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Shoya Ogawa,-" Takuma Matsumoto®,"" Yoshiko Kanada-En’yo,>* and Kazuyuki Ogata ®>%3-%
' Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
2Department of Physics, Kyoto University, Kyoto 606-8502, Japan
3Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
4Department of Physics, Osaka City University, Osaka 558-8585, Japan
3>Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan

® (Received 31 March 2021; accepted 24 September 2021; published 11 October 2021)

Multistep effects among bound, resonant, and nonresonant states have been investigated by the continuum-
discretized coupled-channels method (CDCC). In the CDCC, a resonant state is treated as multiple states
fragmented in a resonance energy region, although it is described as a single state in usual coupled-channels
calculations. For such the fragmented resonant states, one-step, and multistep contributions to the cross sections
should be carefully discussed because the cross sections obtained by the one-step calculation depend on the
number of those states, which corresponds to the size of the model space. To clarify the role of the multistep
effects, we propose the one-step calculation without model-space dependence for the fragmented resonant states.
Furthermore, we also discuss the multistep effects among the ground, 2; resonant, and nonresonant states in “He

for proton inelastic scattering.

DOLI: 10.1103/PhysRevC.104.044608

I. INTRODUCTION

Resonances are metastable states that appear beyond the
particle decay threshold in numerous quantum systems. In
nuclei, there exist various resonances, such as single-particle
resonances, giant resonances, and cluster resonances, that re-
flect various nucleon correlations. The investigation of such
resonances has attracted substantial attention. Recently, res-
onances of nuclei near or beyond the neutron drip line have
been investigated through radioactive ion-beam experiments
[1-5]. To elucidate the properties of resonances, their tran-
sition cross sections can be experimentally measured via
inelastic scattering and/or transfer reactions. Therefore, it is
highly desirable to analyze the experimental data by precise
theoretical calculations to extract the properties of resonances.

Coupled-channels (CC) calculations provide a reliable
method to describe the transition to excited bound and reso-
nant states and have been successfully applied to the analysis
of various reactions [6—12]. In CC calculations, higher-order
coupling effects between the states considered in the scat-
tering are included. As an alternative to CC calculations,
approximate calculations considering only the one-step pro-
cess have been frequently applied to the analysis of inelastic
scattering [4,13—17]. These approximations are referred to
as one-step calculations, and the difference between the
results of CC and one-step calculations represents the multi-
step effects. At intermediate and high incident energies, the
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multistep effects become small and one-step calculations
work well, in general.

Recently, proton inelastic scattering to the 2] state of
®He at 41 MeV /nucleon [13] was analyzed by two methods,
namely, the microscopic CC method based on antisym-
metrized molecular dynamics (AMD) [18], which is referred
to as AMD-MCC, and the continuum-discretized coupled-
channels method (CDCC) [19]. In the AMD-MCC, the 2f
state is represented by a bound-state approximation, whereas
the coupling potential between the ground and the 2 states
in ®He is calculated by the microscopic folding model with
the Melbourne g matrix [13,14,20-26]. The AMD-MCC has
been successfully applied to the analysis of various cases of
inelastic scattering [9-12,18,27-31]. On the other hand, the
CDCC takes into account coupling effects to not only the 2
state but also the nonresonant states, which are represented
by a finite number of discretized states. The CDCC has also
been successfully used to describe reactions involving unsta-
ble nuclei [32-35]. Thus, although both methods reproduce
the inelastic data reasonably well, they afford different views
of the multistep effects for the 2 state.

In the AMD-MCC, the inelastic cross section obtained
from the CC calculations is in good agreement with that
derived from one-step calculations. This result demonstrates
that the multistep effects between the ground and the 2? states
are small. On the other hand, the cross section obtained from
the CDCC is not consistent with that provided by the one-
step calculations, indicating that the multistep effects make a
significant contribution to the inelastic cross section.

One of reasons for this discrepancy concerning the signif-
icance of multistep effects is considered to be the influence
of nonresonant states, which are taken into account in the
CDCC but not in the AMD-MCC. In addition, the resonant
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state is fragmented into multiple states in the CDCC. The one-
step calculation in the CDCC neglects the multistep effects
between the fragmented resonant states, which are significant
because the resonant state can be regarded as a single state.
Furthermore it is known that the cross sections to the frag-
mented states in the one-step calculations are dependent on the
number of these states, which corresponds to the size of the
model space. To clarify the coupling effects to the nonresonant
states, detailed examination of the treatment of the fragmented
resonant states is required.

