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Exploring α decay properties in the superheavy region through the double-folding
formalism and Skyrme interactions
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In this study, α decay properties of yet unknown nuclei are investigated through the systematic behavior of
the parameters of α-nucleus double-folding (DF) potentials. To calculate DF potentials, the density distributions
of the protons and neutrons are being employed by use of the self-consistent Hartree-Fock-Bogoliubov (HFB)
calculations based on the SLy4 Skyrme interaction widely used for the α-emitter systems and the superheavy
region. In addition, a new set of effective Skyrme force parameters is presented so that more precise estimations,
labeled OMGA, are optimized to describe the ground-state properties of superheavy nuclei with 82 � Z � 120.
Consequently, a good mass fit and half-lives are thus obtained by the optimized Skyrme force with more
consistency with experimental data.
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I. INTRODUCTION

Over the past decade, analyses of the α decay chains have
attracted much interest for investigating the nuclear properties
of heavy and superheavy nuclei (SHN), which acts as an
effective probe for the nuclear structure [1–8]. Exploring con-
cepts of the nuclear structure of new elements are well-known
theoretical and experimental research fields in modern nuclear
physics.

α decay is indispensable to identify new elements through
the observation of α decay from unknown nuclei because the
dominant decay mode for SHN is α decay. On the other hand,
investigations of α decay chains can provide reliable infor-
mation on nuclear structure such as ground-state energies,
Q values, half-lives, and nuclear spins and parities of new
elements in the superheavy region [9–15].

To date, many SHN have been synthesized by cold and hot
fusion reactions within developed facilities and technologies
[16–20]. Experimentally, synthesis of the Z = 118 element is
reported by using 48Ca-induced complete fusion reactions in
the neutron-evaporation channels [21]. The unknown nucleus
296118 is a nucleus on which various studies have been per-
formed. Sobiczewski determined the Qα of the nucleus 296118
between 10.93 and 13.33 MeV by employing various mass
models [3], which led to α decay half-lives of 296118 ranging
over more than five orders of magnitude between 1.4 μs
and 0.21 s by using phenomenological formulas [22]. Such
a considerable uncertainty originates from a relatively large
range of the determined Qα through the different mass models.

The developed mass models introduced by Wang and Liu
(WS3+) [23], Wang et al. (WS4 + RBF) [24], and Muntian
et al. (HN) [25] constrain the range of Qα for 296118. The
estimated Qα for 296118 are 11.62, 11.73, and 12.06 MeV, and
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their corresponding α decay half-lives are 4.8, 2.7, and 0.5 ms
for WS3+, WS4 + RBF, and HN, respectively. Very recently,
the half-life for 296118 of 14–285 μs by using Qα = 12.4 MeV
was reported by Ismail et al. [26]. Although the mass models
validated known nuclei, the determination of their correspond-
ing anticipations would be challenging for the next unknown
nuclei.

Likewise, a delicate procedure demonstrated by consider-
ing the smooth and systematic behavior of α decay parameters
used for normalizing nucleon-nucleon (NN) interaction in the
double-folding (DF) framework very recently predicted the α

decay properties of the unknown nucleus 296118 [1,27]. The
Qα and α decay half-life 11.655 ± 0.095 MeV and 0.825 ms
were estimated with an uncertainty of about a factor of four.

Additionally, a good understanding of nuclear structures
has been achieved by a wide variety of Skyrme forces as-
sociated with the various nuclear-matter properties [28–31].
This approach has been proven to be successful in describing
the properties of finite nuclei. Furthermore, the HFB in the
coordinate basis associated with the effective Skyrme force
has been developed to account for examining the ground-state
properties of nuclei [32–35]. Such investigations have been
pursued, especially in the nuclear chart regions where the ex-
periments are being performed. Hence the nuclear properties
such as binding energies, root-mean-square (rms) radii of the
proton and neutron, and density distributions of the nuclei that
are being achieved by Skyrme-HFB would be as reputable as
possible.

On the other hand, the density distributions play a sub-
stantial role in calculating the interaction potential. Inspired
by experimental α-scattering data, the capability of DF for-
malism to calculate α-core potentials came up with the idea
that its association with more realistic density distributions
suggesting by characterized Skyrme-HFB would be beneficial
for analyzing nuclear properties of known and unknown nu-
clei. However, it would be valuable to give some systematic
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investigation and comparison of Q values and half-lives of
SHN with available mass models. To this aim, considering
the gentle and systematic behavior of α decay parameters
using DF potentials and the appropriate density distributions
of SHN as suggested by the HFB model based on Skyrme
forces, we estimate the nuclear properties of 296118 and the
closest unknown SHN.

