blocking factors for fermions, as described in Appendixes A
and B. The value of the specific shear viscosity is adjusted so
that the transport model reproduces the final charged-particle
elliptic flow. Details of the NJL and pNJL model will be given
in the next section.

The partonic phase ends when the parton energy density in
the central region of the system drops to about 0.8 GeV/fm3.
The hadronization of partons is achieved by coalescing par-
tons close in phase space into hadrons [36], during which
the baryon and electric charges as well as strangeness are
conserved, although the numbers of mesons, baryons, and an-
tibaryons can be different from the initial ones from HIJING.
The evolution of the formed hadronic matter is described
by a relativistic transport (ART) model [37], which includes
various elastic and inelastic channels as well as decay chan-
nels for resonances, with the conserved electric charge [29]
and mean-field potentials included for baryons, antibaryons,
pions, and kaons [27]. Typically, nucleons are affected by a
weakly attractive potential while antinucleons are affected by
a strongly attractive potential in baryon-rich hadronic matter
according to the study of subthreshold production of antipro-
tons [38]. For other baryons (antibaryons), their potentials
are reduced with respect to nucleons (antinucleons) by their
light quark (antiquark) fractions. For the kaon and antikaon
potentials, they are weakly repulsive and strongly attractive
in baryon-rich hadronic matter, respectively, according to the
chiral effective-field theory [39].

B. Nambu–Jona-Lasinio model and its Polyakov-loop extension

We start from the Lagrangian of the three-flavor NJL
model, which is written as

LNJL = ψ̄ (i/∂ − m̂)ψ + GS

2

8∑
a=0

[(ψ̄λaψ )2 + (ψ̄ iγ5λaψ )2]

− GV

2

8∑
a=0

[(ψ̄γμλaψ )2 + (ψ̄γ5γμλaψ )2]

− K{det [ψ̄ (1 + γ5)ψ] + det [ψ̄ (1 − γ5)ψ]}. (1)

In the above, ψ = (u, d, s)T and m̂ = diag(mu, md , ms) are
the quark fields and the current quark mass matrix for u, d ,
and s quarks, respectively; λa are the Gell-Mann matrices
with λ0 = √

2/3I in the three-flavor space; GS and GV are,
respectively, the scalar and vector coupling constant; and the
term with the coupling constant K represents the six-point
Kobayashi-Maskawa-t’ Hooft interaction, which breaks the
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axial U (1)A symmetry. In the present study, we employ the
parameters mu = md = 3.6 MeV, ms = 87 MeV, GS�

2 = 3.6,
K�5 = 8.9, and the cutoff value in the momentum integral
� = 750 MeV/c given in Refs. [7,40]. The position of the
critical point is sensitive to the value of GV [4,5,7], which
can thus be used to characterize the QCD phase diagram
and the quark-matter EOS at large baryon chemical poten-
tials, as detailed later. For the vector coupling GV , we choose
typical values of the reduced vector coupling constant RV =
GV /GS = 0, 0.5, and 1.1, corresponding to the case without
vector interaction, that from the Fierz transformation, and that
from reproducing vector-meson masses [40], respectively.

From the mean-field approximation and assuming that the
vector coupling is flavor independent, the thermodynamic po-
tential �NJL of a quark matter at temperature T and chemical
potential μq for quark flavor q can be expressed in terms of
its in-medium Dirac mass Mq and energy Eq as well as its
effective chemical potential μ̃q and condensate φq, i.e.,

�NJL = −2Nc

∑
q=u,d,s

∫ �

0

d3 p

(2π )3 [Eq

+ T ln(1 + e−β(Eq−μ̃q ) ) + T ln(1 + e−β(Eq+μ̃q ) )]

+ GS
(
φ2

u + φ2
d + φ2

s

) − 4Kφuφdφs − 1

3
GV ρ2. (2)

In the above, the factor 2Nc = 6 represents the spin and color
degeneracy of the quark, and β = 1/T is the inverse of the
temperature.

The quark condensate φq is given by the integral,

φq = −2Nc

∫ �

0

d3 p

(2π )3

Mq

Eq
(1 − fq − f̄q), (3)

where fq and f̄q denote, respectively, the phase-space distri-
bution functions of quarks and antiquarks. For a static quark
matter in thermal equilibrium, they are given by the Fermi-
Dirac distributions,

fq = 1

exp [(Eq − μ̃q)/T ] + 1
,

f̄q = 1

exp [(Eq + μ̃q)/T ] + 1
, (4)

where the effective chemical potential μ̃q is related to the
chemical potential μq through the relation

μ̃q = μq − 2

3
GV ρ. (5)

In the above, ρ = ρu + ρd + ρs is the total net quark number
density, and for a single quark flavor q the net quark number
density ρq can be calculated from

ρq = 2Nc

∫ �

0

d3 p

(2π )3 ( fq − f̄q). (6)

The single-quark energy Eq in Eqs. (2)–(4) is given by
Eq = (M2

q + �p 2)1/2 with �p = �p ∗ ∓ 2
3 GV �j being the momen-

tum of the parton, where �p ∗ is the canonical momentum and
�j = �ju + �jd + �js is the net quark current with that for each

quark flavor q given by

�jq = 2Nc

∫ �

0

d3 p

(2π )3

�p
Eq

( fq − f̄q). (7)

The in-medium Dirac mass Mq in Eq. (3) is related to the
quark condensate through the relations

Mu = mu − 2GSφu + 2Kφdφs,

Md = md − 2GSφd + 2Kφsφu,

Ms = ms − 2GSφs + 2Kφuφd . (8)

Since the quark condensates and the Dirac masses are re-
lated to each other, Eqs. (3) and (8) need to be solved
self-consistently through the iteration method. We note that
the quark condensate or the Dirac mass is the order parameter
for the chiral phase transition.