In this paper, we examine the contributions of fragmented
resonant states to the inelastic cross section and attempt to
clarify the multistep effects between the ground and the res-
onant states. To this end, we propose a new treatment for
the fragmented states without the model-space dependence.
To confirm the validity of this approach, we first analyze the
three-body reaction of the ®Li + “°Ca system, where Li is
described as a d + o two-body system because it is easy to
adjust the size of the model space. Finally, we discuss the
multistep effects in the proton inelastic scattering of *He.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework. In Sec. III, we present and discuss
the numerical results. Finally, in Sec. IV, we provide a sum-
mary of the key findings.

II. FORMALISM

In the present paper, we consider a projectile breakup re-
action in which the projectile has one bound state and one
resonant state. In the CDCC, the reaction is assumed to take
place in a model space P defined by

N
P = |@o) (Dol + YD) (D, | =Po+ Y Py (1)
Y

y=1

where ®( and ®,, are the wave functions of the ground state
and the discretized continuum states with quantum number y,
respectively. Py and P, are projection operators on ®y and
®,,, respectively. It should be noted here that ®, includes the
fragmented resonant states. In the present analysis, we adopt
the pseudostate discretization with the Gaussian expansion
method to obtain a set of {®,, }.

In the space P, the Schrodinger equation for the scattering
can be expressed as

PK+U+h—E)PV=0, 2)

where K and U denote the kinetic energy and potential be-
tween the projectile and the target, respectively. The internal

Hamiltonian of the projectile £ satisfies
g0 = (Polh|Po), &, = (Dy|h]|Dy). 3

Multiplying Py and P, from the left side in Eq. (2) leads to
the CDCC equation,
[K + PoUPy — (E — £0)[Po¥ = — > PoUP, ¥,
y'#0

[K +P,UP, — (E —,)]P,W =Y _ P,UP,¥. (4)
v'#y

In the CDCC, Py and P, ¥ can be solved under appropriate
boundary conditions, the details of which can be found in
Ref. [32].

In contrast to Eq. (5) of the CDCC calculation, the equation
of the one-step calculation is given as

[K +PoUPy— (E — &0)IPoW¥ =0,
[K+P,UP, —(E —¢e,)IP,¥ =-=P,UPyW. 5)

The first line of Eq. (5) is not a coupling equation, and cou-
pling effects from other states are neglected. In the second
line of Eq. (5), only the one-step coupling effect from PyW
is taken into account. It should be noted that the coupling
effects between fragmented resonant states are also neglected
in Eq. (5).

In the CDCC, we assume that the resonant model space Pr
can be described by the sum of the fragmented resonant states
as

Pr= 3000 = 3 Py, ©)
YR R

where yg means the quantum number of the fragmented reso-
nant state in y. Considering the one-step transition to Pg, the
equation to be solved is represented as

[K +PrUPR — (E — h)]PrY = —PrUPyW. @)

Multiplying P,, from the left-hand side of Eq. (7), the cou-
pling equation for P,, is obtained as

[K + PpUPy — (E — £,) [P ¥

= —PrUPW — Y P,UP, V. )
YRFR

In Eq. (8), one can see that only coupling effects between
the fragmented resonant states are taken into account. In this
paper, calculations with Egs. (5) and (8) are referred to as
the conventional one-step calculation and resonant one-step
calculation, respectively. It should be noted here that the
discretization of the resonant state does not affect the CDCC
equation of Eq. (5).

In practice, we cannot define Pr exactly in the CDCC
calculation because the fragmented resonant states include
not only the resonant component, but also nonresonant com-
ponents. Thus, we select the fragmented resonant states by
determining the energy range in the breakup cross section as
described in Sec. III. In the present analysis, the inelastic cross
section describing the transition from the ground state to the
resonant state is defined by

doipel. _ dUVR
a0 "X an ©

R

where do,, /dS2 represents the cross sections to the frag-
mented resonant states.