This paper is organized as follows: The formalism of the
potential and half-life calculations are given in Sec. II, and our
results and discussion are given in Sec. III. This paper ends
with the main results and conclusions presented in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Double-folding formalism and the α decay half-life

The determination of interaction potential is one the pre-
dominant factors on the theoretical studies. The effective
α-core potential V (R) is given by

V (R) = VC (R) + VN (R) + L(L + 1)h̄2

2μR2
, (1)

where VC (R) and VN (R) are the Coulomb and nuclear parts
of the total potential, respectively. Also, R denotes the vector
joining the center of masses of the two nuclei. In this study,
we investigate the α decay of even-even nuclei for which the
transferred angular momentum L for these decay processes is
zero. The nuclear part is obtained by the double-folding model
within folding the densities of the alpha and the daughter
nuclei with the effective M3Y interaction,

VN (R) = λVF (R)

= λ

∫∫
ρ1(r1)Veff (s)ρ2(r2)d3r1d3r2, (2)

where s = R + r1 − r2 corresponds to the distance between
two specified interacting points of the interacting nuclei,
whose radius vectors are r1 and r2, respectively. Veff (s)
is an effective nucleon-nucleon interaction [36,37]. The
energy-dependent M3Y Reid-NN forces with the zero-range
approximation used in our calculations have following explicit
forms [38]:

Veff (s) = 7999
exp (−4s)

4s
− 2134

exp (−2.5s)

2.5s
+ J00δ(s),

J00 = −276(1 − 0.005E/A). (3)

In addition, the density distributions of the alpha and
daughter nucleus in density-dependent formalisms such as the
DF model have great importance. Hence it would be possible
that the choice of more realistic density distributions would
result in better predictions. In Eq. (2), ρ1 is taken for the
density distribution function of the spherical α particle in its
Gaussian form used in this study [39]. Furthermore, ρ2 is the
density of the daughter nucleus that is determined by HFB
calculations based on the set of Skyrme SLy4 parametrization
[30,40] as a result of its capability for well reproducing the α

decay energies and density distributions of heavy and super-
heavy nuclei, in this study [33,41]. Also, an optimized set of
Skyrme parametrization dedicated to the α-emitter systems in

the superheavy region for promoting our calculations will be
introduced in the following.

Although the semimicroscopic DF potentials based on the
effective Michigan-3-Yukawa (M3Y) NN interaction can well
reproduce most of the scattering data, they fail to describe
many reactions that are strongly affected by the characteristics
of the potential below the barrier in the internal region [42].
This deficiency can be due to the nonconsideration of the
repulsive core in the DF model [36,43]. To compensate this
deficiency, the Bohr-Sommerfeld (BS) quantization condition
has been used to renormalize the strength of effective NN
interactions that support alpha clusterization on the surface
regions [44–47]. To achieve this, the λ parameter in Eq. (2)
changes the folded potential strength that is known as the
strength parameter. It can be determined by using the BS
quantization condition [48–50]:

∫ R2

R1

√
2μ

h̄2 |V (R) − Q|dR = (2n + 1)
π

2
= (G − L + 1)

π

2
,

(4)
where R2, R3 are classical turning points and are obtained by
V (R) = Q (the α decay energy), and for 0+ → 0+ s-wave de-
cay the inner turning point is at R1 = 0. In the BS quantization
condition concept, a one-dimensional effective normalized
potential reproducing the α decay energy in the total system is
being obtained. Hence the BS condition normalizes the poten-
tials oriented with respect to the deformations by considering
the constant Wildermuth condition; the same effective poten-
tials with a fair approximation would be expected. Therefore,
effective λ parameters are considered for the nuclei with large
deformations, which can almost reproduce the α decay energy
in all oriented angles.

The global quantum number G of a cluster state can be
obtained by the Wildermuth condition [51]:

G = 2N + L =
4∑

i=1

gi, (5)

where N is the number of nodes of the α-core wave function;
L is the relative angular momentum of the cluster motion, and
gi is the oscillator quantum number of a cluster nucleon. For
the α decay, we can take G as 18 for N < 82, 20 for 82 <

N � 126, and 22 for N > 126.
Finally, the half-life of the α decay is T1/2 = h̄ ln 2/�α . In

this relation, �α is the α decay width of the cluster state within
the Gurvitz and Kälbermann method, determined as [52]

�α = FPα

h̄2

4μ
exp

(
−2

∫ R3

R2

k(R)dR

)
, (6)

where F is a normalization factor that can be defined as

F
∫ R2

R1

dR

2k(R)
= 1. (7)

k(R) = {2μ/h̄2[V (R) − Q]}1/2 is the wave number. Also, Pα

and μ are the alpha-formation probability and reduced mass,
respectively.
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B. Cluster formation model

Recently, the competition between α decay and sponta-
neous fission is analyzed in detail, and the decay modes are
predicted for the unknown nuclei, and they reported that the
our desired SHN have an α decay mode [53]. Also, due to
the fact that most SHN are α emitters, the α decay process is
being considered in the preformed cluster model (PCM) in this
study. It is assumed that the α cluster forms first in the surface
region of the parent nucleus, with the preformation probability
given by the α-preformation factor Pα and then the tunneling
process from the Coulomb barrier is going on.