Equation (2) can be generalized to obtain the thermody-
namic potential �pNJL of the three-flavor pNJL model at finite
temperature and quark chemical potential, and it is

�pNJL = U (�, �̄, T ) − 2Nc

∑
q=u,d,s

∫ �

0

d3 p

(2π )3 Eq

− 2T
∑

q=u,d,s

∫
d3 p

(2π )3 [ln(1 + e−3β(Eq−μ̃q )

+ 3�e−β(Eq−μ̃q ) + 3�̄e−2β(Eq−μ̃q ) )

+ ln(1 + e−3β(Eq+μ̃q ) + 3�̄e−β(Eq+μ̃q )

+ 3�e−2β(Eq+μ̃q ) )] + GS
(
φ2

u + φ2
d + φ2

s

)

− 4Kφuφdφs − 1

3
GV ρ2. (9)

In the above, � (�̄) is the contribution from the Polyakov
loop, which is related to the excess free energy due to a static
quark (antiquark) in a hot gluon medium [41] and thus serves
as an order parameter for the deconfinement phase transition.
The form of the temperature-dependent effective potential
U (�, �̄, T ) as a function of the Polyakov loops � and �̄ in
Eq. (9) is taken from Ref. [5], i.e.,

U (�, �̄, T ) = −bT {54e−a/T ��̄ + ln[1 − 6��̄

− 3(��̄)2 + 4(�3 + �̄3)]}. (10)

The parameters a = 664 MeV and b = 0.028�3 are deter-
mined by the condition that the first-order phase transition
in a pure gluon matter takes place at T = 270 MeV [5], and
the simultaneous crossover of the chiral restoration and the
deconfinement phase transition occurs around T ≈ 212 MeV.

Minimizing the thermodynamic potential �pNJL with re-
spect to the quark condensates, i.e.,

∂�pNJL

∂φu
= ∂�pNJL

∂φd
= ∂�pNJL

∂φs
= 0, (11)

leads to the similar expression for φu, φd , and φs as in Eq. (3)
except the absence of the cutoff in the momentum integral
and the replacement of the quark and antiquark phase-space
distribution functions fq and f̄q by Fq and F̄q, respectively,
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given by

Fq = 1 + 2�̄ξq + �ξ 2
q

1 + 3�̄ξq + 3�ξ 2
q + ξ 3

q

,

F̄q = 1 + 2�ξ ′
q + �̄ξ ′

q
2

1 + 3�ξ ′
q + 3�̄ξ ′

q
2 + ξ ′

q
3 , (12)

with ξq = e(Eq−μ̃q )/T and ξ ′
q = e(Eq+μ̃q )/T . Similarly, the net

quark density and current given by Eqs. (6) and (7), respec-
tively, in the NJL model are modified by replacing fq and f̄q

with Fq and F̄q, respectively, and without the cutoff in the
momentum integrals. For the values of the Polyakov loops
� and �̄ in Eq. (12), they are determined by minimizing the
thermodynamic potential �pNJL with respect to � and �̄, i.e.,
∂�pNJL

∂�
= ∂�pNJL

∂�̄
= 0.

Starting from the thermodynamic potential, the energy den-
sity of the system can be obtained from the thermodynamical
relation

ε = � + β
∂

∂β
� +

∑
q=u,d,s

μqρq. (13)

For the NJL model, the energy density is then

εNJL = −2Nc

∑
q=u,d,s

∫ �

0

d3 p

(2π )3 Eq(1 − fq − f̄q)

+ GS
(
φ2

u + φ2
d + φ2

s

) − 4Kφuφdφs

+ 1

3
GV ρ2 − ε0, (14)

where the last term ε0 is from the quark condensate contribu-
tion to the energy density in vacuum and is needed to ensure
εNJL = 0 in vacuum.

Similarly, the energy density from the pNJL model can be
expressed as

εpNJL = 54abe−a/T ��̄ − 2Nc

∑
q=u,d,s

∫ �

0

d3 p

(2π )3 Eq

+ 2Nc

∑
q=u,d,s

∫
d3 p

(2π )3 Eq(Fq + F̄q )

+ GS
(
φ2

u + φ2
d + φ2

s

) − 4Kφuφdφs

+ 1

3
GV ρ2 − ε0. (15)

For both the NJL and the pNJL model, the pressure P can
be calculated from the thermodynamic potential according to

P = −� + �0, (16)

where �0 = ε0 is the thermodynamic potential in vacuum to
ensure that the pressure is zero in vacuum.

The chiral phase transition boundary in the quark chem-
ical potential versus temperature (μ-T ) plane for different
values of the reduced vector coupling constant RV are dis-
played in the upper panels of Fig. 1 for both the NJL and
the pNJL model. At small μ and low T , the system is in
the chiral-symmetry-broken phase with large in-medium light

(a) (b)

(c) (d)

FIG. 1. (upper panel) Phase diagram in the μ-T plane from the
NJL (left) and the pNJL (right) model with μ = μu = μd = μs

for different values of the reduced vector coupling constant RV =
GV /GS . (lower panel) Phase diagram as well as the (∂P/∂ρ )T < 0
region in the ρ-T plane from the NJL (left) and the pNJL (right)
model with μ = μu = μd = μs without vector coupling. “CP” in the
lower panels represents the critical point.