III. RESULTS AND DISCUSSION

A. ®Li scattering

First, we investigate the model-space dependence of
the one-step calculation through the analysis of a case of
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FIG. 1. Pseudostates of °Li for I = 2+ calculated with sets I and
IL. On the vertical axis, 0 MeV corresponds to the d + « threshold.
States in the area between the two lines represent fragmented reso-
nant states.

three-body scattering, in which the projectile is described
by a two-body model. To this end, we analyze the °Li +
40Ca reaction at E = 26 MeV /nucleon, which was reported
in Ref. [36]. The scattering is described by the d + « + *°Ca
three-body model. The model Hamiltonian H is the same as
that used in Ref. [36]. In this model, the spin of the deuteron
in °Li is neglected, the ground state of °Li has the total spin-
parity I™ = 0", and there is one resonant state in [* = 2%,
The resonant energy and decay width are 2.75 and 0.2 MeV,
respectively.

To study the model-space dependence, we prepare two sets
of the discretized states for I” = 27¥ of °Li as set I and set II.
The number of discretized states in set II is larger than that in
set I as shown in Fig. 1. Here, set I is calculated with the same
parameters as in Ref. [36] and gives good convergence of the
CDCC. In the pseudostate discretization, the resonant and
nonresonant components of a two-body structure can be rather
clearly distinguished because the breakup cross sections to
discretized states calculated with set I smoothly change with
the internal energy of ®Li as shown by histograms in Fig. 2.
As the fragmented resonant states, we select states within
the range of 1.1 MeV < ¢ < 3.9 MeV, which corresponds to
the region between the two dashed lines in Fig. 1. To clarify
the validity of the selection, we calculate the breakup cross
section as a function of the internal energy ¢ of °Li. In the
CDCC, the breakup cross section is described as

2
. (10)

d
== ‘st)n
Y
T,

v is a discretized T matrix obtained by the CDCC. The
histogram values describe o, = |T,|*. f, (¢) represents the
smoothing function, and the details can be found in Ref. [36].
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FIG. 2. Breakup cross section for °Li + “°Ca scattering calcu-
lated with set I. The bars represent the breakup cross sections to
discretized states, and the absolute values are shown on the right
vertical axis.

In Fig. 2, the solid line shows the calculated breakup cross
section to I™ = 2% continuum states with set I where all
discretized states are taken in the summation of Eq. (10).
Meanwhile, the dotted line represents the result taking only
the fragmented resonant states. One can see that the solid
line is in good agreement with the dotted line around the
resonance energy. In the case of set I, we performed the same
analysis and found that the energy range is the same as one
of set I. Thus, we conclude that the states within the range
of 1.1 MeV < ¢ < 3.9 MeV correspond to the fragmented
resonant states. The number of the fragmented resonant states
in set I (set II) is five (ten). We discuss the behavior of the
wave functions of discretized states in the Appendix.

In Fig. 3, we show the inelastic cross sections to the
fragmented resonant 2] states calculated by the CDCC using

10* ‘
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------ cc2’
\ #~.  — - CC Res. only
100 /
3
£
a 102 F
N
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<
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10° 0 5 10 15 20

0 [deg]

FIG. 3. Inelastic cross sections for the °Li + “°Ca reaction at
E =26 MeV /nucleon obtained from the CDCC. The pseudostates
considered in the results are calculated with parameter set I for
Gaussian bases.
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FIG. 4. Inelastic cross sections for the °Li + “°Ca reaction at
E = 26 MeV /nucleon obtained from the one-step calculations with
Egs. (5) and (8). The pseudostates considered in the results are
calculated with parameter sets I or II for Gaussian bases.

Eq. (9) with set I. It should be noted that if set II is used in the
calculations, we obtain the same results. The solid line shows
the result of the CDCC with coupling effects of all states for
I" = 07" and 2". The dotted and dot-dashed lines indicate the
results of the CDCC with all 2% states including nonresonant
states and only the fragmented resonant states, respectively.
The difference between the solid and the dotted lines rep-
resents the coupling effects for I” = 0%, and it reduces the
cross section by approximately 20-30%. In contrast, the dif-
ference between the dotted and the dot-dashed lines, which
corresponds to the coupling effects of nonresonant states in
I™ =27, is negligible.