Within the cluster-formation model (CFM), the total clus-
terization state � of parent nuclei is assumed as a linear
combination of all its N possible clusterization states [54].
For each preformation, there is a different wave function and a
different Hamiltonian. Therefore, a clusterization state repre-
sented by a wave function is assumed for each preformation or
clusterization. If the parent nucleus has N different clusteriza-
tion states with total energy E , the Hamiltonian Hi belongs
to the ith clusterization defined with an ith wave function,
therefore

Hi�i = E�i, i = 1, 2, . . . , N. (8)

Therefore, this nucleus is described by a total time-
independent wave function that is a linear combination of
these clusterization orthonormalized wave functions:

� =
N∑

i=1

ai�i, (9)

where ai are the amplitudes for the clusterization states of the
complete set and within the orthogonality condition,

N∑
i

|ai|2 = 1. (10)

Each cluster has a specific formation energy E f i with

E f i = |ai|2E . (11)

The probability of the alpha clusterization state Pα is equiv-
alent to a2

α . It can be calculated as

Pα = |aα|2 = E f α

E
, (12)

where aα and E f α denote the coefficient of the α clusterization
and the formation energy of an α cluster, respectively. E is
composed of E f α and the interaction energy between the α

cluster and the daughter nuclei. Detailed illustrations are pro-
vided in Ref. [54]. In the framework of the CFM, the α cluster
formation energy E f α and total energy E of a considered
system can be expressed as

E f α = 3B(A, Z ) + B(A − 4, Z − 2)

− 2B(A − 1, Z − 1) − 2B(A − 1, Z ), (13)

E = B(A, Z ) − B(A − 4, Z − 2), (14)

where B(A, Z ) is the binding energy of the nucleus with mass
number A and proton number Z . The energies defined in

Eqs. (13) and (14) belong to even-even nuclei, and for an odd
atomic number or odd neutron number, the formation ener-
gies can be found in Refs. [55,56]. Moreover, the formation
probability of each cluster state calculated by the CFM can
well reproduce a more realistic formation probability, which
follows the calculation of Varga et al. [57,58].

III. RESULTS AND DISCUSSIONS

Microscopic HFB and relativistic-mean-field theories are
useful models which have been used to calculate ground-state
properties of nuclei [59–61]. On the other hand, the α de-
cay process is also a low-energy phenomenon, and it cannot
actually cause an impressive variation in the ground-state
properties of an α emitter [54,62]. Consequently, in this study,
the same Skyrme forces constructed to be effective forces
for nuclear mean-field calculations are employed to simulta-
neously reproduce the ground-state properties of parent and
daughter nuclei on the α decay process. Due to the unsta-
ble structures of SHN, the choice of appropriate mean fields
that are describing the nuclear properties of SHN is increas-
ingly noticeable. It is desirable to represent such appropriate
mean fields of effective density-dependent forces as much
as possible. The Skyrme interaction, originally constructed
for finite nuclei and nuclear matter at saturation density, is
a low-momentum expansion of the effective two-body NN
interaction in momentum space. This approach is based on
the parametrization of such forces fit to the ground-state prop-
erties of stable nuclei, fission barriers, and symmetric and
asymmetric nuclear matter (ANM).

It is valuable to keep in mind that various Skyrme
parametrizations were often constructed to emphasize a par-
ticular selection of data on finite nuclei. In the present study,
the mean fields that are dedicated to the α-emitter systems in
the superheavy region are considered. To this end, the Skyrme
SLy4 parametrization that has been almost used for the heavy
and superheavy regions is being employed associated with a
new Skyrme interaction. In this way, this optimized Skyrme
interaction parameters, named OMGA, are obtained by self-
consistent Hartree-Fock calculations that set comprehensively
to the experimental binding energies for the region with 82 �
Z � 120. It is noticeable that these two forces have the same
underlying literature.