quark masses Mq. At large μ or high T , the system is in the
chiral-symmetry-restored phase with small in-medium light
quark masses Mq ≈ mq. The dashed and the solid lines in
Fig. 1 denote, respectively, the boundary between the chiral-
symmetry-broken and -restored phases that are connected by
a crossover and a first-order transition. The point where the
dashed and the solid line meets is the critical point in the
QCD phase diagram. The corresponding critical temperature
is seen to decrease with increasing value of RV , as a result
of the increasing stiffness of the EOS of baryon-rich quark
matter. To better understand the relation between the EOS
and the QCD critical point, we also plot in the lower panels
of Fig. 1 the phase diagram in the ρ-T plane without vector
coupling for both NJL and pNJL models. Also shown in these
panels is the mechanical instability or the spinodal region with
(∂P/∂ρ)T < 0, where small density fluctuations are expected
to grow exponentially in time. The spinodal region or the
hadron-quark mixed phase shrinks with increasing tempera-
ture and disappears when the temperature is above the critical
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temperature. With the increasing RV , the spinodal region also
shrinks with the critical point moving to a lower temperature.
Due to the different phase-space distribution functions in the
pNJL model [Eq. (12)] and the NJL model [Eq. (4)], the
effective temperature of the quark matter is higher in the
pNJL model than in the NJL model with the same vector
coupling. This leads to a higher critical temperature in the
pNJL model, which is more comparable with those predicted
by the Dyson-Schwinger approach [8,9] and the functional
renormalization-group method [10,11].

C. Nambu–Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio
parton transport models

For the NJL model, the single-particle Hamiltonian for a
parton of flavor q(q = u, d, s) is given by

Hq =
√

M2
q + �p 2 ± 2

3 GV ρ. (17)

This leads to the following transport equation for the quark
and antiquark phase-space distribution functions fq(�r, �p )
[42]:

∂ fq

∂t
+ �pq

Eq
· �∇ fq − �∇Hq · �∇p fq = Icoll, (18)

where the collision integral Icoll describes the effect of quark
scatterings on the quark phase-space distribution functions,
and it depends on the scattering cross section and the
Pauli-blocking factors in the final state of a scattering. Solving
Eq. (18) by the test-particle method using an ensemble of
parallel events [42,43], we obtain the following canonical
equations of motion for partons between their scatterings:

d�r
dt

= �p
Eq

,
d �p
dt

= −Mq

Eq

�∇Mq ±
(

�Eq + �p
Eq

× �Bq

)
, (19)

where

�Eq = −2

3
GV

(
�∇ρ + ∂ �j

∂t

)
(20)

is the effective electric field, and

�Bq = 2
3 GV �∇ × �j (21)

is the effective magnetic field.
For the parton scattering cross section in the collision

integral of the transport equation, it is obtained from the
specific shear viscosity of the partonic matter as described
in Appendix A. As to the treatment of parton scattering with
the Pauli blocking factor, we use the stochastic method [35]
based on a full ensemble of NT P parallel events, as detailed in
Appendix B.

The quark and antiquark phase-space distribution functions
fq and f̄q in the transport model simulations are calculated by
summing the particles from NT P parallel events in the local
rest frame of the cells around (�r, �p ) in the phase space, i.e.,

fq(�r, �p ) ∼ 1

NT P

∑
i∈q

δ(�r − �ri)δ( �p − �pi ),

f̄q(�r, �p ) ∼ 1

NT P

∑
i∈q̄

δ(�r − �ri)δ( �p − �pi ). (22)

(a) (b) (c)

(d) (e) (f)

FIG. 2. Momentum distribution of u quarks at different times
for quark matter in a box of volume V with periodic boundary
conditions. The initial distribution at t = 0 is that of the thermally
equilibrated distribution given by Eq. (4) for the NJL model and
Eq. (12) for the pNJL model (dotted lines). At t = 10 fm/c, it reaches
the Boltzmann distribution due to the neglect of Pauli blockings
in the scatterings. After turning on Pauli blockings at this time,
the distribution changes back to the initial distribution, as seen at
t = 30 fm/c. See text for details.

The NJL-based transport equation given in Eq. (18) and
the resulting equations of motion for quarks and antiquarks
can be generalized to that based on the pNJL model by
replacing the quark and antiquark phase-space distribution
functions fq and f̄q with Fq and F̄q, respectively. A modified
treatment of the Pauli blocking factor in partonic scattering
is, however, required to ensure the approach of Fq and F̄q

to the thermally equilibrated values given in Eq. (12), as
described in Appendix C. To illustrate the validity of this
method, we consider the evolution of a partonic matter of
uniform spatial distribution of density ρ = 1.5 fm−3 in a box
with periodic boundary conditions. Starting from the Fermi-
Dirac momentum distributions of Eq. (4) for the NJL model
or the momentum distributions of Eq. (12) for the pNJL
model at temperature T = 200 MeV, the system evolves in
time by solving the NJL or pNJL transport model without
the Pauli blocking factors in parton scatterings for the first
10 fm/c. As shown in Fig. 2 for u quarks as an example,
the momentum distribution evolves into a Boltzmann distri-
bution shown by the dashed line, which is obviously different
from the initial momentum distribution shown by the dotted
line. Turning on the Pauli blocking factors at t = 10 fm/c,
it is seen that the momentum distribution gradually changes
back to the initial ones, demonstrating the correctness of
our treatment of the collision integral in the NJL and pNJL
models.
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III. RESULTS AND DISCUSSIONS

Based on the extended AMPT model with the pNJL trans-
port model to describe the evolution of the partonic phase,
we now study the elliptic flow v2 splittings between parti-
cles and their antiparticles in relativistic heavy-ion collisions
at RHIC-BES energies. Although there have been a num-
ber of possible explanations for the observed v2 splittings in
the STAR experiments [44–50], our studies using different
mean-field potentials for particles and their antiparticles in
the baryon-rich matter are the only one that is based on a
comprehensive transport model [27–29]. Taking the case in
the partonic phase as an example, antiquarks are generally
affected by a more attractive mean-field potential than quarks
in the almond-shaped baryon-rich partonic matter. Thus they
tend to stay longer in the produced matter compared with
quarks which move along the short axis of this matter. Be-
cause of the difference in their mean-field potentials, quarks
then generally have a larger v2 than antiquarks. Such v2 split-
tings are expected to be preserved after hadronization with a
proper coalescence algorithm [36] and after hadronic evolu-
tion with different hadronic mean-field potentials for baryons
and antibaryons as well as for K+ and K− and other particle
and antiparticle pairs [27].