The important point about the Skyrme interaction is that it
has a phenomenological structure in which some correlation
effects are included through its parameters. The energy per
nucleon of an infinite ANM with a proton fraction η = Z/A in
terms of the Skyrme energy density function is written as

EA = 3h̄2

10m
k2

F H5/3 + t0
4

ρ

[
(x0 + 2) −

(
x0 + 1

2

)
H2

]

+ t3ρσ+1

24

[
(x3 + 2) −

(
x3 + 1

3

)
H2

]

+ 3k2
F

40

{
(2t1 + 2t2 + t1x1 + t2x2)ρH5/3

+
(

t2
2

− t1
2

+ t2x2 − t1x1

)
ρH8/3

}
, (15)
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where kF = (3π2ρ/2)1/3 and Hn(η) = 2n−1[ηn + (1 − η)n].
The parameters x0 − x3, t0 − t3, W0, and σ are obtained by
fitting different properties of nuclei, m is the nucleon mass,
and ρ is the nuclear density. One should note that there are
several other sets of parameters which parametrize the density
dependence of the Skyrme functional in ways different from
those considered here, which are not included in the present
study. Equation (15) leads to an in-medium effective nucleon
mass m∗ in ANM of

m∗ = m

{
H5/3 + m

4h̄2 ρ[aH5/3 + bH8/3]

}−1

, (16)

with a = t1(x1 + 2) + t2(x2 + 2) and b = 1/2[t2(2x2 + 1) −
t1(2x1 + 1)]. The symmetry energy Esym indicating differ-
ences between energies of the symmetric and asymmetric
states is defined by expanding Eq. (15) as a function of η and
ρ that measures the isospin dependence of the NN interaction
as

Esym(ρ) = 1

8

∂2EA(ρ, η)

∂η2

∣∣∣∣
η= 1

2

= h̄2k2
F

6m

− t0
4

(
x0 + 1

2

)
ρ − t3

24

(
x3 + 1

2

)
ρσ+1

+ k2
F

24
{(4t2 − 3t1x1 + 5t2x2)ρ}. (17)

The Skyrme interaction, originally constructed for finite nu-
clei and nuclear matter at saturation density ρ0, and the
determination of the saturation density is associated with the
nuclear matter properties of ANM. Also, the pressure is de-
fined as P = ρ2 ∂ (EA )

∂ρ
, and the volume incompressibility K of

ANM at saturation density is calculated as the derivative of
pressure with respect to the number density ρ:

K = 9
∂P

ρ
= 9ρ2

(
∂2EA

∂ρ2

)
. (18)

In the Skyrme-HFB formalism, the evaluation of the expec-
tation energy leads to an expression that is a functional of the
local densities. The coordinate-space solution of the Skyrme-
HFB and contact-pairing force equations for calculating the
local densities is discussed in Ref. [63], which is used in this
study.

In addition, the nucleon density distribution has impres-
sive importance in assessing nuclear properties impacting
the interaction potential [64–68]. Hence we use the nucleon
density distributions suggesting by the SLy4 Skyrme interac-
tion. On the other hand, the OMGA Skyrme force is being
parametrized for achieving more precise anticipations about
the experimental binding energies in the superheavy region.
For better recognizing, the Skyrme parameters of the SLy4
and OMGA are listed in Table I.

Furthermore, the inherent nuclear matter properties of each
SLy4 and OMGA forces are illustrated in Table II. By consid-
ering the equilibrium densities in Table II, one might hope
that OMGA is also stable against collapse as the SLy4 force
due to its capability to satisfy the nuclear matter properties at
saturation density. Also, the higher K0 of the OMGA estimates
more dense structures for the SHN, which would impact the α

TABLE I. Parameters of the SLy4 and OMGA Skyrme interactions.

Parameters SLy4 OMGA

t0 (MeV fm3) −2488.91 −1844.98
t1 (MeV fm5) 486.820 473.830
t2 (MeV fm5) −546.390 1006.860
t3 (MeV fm3+a) 13777.00 9688.45
x0 0.8340 0.4035
x1 −0.3440 −2.8950
x2 −1.0000 −1.3135
x3 1.3540 0.9550
a 0.166667 0.258200
W0 (MeV fm5) 123.000 165.000

decay properties [62]. Furthermore, the obtained incompress-
ibility K0 within the OMGA force is in agreement with the
values reported in Ref. [69].

For comparison, the capabilities of SLy4 and OMGA
Skyrme interactions for reproducing experimental binding en-
ergies are considered. Hence the calculated binding energies
within these Skyrme interactions for the desired even-even
nuclei with 82 � Z � 120 are being compared with their cor-
responding experimental data. To have a better insight into
their deviations from experimental data, the ratios BCal/BExpt

for the SLy4 and OMGA are illustrated in Fig. 1(a). Also,
the standard deviations of the present calculations, 25.783
and 4.042, respectively, are obtained for SLy4 and OMGA

within σ = [ 1
N

∑N=32
i=1 (BCal

i − BExpt
i )2]

1/2
. As shown in this

figure and by the obtained standard deviations, the calculated
binding energies within the OMGA force are more consistent
with the experimental data than the SLy4 force.

As additional information, the rms radius is important to
estimate nuclear properties, indicating the capability of forces
to describe nuclear properties. Owing to the fact that the
experimental rms charge radii have not been reported yet for
most SHN, the semi-empirical relation Rch = (r0 + r1A−2/3 +
r2A−4/3)A1/3 is also employed and is quoted as RExpt

Ch in the
following, and the parameters are r0 = 0.9071(13) fm, r1 =
1.105(25) fm, and r2 = −0.548(34) fm. This relation is ob-
tained by fitting to the experimental data of the ground-state
rms charge radii for a wide range of the nuclei [70]. Con-
sequently, the rms charge radii originating from SLy4 and
OMGA are concerned and the ratios RCal

Ch /RExpt
Ch for SLy4 and

OMGA are illustrated in Fig. 1(b). To have a better insight into
their deviations from experimental data, the standard devia-

TABLE II. Nuclear matter properties of the SLy4 and OMGA
Skyrme interactions.

SLy4 OMGA

ρ0 (fm−3) 0.160 0.156
E0 (MeV) −15.970 −15.800
K0 (MeV) 229.910 246.803
S0 (MeV) 31.986 37.766
m∗/m 0.694 0.646
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(a)

(b)

FIG. 1. (a) The deviations of calculated binding energies ob-
tained by SLy4 and OMGA from their corresponding experimental
values. (b) The deviations of calculated rms charge radii obtained by
SLy4 and OMGA from their corresponding semi-empirical values.

tions 0.044 and 0.023 corresponding to the SLy4 and OMGA

forces are obtained by σ = [ 1
N

∑N=32
i=1 (RCal

Ch(i) − RExpt
Ch(i) )

2]
1/2

.
Furthermore, from the analysis of this yield [71], the rms
nuclear charge radii was expressed as

√
RCh = [X1 − X2 log10 (T1/2)]/ξ1ξ2 + X3ξ1Q−1/2

α , (19)

where the parameters X1, X2, and X3, for Z � 82 and N � 126
are −15.8767(942), 0.6213(30), and 0.7975(26), respectively.
Also, ξ1 = (Z1Z2e2)1/2 and ξ2 = √

2μ/h̄ are considered. To
estimate the rms nuclear charge radii by the mentioned rela-
tion, the adopted experimental values of T1/2 and Qα are listed
in Table III. For further comparison, the standard deviations
0.409 and 0.377 are obtained for the estimated rms charge
radii with SLy4 and OMGA forces from their corresponding
values calculated by the above relation.

To have a further evaluation, the rms nuclear charge radii
originating from SLy4 and OMGA forces are compared with
their corresponded values explored by the relativistic contin-
uum Hartree-Bogoliubov theory [72]. The estimated standard
deviations of the rms charge radii are 0.042 and 0.032 for
SLy4 and OMGA forces, respectively. Overall, one can ex-
pect that the Skyrme OMGA force would be more elegant in
precise investigations of the superheavy region.

TABLE III. Nuclear properties and logarithms of half-lives for
desired α decay chains. The half-lives are being calculated in units
of seconds.

Parent Qα [MeV] T Expt
1/2 PCFM

α T SLy4
1/2 T OMGA

1/2

292
116Lv 10.7741 −1.7447 0.19 −2.0772 −2.1948
288
114Fl 10.0721 −0.0969 0.18 −0.8047 −0.9172
294
118Og 11.8111 −2.7447 0.17 −3.9188 −4.0385
290
116Lv 10.9921 −1.8239 0.18 −2.6005 −2.6975
286
114Fl 10.3721 −0.3979 0.18 −1.6194 −1.7163
270
110Ds 11.1169 −4.0000 0.18 −4.6184 −4.5432
266
108Hs 10.3456 −2.6383 0.16 −3.3009 −3.2256
262
106Sg 9.5997 −1.5036 0.16 −1.9360 −1.8691
258
104Rf 9.1927 0.4164 0.17 −1.4191 −1.3800
254
102No 8.2263 1.7533 0.14 0.9893 1.0674
250
100Fm 7.5565 3.3010 0.15 2.6292 2.7201
246
98 Cf 6.8616 5.1097 0.15 4.6577 4.7654
242
96 Cm 6.2156 7.1482 0.12 6.8987 7.0112
238
94 Pu 5.5932 9.4418 0.14 9.2325 9.3468
234
92 U 4.8577 12.8897 0.15 12.8480 12.9751
230
90 Th 4.7698 12.3762 0.19 12.2826 12.4274
226
88 Ra 4.8706 10.7029 0.18 10.5374 10.6930
222
86 Rn 5.5903 5.5186 0.22 5.1785 5.3921
218
84 Po 6.1147 2.2695 0.20 1.7832 1.9665
264
108Hs 10.5906 −2.7959 0.18 −3.8445 −3.8893
260
106Sg 9.9005 −2.1427 0.18 −2.6826 −2.7729
256
104Rf 8.9256 0.3190 0.15 −0.4793 −0.5576
252
102No 8.5485 0.5633 0.16 −0.0155 −0.1013
248
100Fm 7.9944 1.5601 0.16 1.1205 1.0327
244
98 Cf 7.3288 3.0660 0.15 2.8783 2.7571
240
96 Cm 6.3978 6.3701 0.14 6.0978 5.9958
236
94 Pu 5.8670 7.9552 0.16 7.8276 7.7026
232
92 U 5.4136 9.3370 0.17 9.3843 9.2608
228
90 Th 5.5200 7.7798 0.18 7.7695 7.6313
224
88 Ra 5.7888 5.4964 0.18 5.3923 5.2564
220
86 Rn 6.4046 1.7451 0.22 1.5822 1.3860
216
84 Po 6.9063 −0.8386 0.21 −1.2106 −1.4065