A. Time evolution of matter produced in relativistic
heavy-ion collisions

Besides scatterings, the evolution of a partonic matter is
also affected by the mean-field potentials of quarks and an-
tiquarks. In the nonrelativistic approximation, they can be
expressed as

Uu(ū) = − 2GSφu + 2Kφdφs − U 0
u ± 2

3 GV ρ,

Ud (d̄ ) = − 2GSφd + 2Kφuφs − U 0
d ± 2

3 GV ρ,

Us(s̄) = − 2GSφs + 2Kφuφd − U 0
s ± 2

3 GV ρ, (23)

where the term U 0
q (q = u, d, s) is introduced to ensure that

the mean-field potential vanishes in vacuum, and the upper
(lower) signs in these equations are for quarks (antiquarks).
Their density dependence in a quark matter at temperature
T = 200 MeV is shown in Fig. 3. It is seen that the scalar
potentials shown by dash-dotted lines are attractive, which
results from the smaller effective quark masses in the medium
than in vacuum. Because the pNJL model has a different
thermal distribution from that in the NJL model due to the
contribution from Polyakov loops, quark condensates in the
pNJL model are less negative than in the NJL model at same
temperature and density, leading to a more attractive scalar
potential, as seen in Fig. 3. The mean-field potentials of quarks
and antiquarks become very different when the vector cou-
pling constant has a finite value, and the difference increases
with increasing net quark density. Since the mean-field poten-
tial affects the elliptic flow v2 of particles, measuring the v2

splitting in heavy-ion collisions allows us to study the mean-
field potential difference between quarks and antiquarks, and
thus their vector interactions, which can affect significantly
the EOS of quark matter at large chemical potentials and the
QCD phase diagram in the NJL or pNJL model. The different

(a)

(b)

(c)

(d)

FIG. 3. Mean-field potentials of quarks and antiquarks of differ-
ent flavors from nonrelativistic reduction as a function of net quark
density with μu = μd = μs and at the temperature T = 200 MeV for
the NJL (left) model and the pNJL (right) model.

mean-field potentials between s quarks and anti s quarks are
qualitatively similar to those between light quarks and their
antiquarks.

The time evolution of average densities of quarks (ρQ) and
antiquarks (ρQ̄) in the central region of minibias Au + Au
collisions at different collision energies is displayed in Fig. 4,
with ρQ − ρQ̄ = ρ being the net quark number density. These
results are obtained with a parton scattering cross section
that corresponds to the specific shear viscosity of 0.14 and
0.06 in the NJL and the pNJL transport model, respectively,
in order to reproduce measured v2 of charged hadrons, as

FIG. 4. Average central number densities of quarks (ρQ) and
antiquarks (ρQ̄) as a function of time in minibias (0%–80%) Au + Au
collisions at different collision energies for both NJL (left) and pNJL
(right) models.
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(a) (b)

FIG. 5. Time components of the vector potential U 0
V = 2

3 GV ρ

in the central region of heavy-ion collisions as a function of time
at different collision energies for both NJL (left) and pNJL (right)
models.

discussed later. It is seen that partons are generally formed
after 0.2 fm/c. With the gradual formation of partons, the
central density peaks at around 0.5 fm/c at higher collision
energies, while at the collision energy of

√
sNN = 7.7 GeV

the duration of the peak density lasts for a longer time due
to the finite thickness of initial collision zone mentioned in
Sec. II A. The parton phase ends around 4–5 fm/c when the
central energy density drops to about 0.8 GeV/fm3. In pe-
ripheral collisions, since the maximum energy density cannot
reach 0.8 GeV/fm3, initial partons from the AMPT model are
immediately converted back to hadrons without undergoing
any scatterings. The average lifetime of the partonic phase is
seen to generally decrease with increasing collision energy;
as a result of the stronger expansion in high-energy collisions
and the quick drop of the energy density. The densities are
seen to be higher in the pNJL model than in the NJL model,
where the parton densities are calculated by counting those
with their momenta lower than � [see Eq. (6)], while the
lifetime of the partonic phase is slightly longer in the pNJL
model than in the NJL model due to the higher energy density
from the contribution of Polyakov loops.

The time component of the vector potential U 0
V = 2

3 GV ρ is
the driving force for the v2 splitting between quarks and an-
tiquarks because the space component of the vector potential,
which is proportional to the net quark current, takes time to
develop and becomes important only at later stages when v2

has mostly been developed. It is thus of importance to know
how U 0

V evolves with time, and this is displayed in Fig. 5 for
the central region of the collision system. Although the U 0

V has
the longest duration at

√
sNN = 7.7 GeV, it is interesting to see

that its peak value depends nonmonotonically on the collision
energy. The largest peak value of U 0

V is reached at about√
sNN = 11.5 GeV, due to the balance between the smaller

baryon chemical potential at higher collision energies and a
thicker quark matter in the longitudinal direction formed at
lower collision energies. This has observational consequences

on the collision energy dependence of v2 splitting, as shown
later. The net quark density ρ on which the vector potential
depends is given by the difference between the quark and
antiquark density shown in Fig. 4, where in the NJL model
only partons with their momenta lower than � are counted.
Since antiquarks have a much softer momentum spectrum
than quarks due to their attractive mean-field potentials, the
difference between the numbers of quarks and antiquarks is
much larger for partons with high momenta than for those
with low momenta. Thus, excluding partons with momenta
higher than � in the NJL model generally results in a vector
potential that is weaker than that in the pNJL model in which
partons of all momenta are included in calculating the net
quark density, as seen in Fig. 4.