According to the obtained results, one can expect that the
nucleon density distributions calculated by the OMGA force
would be reliable for calculating interaction potentials within
the DF model. Hence the density distributions obtained from
OMGA associated with their corresponding values obtained
from SLy4 are being used in this study.

Since we intend to investigate the α decay properties of
yet-unknown SHN through the systematic behavior of pa-
rameters of α-nucleus DF potentials, a more realistic DF
potential based on the M3Y interactions would be beneficial.
Due to the fact that the zero-range approximation associated
with the central forces of the M3Y interactions cannot sat-
isfy the saturation-density properties [38], some modifications
have been applied to the DF model [73,74]. The concept of
overlapping densities of participating nuclei is predominantly
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associated with the interaction potentials at the partial and
full overlap density regions of a dinuclear system [43,73–75].
Therefore, the interior region of interaction potential that two
nuclei have a significant overlap can be affected by the nature
of NN interactions.

In our previous work [43], we discussed the repulsive
NN interactions arising from the Pauli exclusion principle
and their effects on the DF formalism, which is not well-
embedded in the DF formalism. Such effects were sought as
a modification term by investigating the contribution of the
kinetic-energy variation at the overlapping regions between
the alpha and daughter nuclei densities. For estimating the
kinetic-energy well illustrated in density-functional theory
(DFT) [76,77], the self-consistent Hartree-Fock calculations
are being performed comprising SLy4 and OMGA Skyrme
interactions. The variation of the kinetic energy of the density
overlap of two colliding nuclei based on the DFT is obtained
by

K (R) = h̄2

2m

∫∫
{τ [ρ1p(r) + ρ2p(r − R), ρ1n(r)

+ ρ2n(r − R)] − τ [ρ1p(r) + ρ1n(r)]

− τ [ρ2p(r) + ρ2n(r)]}dr, (20)

where τ denotes the kinetic-energy density. Two nuclei are
overlapping at R and completely separated at infinity, R = ∞.
Such modifications improve the consistency between calcu-
lated α decay half-lives and experimental data [43]. In this
study, we applied the same modification to the DF model.
Therefore, the total interaction potential (1) changes to

V (R) = VC (R) + λ[VN (R) + K (R)]. (21)

Typically, the effects of applying different density distribu-
tions calculated by SLy4 and OMGA on the total potential
calculations for the nucleus 294Og are shown in Fig. 2. The
presented results in this figure indicate that the application of
different density distributions can cause a sensible variation
at the inner part of the total potential, especially from the
region with complete overlap to the distance of about 13 fm.
As shown in this figure, the second turning point R2 is changed
by the different total potential calculated by SLy4 and OMGA,
and the first and third turning points are unchanged. The dif-
ferent interaction potential obtained by the SLy4 and OMGA
forces would be due to the different nuclear matter properties
associated with these forces, illustrated in Table II, causing
characteristic situations in the dinuclear system. Therefore,
the α decay properties would be impacted by applying dif-
ferent density distributions [43,62].

As mentioned above, one of the mechanisms that have
been extensively used to adjust NN interactions, applying the
clusterization state in the dinuclear system and reproducing
α decay energy in the total system, is the renormalization of
the strength of effective NN interactions due to the BS quan-
tization condition. This mechanism provides an opportunity
for systematic investigations of nuclear properties in α decay
chains [1].

In the first step, the α decay chains 296118 → 284Cn and
298120 → 282Cn are considered. To calculate the interaction
potential, the DF model based on the effective M3Y nucleon-

FIG. 2. Calculated total potentials within different nucleon den-
sity distributions corresponding to the SLy4 and OMGA Skyrme
forces, typically for the nucleus 294Og. The classical turning points
are presented schematically. For 0+ → 0+s-wave decay the inner
turning point is at R1 = 0.

nucleon interaction is adopted in which the nucleon density
distributions are being determined by the self-consistent HFB
calculations based on the set of Skyrme SLy4 and OMGA
parametrization.

The potential strength parameter λ is adjusted to the en-
ergy of the alpha particle in α emitters (A + 4) = A ⊗ α.
The λ parameters corresponding to SLy4 and OMGA for
the considered chains 296118 → 284Cn and 298120 → 282Cn
are presented in Fig. 3(a) with respect to the atomic num-
ber of the parent nuclei. The expressed differences between
λ parameters obtained from SLy4 and OMGA presented in
Fig. 3 can be due to the different isospin asymmetries and
intrinsic nuclear matter properties complemented in SLy4 and
OMGA, which are proceeding to the various nucleon density
distributions [78–81]. Therefore, one would expect that the
interaction potentials obtained by the density-dependent DF
model would be affected.

The obtained strength parameters λ are leading to vol-
ume integrals JR per the interacting nucleon pair around
300 MeV fm3, which is expressed by

JR = − 4π

AαAd

∫ ∞

0
VN (R)R2dR. (22)

Note that, as usual, the negative sign of JR is omitted in this
work. The corresponded volume integrals JR to the SLy4 and
OMGA for the desired chains 296118 → 284Cn and 298120 →
282Cn are presented in Fig. 3(b). As shown in Fig. 3, by
adopting the almost equal slope reduction in the treatment
of λ parameters and the smooth and gradual reductions of
2 MeV fm3 units from one α emitter to another in the ob-
tained volume integrals, one might hope to obtain reliable
extrapolate volume integrals, λ parameters, and then Q val-
ues of the unknown nuclei 296118 and 298120. As shown in
Fig. 3(b), the equal slope reduction of volume integrals for
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(a)

(b)

FIG. 3. (a) Values of the λ parameters for decay chains 296118 →
284Cn and 298120 → 282Cn. (b) Volume integrals for these decay
chains.

SLy4 and OMGA forces lead to the same uncertainty for
the λ-parameter predictions of the unknown nuclei 296118
and 298120, which is about 0.001. The λ parameters corre-
sponding to SLy4 and OMGA extrapolated for 296118 within
the obtained volume integrals are about 1.2418 ± 0.001 and
1.2595 ± 0.001, respectively.

Also, the α decay energy for unknown 296118 can be es-
timated through the BS condition and the resulting volume
integrals JR and λ values of the nuclear potentials correspond-
ing to the SLy4 and OMGA Skyrme forces. The resulting
Q values for 296118 are 11.3727 ± 0.0030 and 11.7109 ±
0.0030 MeV for SLy4 and OMGA, respectively. For compar-
ison, 11.726 MeV was reported for the Qα value of 296118
within the WS4 + RBF model [24]. The Qα value of 296118
obtained within OMGA is very close to the estimation of the
WS4 + RBF model.

Moreover, the estimated half-lives for 296118 range from
1.60 to 0.02 ms for SLy4 and OMGA, respectively. It is
noticeable that these α decay half-lives are calculated with
the Pα = 1 assumption. Extensively, it has been shown that
the alpha formation probability has a remarkable role in α

decay studies [82–84]. Due to the fact that most SHN are
α emitters, the preformation probabilities that are estimated
from the CFM are adopted to apply the clusterization states

to the total system, which are expressed as PCFM
α in Table III.

Consequently, for applying clusterization states to the calcu-
lations, the average preformation probabilities in the decay
chain are used for 296118. Therefore, the affected half-lives
for 296118 from clusterization states, PCFM

α = 0.18, change to
8.88 and 0.15 ms for SLy4 and OMGA, which are of the order
of the prediction models WS3+, WS4 + RBF, and HN. The
calculated half-lives corresponding to SLy4 and OMGA are
presented as T SLy4

1/2 and T OMGA
1/2 in Table III.