It is of great interest to know the evolution trajectory of
the partonic matter formed in heavy-ion collisions in the
QCD phase diagram. Assuming that the central region of the
produced matter is in thermal and chemical equilibrium, the
temperature T and the quark chemical potential μ can be
determined from the net quark density ρ and the energy den-
sity ε of quarks and antiquarks by using quark and antiquark
momentum distributions given by Eq. (4) for the NJL model
and Eq. (12) for the pNJL model. The resulting trajectories
in the T -ρ plane and T -μ plane are displayed in Fig. 6 for
collisions at various energies. It is seen that, from the AMPT
initial conditions, all trajectories follow a counterclockwise
path in the phase diagram. As expected, higher temperatures
are generally reached at higher collision energies. Also, the
trajectories from the NJL transport model go through a higher
temperature compared with that from the pNJL transport
model, as a result of the different forms for the momentum
distribution [Eqs. (4) and (12)] and thus different “effective”
temperatures. On the other hand, the partonic phase has a
higher net quark density ρ from the pNJL transport model
than from the NJL model, as already shown in Figs. 4 and 5.
As seen from the phase diagram shown in Fig. 1, none of the
trajectories passes through the spinodal region or the critical
point for collision energies considered here.

As mentioned above, Pauli blockings are incorporated in
the NJL transport model and also in the pNJL transport model
using a modified treatment in order to ensure that correct
thermal distributions are reached when the partonic matter
is in thermal equilibrium. Due to the more attractive scalar
potential in the pNJL model as shown in the Fig. 3, a smaller
specific shear viscosity η/s and thus a larger partonic scatter-
ing cross section is used in this model than in the NJL model
to obtain the same charged-particle v2 in these two models. To
better understand parton scatterings in the partonic phase of
heavy-ion collisions, we show in Fig. 7 the rate of successful
collisions that are not Pauli blocked as well as the ratio of
successful to attempted collision rates. As expected, higher
successful collision rates are observed at higher collision en-
ergies. Also, the successful collision rate generally increases
with time due to the constant η/s used in the model calcula-
tion, which results in a larger parton scattering cross section
when the expanding partonic matter is at lower temperatures
and/or densities (see Fig. 15 in Appendix A). Although a
smaller η/s is used in the pNJL transport model, the ratio of
successful to attempted collision rates is much smaller than
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(a) (b)

(c) (d)

FIG. 6. Evolution trajectories of the partonic matter in the plane
of temperature T versus density ρ (upper) as well as those in the
plane of temperature T versus chemical potential μ (lower) in minib-
ias (0%–80%) collisions at different collision energies for both NJL
(left) and pNJL (right) models.

that in the NJL transport model using a larger η/s. This is
again due to the different phase-space distributions and treat-
ments of parton scatterings. Figure 7 further shows that while
the Pauli blocking effect in the NJL model does not depend
much on the collision energy, parton scatterings in the pNJL
model are less blocked at higher collision energies.

For a complete description of the evolution of the mat-
ter produced in heavy-ion collisions, we show in Fig. 8 the
time evolution of the average central baryon and antibaryon
densities during the hadronic phase of a heavy-ion collision.
Converting freeze-out partons via an improved hadronization
scheme based on the phase-space coalescence model [36],
hadrons are produced after about 5 fm/c after the production
of initial partons in a heavy-ion collision. The maximum
baryon density of about 0.1 fm−3 is reached soon after
hadronization, and this value is approximately independent
of the collision energy. For the maximum antibaryon density,
it is reached at about the same time, but its magnitude in-
creases with the increasing collision energy. The pNJL model

(a) (b)

(c) (d)

FIG. 7. Successful collision rate (upper) and ratios of successful
to attempted collision rates (lower) as a function of time in the
partonic phase in heavy-ion collisions at different collision energies
in both NJL (left) and pNJL (right) models.

generally shows similar baryon and antibaryon density evo-
lutions compared with the NJL model. In such baryon-rich
hadronic matter, antiparticles are expected to have more at-
tractive mean-field potentials than particles [27]. As a result,
the v2 splittings between quarks and antiquarks developed
during the partonic phase can be further amplified in those
between hadrons and their antiparticles.

B. Description of physical observables

Having the evolution of produced matter in heavy-ion
collisions described in the above section using the NJL or
pNJL transport model, we show in this section that both mod-
els can describe satisfactorily many measured observables in
heavy-ion collisions, particularly those sensitive to the bulk
properties of the matter produced in these collisions. Figure 9
shows the comparison of the transverse momentum (pT ) de-
pendence of charged-particle v2 at different collision energies
with corresponding experimental data from the STAR Col-
laboration [51]. By using a constant specific shear viscosity
of η/s = 0.14 for the NJL transport model and 0.06 for the
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FIG. 8. Average central baryon (ρB) and antibaryon (ρB̄) number
densities in the hadronic phase as a function of time in minibias
(0%–80%) Au + Au collisions at different collision energies from
the extended AMPT model with the partonic phase described by the
NJL (left) or the pNJL (right) model.

pNJL transport model, the pT dependence of v2 in midcentral
(20%–30%) Au + Au collisions at RHIC-BES energies are
reasonably well reproduced. The smaller η/s, which corre-
sponds to a larger partonic scattering cross section, used in
the pNJL transport model than that used in the NJL transport
model is because partons in the pNJL model are affected by a
more attractive scalar potential as shown in Fig. 3. Although
the η/s used in the pNJL transport model is smaller than its

(a)

(b)

(c)

(d)

(e)

FIG. 9. Transverse momentum dependence of mid-
pseudorapidity charged-particle elliptic flow in midcentral
(20%–30%) Au + Au collisions at different collision energies from
the extended AMPT model with the partonic phase described by the
NJL or the pNJL model. Experimental data are from Ref. [51].