Furthermore, the systematic behavior of α decay param-
eters for α decay chains 298120 → 282Cn is investigated. To
predict nuclear properties of the unknown nucleus 298120,
the volume integrals and λ parameters of the decay chain
298120 → 282Cn are also being analyzed. The obtained re-
sults are presented in Fig. 3. As illustrated in Fig. 3(b), the
estimated volume integrals of 298120 are 288.302 ± 2 and
289.958 ± 2 MeV fm3 that are associated with the λ pa-
rameters 1.2429 ± 0.001 and 1.2644 ± 0.001 for SLy4 and
OMGA, respectively. Consequently, the Q values 11.9415 ±
0.0030 and 12.0454 ± 0.0030 MeV are estimated through the
λ parameters and BS condition corresponding to SLy4 and
OMGA. For comparison, the Qα value estimated by OMGA
is closer to the WS4 + RBF model, Q = 11.981 MeV, for
the unknown nucleus 298120. Consequently, the preformation
probability PCFM

α = 0.18 is estimated by the CFM for the
unknown nucleus 298120. Therefore, the impacted half-lives
from the clustering effects of 298120 are also 0.22 and 0.098
ms belonging to SLy4 and OMGA.

As illustrated results in Fig. 3, the λ parameters and volume
integrals of two neighbor chains are expressing the same de-
creasing treatment with equal slope. However, this tendency
can create an opportunity that extrapolation on the specific
decay chain is being fulfilled. Hence the α decay chains
274112 → 214Pb and 268110 → 212Pb are being considered in
the second step.

Consequently, the obtained λ parameters for 274112 and
268110 are presented in Fig. 4. As shown in this figure,
the λ parameters have a same decreasing tendency with
equal slope according to the fact that the two α decay
chains 274112 → 214Pb and 268110 → 212Pb are adjacent.
As shown in Figs. 4(a) and 4(b), the volume integrals
293.517 ± 2 and 294.017 ± 2 MeV fm3 are being extrapo-
lated for 274112, which proceeds to the λ parameters 1.2652 ±
0.001 and 1.2790 ± 0.001 by use of SLy4 and OMGA,
respectively.

The extrapolated λ parameters for the unknown nucleus
274112 are proceeding to the Q values 12.1755 ± 0.0030 and
11.8108 ± 0.0030 MeV, corresponding to SLy4 and OMGA,
respectively. For the nucleus 274112, Q = 11.520 MeV is
also reported by the WS4 + RBF model. Furthermore, the
estimated alpha preformation probability PCFM

α = 0.16 is cal-
culated by the CFM for 274112. Therefore, the α decay
half-lives are 0.59 and 2.91 μs and can be expected for 274112
corresponding to SLy4 and OMGA, respectively.

In addition, λ parameters and volume integrals of the α

decay chain 268110 → 212Pb are also examined, which are
presented in Figs. 4 and 5. The volume integrals 293.430 ± 2
and 294.529 ± 2 MeV fm3 are extrapolated for 268110, which
proceeding to λ parameters 1.2655 ± 0.001 and 1.2808 ±
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FIG. 4. (a) Values of the λ parameters for decay chains 274112 →
214Pb and 268110 → 212Pb from SLy4 force. (b) Corresponding λ

parameters for mentioned decay chains obtained by OMGA force.

0.001 by use of SLy4 and OMGA, respectively. Consequently,
the Q values 11.4830 ± 0.0030 and 11.5826 ± 0.0030 MeV
corresponding to SLy4 and OMGA can be expected by
employing the BS condition. Through applying the alpha-
formation probability PCFM

α = 0.18 obtained for 268110, the
half-lives 4.60 and 2.47 μs for 268110 corresponding to
the SLy4 and OMGA forces are estimated by considering the
obtained Q values, respectively.

IV. SUMMARY AND CONCLUSION

Ground-state properties of nuclei, such as rms radii and
binding energies, can be reproduced fairly well by using
mean-field models with effective interactions such as the
Skyrme interactions. In this study, the α decay properties of
unknown SHN were explored. To this end, the systematic
behavior of parameters of α-nucleus DF potentials was con-
sidered. Consequently, the α core potentials are calculated
by the DF model associated with the density distributions
of the protons, and neutrons were calculated using the

(a)

(b)

FIG. 5. (a) Values of the volume integrals for decay
chains274112 → 214Pb and 268110 → 212Pb from SLy4 force.
(b) Corresponding volume integrals for mentioned decay chains
obtained by OMGA force.

self-consistent HFB calculations based on SLy4. Also, the
OMGA mean field was optimized to account for well-
reproducing ground-state properties of the SHN with 82 �
Z � 120. In turn, the density distributions calculating by this
optimized mean-field are adopted to verify α decay properties
of unknown SHN. The obtained results through the OMGA
force indicated that the nuclear properties of SHN are more
consistent with experimental data and the WS4 + RBF mass
model exposing that the theoretical studies on α decay prop-
erties would be affected by the choice of Skyrme interaction.
Hopefully, more precise anticipations can be expected by
choosing an appropriate mean field describing the nuclear
properties of SHN.
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