FIG. 10. Transverse momentum spectra of mid-pseudorapidity
π+, K+, and protons in central (0%–5%) Au + Au collisions at
different collision energies from the extended AMPT model with the
partonic phase described by the NJL or the pNJL model. Experimen-
tal data are taken from Ref. [53].

theoretical lower bound [52], it is an effective one since we
have neglected its dependence on temperature and chemical
potential.

In Fig. 10, we compare the pT spectra of representative
particles, i.e., π+, K+, and protons, at different collision ener-
gies with the corresponding experimental data from the STAR
Collaboration [53]. Since most hadrons are produced in their
resonance states right after hadronization, these hadrons ex-
perience hadronic elastic and inelastic scatterings and decays
during the hadronic evolution. Except for a slightly stiffer pT

spectra for π+ at lower collision energies and a softer pT

spectra for protons at higher collision energies, the extended
AMPT model describes reasonably well the experimental data
from heavy-ion collisions at RHIC-BES energies.

Before discussing the v2 splitting of final hadrons, we first
show in Fig. 11 the pT dependence of quark and antiquark
v2 at the end of the partonic evolution at

√
sNN = 11.5 GeV.

In the presence of a strong vector interaction with RV = 1.1,
a larger v2 is observed for quarks than their antiquarks, con-
sistent with the intuitive picture discussed at the beginning of
this section. Although the vector potential is slightly stronger
in the pNJL transport model than in the NJL model as shown
in Fig. 5, the v2 splittings between light quarks and their anti-
quarks are similar in the two models, and this is because there
are more successful scatterings in the pNJL model than in the
NJL model as shown in Fig. 7. In general, the v2 splitting
between high-momentum particles and antiparticles is larger
in the pNJL transport model than that in the NJL transport
model, since they are not affected by the vector potential due
to the momentum cutoff in the latter case. This is especially
so for strange quarks with a larger dynamical mass.

The splitting between pT -integrated v2 of quarks and their
antiquarks, which are obtained by their respective average v2

over all pT , at the end of the partonic phase at different colli-
sion energies is displayed in Fig. 12. The v2 splitting is seen to
increase with increasing RV . The negative v2 splitting between
s and s̄ in the case without the vector interaction shown in the
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(a) (b)

FIG. 11. Elliptic flows of mid-pseudorapidity quarks and anti-
quarks as a function of transverse momentum just before hadroniza-
tion in heavy-ion collisions at

√
sNN = 11.5 GeV from both NJL

(left) and pNJL (right) transport models.

right panels of Fig. 12 is due to more successful scatterings for
s̄ than s, as a result of a more diffusive momentum distribution
for Pauli blockings for s̄. For the case using a larger RV ,
the v2 splitting shows a nonmonotonic dependence on the
collision energy, especially for that between light quarks and
their antiquarks with a peak v2 splitting at

√
sNN = 11.5 GeV.

This behavior is similar to the nonmonotonic energy depen-
dence of the magnitude of the vector potential shown in Fig. 5,

(a) (b)

(c) (d)

FIG. 12. Difference between the pT -integrated v2 of quarks and
antiquarks just before hadronization for collisions at different ener-
gies from both NJL (upper) and pNJL (lower) transport models.

(a) (b) (c)

(d) (e) (f)

FIG. 13. Difference between the pT -integrated v2 of nucleon res-
onances and their antiparticles, positively charged kaon-like mesons
and negatively charged kaon-like mesons, and strange baryon reso-
nances and their antiparticles, right after hadronization at different
collision energies from the extended AMPT model with the partonic
phase described by the NJL (upper) or the pNJL (lower) trans-
port model with different values for the reduced vector coupling
constant RV .

and this is due to the competition between the collision energy
dependence of various factors, e.g., the longitudinal Lorentz
contraction, the net quark density, and the expansion speed
of the produced matter. This behavior is different from that
observed in Ref. [29], where the finite thickness of the quark
matter in the longitudinal direction was not properly incorpo-
rated. Although the v2 splitting between light quarks and their
antiquarks is similar in the NJL and pNJL transport models,
that between strange quarks and their antiquarks is larger in
the pNJL transport model compared with that in the NJL
transport model for the reason already given in the discussions
on the splitting of differential v2 shown in Fig. 11.

To see how the v2 splittings between quarks and anti-
quarks are carried over to those between hadrons and their
antiparticles, we display in Fig. 13 the v2 splitting between
nucleon resonances and their antiparticles, positively charged
kaon-like mesons (K+ and K∗+) and negatively charged kaon-
like mesons (K− and K∗−), and strange baryon resonances
and their antiparticles, right after hadronization when most
hadrons are in their resonance states. It is seen that the v2

splitting between baryons and antibaryons first increases and
then decreases with the increasing collision energy, consistent
with the collision-energy dependence of the v2 splitting be-
tween quarks and antiquarks shown in Fig. 12. The situation is
more complicated for mesons, which are composed of a quark
and an antiquark, due to the opposite effects from the vector
potential on quark and antiquark v2. For the larger RV = 1.1,
although negatively charged kaon-like mesons have a slightly
larger v2 than that of positively charged kaon-like mesons at
low collision energies due to the dominating effect of heavier
strange quarks, their v2 splitting is reversed at high collision
energies. The v2 splitting between nucleon resonances and
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(a) (b) (c)

(d) (e) (f)

FIG. 14. Difference between the pT -integrated v2 of freeze-out
nucleons and antinucleons, K+ and K−, and � and �̄ at different
collision energies from the extended AMPT model with the partonic
phase described by the NJL (upper) or the pNJL (lower) model.
Corresponding experimental data are taken from the STAR Collabo-
ration [22].

their antiparticles as well as that between kaon-like mesons
and their antiparticles are seen to be similar in both the NJL
and pNJL transport models, while that between strange baryon
resonances and their antiparticles is larger in the pNJL trans-
port model than in the NJL transport model, consistent with
the larger v2(s) − v2(s̄) in the pNJL transport model shown in
Fig. 12.

We finally compare in Fig. 14 the v2 splittings between
final nucleons and antinucleons,1 K+ and K−, and � and �̄ at
different collision energies with corresponding experimental
data from the STAR Collaboration [22]. It is seen that the v2

splittings between nucleons and antinucleons as well as those
between � and �̄ after hadronic evolution are similar to those
of baryons and antibaryons right after hadronization shown
in Fig. 13, and this is because the more attractive potentials
for antibaryons than baryons [27]. This is very different for
the v2 splitting between K+ and K−, which has an opposite
sign compared with that between positively charged and neg-
atively charged kaon resonances shown in the middle panel of
Fig. 13, as a result of the repulsive potential for K+ and the
attractive potential for K− [27]. Even for RV = 0, there are
v2 splittings between hadrons and their antiparticles from our
model calculations, and this is mainly due to their different
hadronic potentials. The collision energy dependence of the v2

splittings between hadrons and their antiparticles displayed in
Fig. 14 shows a similar nonmonotonic behavior as that of the
parton v2 splittings, especially for the v2 splitting between �

and �̄. Compared with the experimental data from the STAR
Collaboration, the v2 splitting between nucleons and antinu-

1Experimental data are for the v2 splitting between protons and
antiprotons, which are compared with that between nucleons and
antinucleons from the model calculation for better statistics.

cleons can be reproduced reasonably well within RV = 0–1.1
but favors a smaller RV at higher collision energies. Although
our models reproduce the v2 splitting between K+ and K− at√

sNN = 7.7 GeV, they overestimate their v2 splitting at higher
collision energies. Since the partonic and hadronic phase have
different effects on the v2 splitting between K+ and K−, a
more accurate handling of the lifetimes for the two phases
is called for. For the v2 splitting between � and �̄, our re-
sults underestimate the experimental data at

√
sNN = 7.7 GeV,

while the data at higher collision energies can be reproduced
by the extended AMPT model with RV = 1.1 in the NJL
transport model and RV = 0.5 in the pNJL transport model.
A detailed fit of the value of RV by taking into account its
collision-energy dependence via the incorporation of a baryon
chemical-potential-dependent RV needs to be investigated in
future studies.

IV. CONCLUSION

With the partonic phase of heavy-ion collisions described
by a partonic transport model that is based on the three-flavor
Nambu–Jona-Lasinio (NJL) model or its extension with the
inclusion of Polyakov loops, we have revisited the elliptic
flow (v2) splittings between particles and their antiparticles
in relativistic heavy-ion collisions at RHIC-BES energies. We
have checked that for a partonic matter in a box with periodic
boundary conditions, the NJL and pNJL transport models
lead to their respective thermal momentum distributions if the
Pauli-blocking factors are included in the collision integral of
the NJL model and a properly modified treatment of parton
scatterings is introduced in the pNJL transport model. In a
partonic matter of a given temperature and baryon chemical
potential, it is found that the pNJL transport model gives a
higher net quark density and a stronger vector potential than
those from the NJL transport model. As a result, a larger
v2 splitting is found between s and s̄ quarks in heavy-ion
collisions, and this affects the v2 splitting between final �

and �̄. On the other hand, due to the competition between
effects from the longitudinal Lorentz contraction, the baryon
chemical potential, and the expansion time at different col-
lision energies, the magnitude of the vector potential and
the v2 splitting between quarks and antiquark changes non-
monotonically with the increasing collision energy for a given
vector coupling constant in both the NJL and the pNJL model.
Consequently, the v2 splitting between final hadrons and their
antiparticles also shows a nonmonotonic dependence on the
collision energy. The resulting v2 splitting between K+ and
K− reproduces the STAR data at

√
sNN = 7.7 GeV but over-

estimates it at higher collision energies. For the v2 splitting
between protons and antiprotons, the STAR data at

√
sNN =

7.7 GeV can be reproduced with the range of vector coupling
in both NJL and pNJL transport models considered in the
present study, while the STAR data at higher collision energies
favor a weak vector interaction in these transport models.
Although our calculations underestimate the STAR data on
the v2 splitting between � and �̄ at

√
sNN = 7.7 GeV, a

strong (weak) vector interaction is favored in the NJL (pNJL)
transport model for collisions at higher energies. Our study
has therefore provided useful insight on the determination
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of the vector interaction in the partonic matter produced in
heavy-ion collisions, which will help understand the equation
of state of quark matter at large baryon chemical potentials
and thus the QCD phase diagram.
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APPENDIX A: RELATION BETWEEN THE PARTON
SCATTERING CROSS SECTION AND THE SPECIFIC

SHEAR VISCOSITY

The specific shear viscosity in the NJL model has been
studied in Ref. [54] from the quark-meson interactions, and
that in the pNJL model has been studied in Ref. [55] based on
the relaxation-time approximation. In the present study, we
determine the isotropic parton scattering cross section σ from
the shear viscosity η through the empirical relation

η = 4〈p〉
15σtr

, (A1)

where

〈p〉 =
2Nc

∑
q

∫ d3 p
(2π )3 p(nq + n̄q)

2Nc
∑

q

∫ d3 p
(2π )3 (nq + n̄q)

(A2)

is the average parton momentum with nq and n̄q being the
occupation probability for parton species q = u, d , s quarks
and their antiquarks, i.e., nq = fq and n̄q = f̄q for the NJL
model and nq = Fq and n̄q = F̄q for the pNJL model. The σtr

in Eq. (A1) is the transport cross section defined as

σtr =
∫

d�
dσ

d�
(1 − cos2 θ ). (A3)

For an isotropic cross section σ , one has σtr = 2
3σ . The en-

tropy density s of a quark matter is given by

s = −2Nc

∑
q

∫
d3 p

(2π )3 [nq ln nq + (1 − nq) ln (1 − nq)]

− 2Nc

∑
q

∫
d3 p

(2π )3 [n̄q ln n̄q + (1 − n̄q) ln (1 − n̄q)].

(A4)

By using a constant specific shear viscosity η/s = 0.14 for
the NJL model and 0.06 for the pNJL model, the cross section
σ at different net quark number densities ρ and temperatures
T are displayed in Fig. 15. It is seen that the cross section is
around 1 fm2 in the high-temperature region, while it can be
as large as 10 fm2 at low temperatures and/or densities.

(a) (b)

FIG. 15. The ρ and T dependence of parton scattering cross sec-
tion determined from a constant specific shear viscosity η/s = 0.14
for the NJL (left) model and 0.06 for the pNJL (right) model.

APPENDIX B: STOCHASTIC TREATMENT OF PARTON
SCATTERING WITH PAULI BLOCKINGS

We employ the stochastic method [35] to treat elastic scat-
terings between partons. The collision probability for a pair of
partons in a volume �V = �x�y�z and a time interval �t is

Pc = v12σ
�t

�V
, (B1)

with

v12 =
√

[s − (M1 + M2)2][s − (M1 − M2)2]

2E1E2
(B2)

being the Møller velocity. In the above, s is the square
of the invariant mass of the parton pair, and E1(2) =
(M2

1(2) + p2
1(2))

1/2 is the energy of the parton, with M1(2) being
the in-medium parton mass from the NJL or the pNJL model,
and p1(2) being the momentum of the parton in the rest frame
of the cell. The σ in Eq. (B1) is an isotropic cross sec-
tion, determined by the specific shear viscosity as detailed in
Appendix A. The volume of each cell is set as �x = �y = 0.5
fm and �z = 0.25 fm, and only parton pairs in the same cell
can collide with each other. The time step �t = 0.02 fm/c is
used in the calculation. The case Pc > 1 is equal to the case
of Pc = 1, and in this way the collision rate from a too large
cross section is limited by the values of �V and �t .

After an attempted collision, the momentum of each parton
in the center-of-mass frame of the collision pair is sam-
pled isotropically. After the momenta of the two partons are
boosted to the rest frame of the local cell, they change from
�p1(2) to �p′

1(2). For a given flavor, the occupation probability in
the rest frame of the local cell after the attempted collision is
calculated from the test-particle method,

nq(�r, �p ) ∼ 1

NT P

∑
i∈q

δ(�r − �ri )δ( �p − �p ′
i ), (B3)

where NT P is the test particle number. The occupation prob-
ability is calculated separately for partons with different
flavors and also separately for quarks and antiquarks. The
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Pauli blocking probability is then 1 − [1 − nq(�r, �p ′
1)][1 −

nq(�r, �p ′
2)]. The collision is successful if a random number

within [0,1] is larger than the Pauli blocking probability, oth-
erwise the momenta of the two partons �p1(2) are retained.

APPENDIX C: MODIFIED PAULI BLOCKING IN THE
POLYAKOV-LOOP NAMBU–JONA-LASINIO

TRANSPORT MODEL

The collision integral in the Boltzmann equation with
quantum correction generally contains the factor ( f3 f4g1g2 −
f1 f2g3g4) for the 1 + 2 → 3 + 4 process, where g1,2,3,4 is
equal to 1 − f1,2,3,4 if the Fermi-Dirac statistics is adopted.
For the NJL transport model, as mentioned in Appendix B,
the successful collision probability is (1 − f3)(1 − f4) when
the Pauli blocking is applied. For the Fermi-Dirac distribution
given in Eq. (4), g = ξ f with ξ = e(E−μ̃)/T (neglecting the
subscript flavor index q) is satisfied. To obtain the thermal
distribution F [Eq. (12)] in the pNJL transport model, a
similar consideration can be applied by taking the successful
collision probability as g3g4 with g = ξF . Although F3,4 can
be calculated using the test-particle method through Eq. (22),

ξ is a thermodynamic quantity, which needs to be calculated
by assuming local thermal equilibrium as described below.

Taking the expression of F = Fq as an example, Eq. (12)
can be rewritten as

ξ 3 + Aξ 2 + Bξ + C = 0, (C1)

with

A = �(3F − 1)

F
, B = �̄(3F − 2)

F
, C = F − 1

F
. (C2)

For 0 < F < 1, the only real solution to Eq. (C1) is

ξ = 1
3 [−A + (−D +

√
D2 + H3)1/3

+ (−D −
√

D2 + H3)1/3], (C3)

with

D = 27C − 9AB + 2A3

2
, H = 3B − A2. (C4)

In this way, ξ can be expressed as a function of F , �, and �̄.
Similarly, the ξ ′ in F̄q can be expressed as a function of F̄ , �,
and �̄.
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