In Fig. 4, we consider the model-space dependence by
comparing the inelastic cross sections obtained from the con-
ventional and resonant one-step calculations. The thick solid
line denotes the result of the CDCC with only fragmented
resonant states for set I, which is the same as the dot-dashed
line in Fig. 3. The thin solid and dotted lines represent the
results obtained for set I from the conventional and resonant
one-step calculations, respectively. The difference between
the two results originates from coupling effects between frag-
mented resonant states. The dot-dashed and dashed lines show
the results obtained for set II. One can see that the result of the
resonant one-step calculation for set I is in good agreement
with that for set II. Furthermore, the result of the resonant
one-step calculation is also consistent with that of the CDCC
with only fragmented resonant states. This means that the
multistep effects between the ground and the resonant states
are negligible. On the other hand, the results obtained from
the conventional one-step calculation vary with the model
space with substantially higher values for set II. This prob-
lem is considered to originate from the omission of coupling
effects between the fragmented resonant states in the con-
ventional one-step calculations. Thus, we conclude that the
resonant one-step calculation should be adopted to estimate
the multistep effects for the resonant state in a manner that

2+

o [mb]

09 05 1T i3 2
£ [MeV]

FIG. 5. Breakup cross section for the ®He + p reaction at E =
41 MeV /nucleon describing the transition to the 2* continuum states
obtained from the CDCC. States in the area between the two lines
represent fragmented resonant states.

is independent of the size of the model space in the CDCC
framework.

B. ®He scattering

Finally, we discuss the multistep effects in the °He +
p reactions at E = 41 and 25 MeV /nucleon in which He
is described by the “He +n + n three-body model. In this
analysis, we use the same model parameters as described in
Ref. [19]. The resonant energy and decay width of the 2| state
are 0.848 and 0.136 MeV, respectively. In contrast to the two-
body model of °Li, the discretized breakup cross sections in
the three-body model of *He exhibit no regularity with respect
to the internal energy of ®He as shown in Fig. 5. Therefore,
it is not easy to identify the fragmented resonant states. In
the present calculations, we select states within the range of
0.5 MeV < € < 1.0 MeV as the fragmented resonant states
for simplicity. The number of the fragmented states is ten.
Recently, a new method has been proposed for characterizing
resonant states out of pseudostates obtained by diagonalizing
a three-body Hamiltonian [37]. Application of this technique
to the present paper will be interesting and an important future
work.

In Fig. 6, we show the inelastic cross sections to the frag-
mented resonant 2 states calculated using Eq. (9). It should be
noted that the dashed line is consistent with the cross section
to the ZT state calculated with the complex-scaling method
shown in Fig. 3 in Ref. [19]. The solid and dot-dashed lines
indicate the results of the resonant one-step calculation and the
CDCC with only the fragmented resonant states, respectively.
One can see that the solid line is in good agreement with
the dot-dashed line. This indicates that the multistep effects
between the ground state and the 2] state are negligible,
which is consistent with the results of the AMD-MCC re-
ported in Ref. [18]. On the other hand, the value from the
conventional one-step calculation shown by the dotted line is
larger than one from the resonant one-step calculation at back-
ward angles, and it looks like the multistep effects are much
significant. However, the result of the conventional one-step
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FIG. 6. Inelastic cross sections for the ®He + p reaction at E =
41 and 25 MeV /nucleon obtained from the CDCC including only the
fragmented resonant states and one-step calculations using Egs. (5)
and (8).

calculation depends on the size of three-body (*He +n + n)
model space as mentioned above, and the difference between
the dotted and the dot-dashed lines no longer indicates the
multistep effects. We, thus, conclude that the multistep effects
between the ground state and the 2] state shown by the differ-
ence between the solid and the dot-dashed lines are negligible.

Furthermore, we discussed the coupling effects on the res-
onant state in Fig. 7. The solid line indicates the result of
the resonant one-step calculation. The dotted (dot-dashed) line
represents the result of the CDCC with coupling between only
I = 0%(0%, 17) nonresonant states and the fragmented res-
onant states. The dashed line corresponds to the result of the
CDCC with coupling between all states in the model space. It
is found that the cross sections decrease as the coupling effects
on the nonresonant states are taken. These effects reduce the

do/dQ [mbl/st]

Res. one-step —

CC 0" +Res. =
CCO0"+1 +Res. — - 2
[ CC O +174+2"+Res. — — 3
0 30 60 90

0 [deg]

FIG. 7. Inelastic cross sections for the ®He + p reaction at E =
41 and 25 MeV /nucleon obtained from the CDCC and one-step
calculations using Eq. (8).

cross section by approximately 20-30% at 41 MeV /nucleon
and become stronger as the incident energy decreases.

IV. SUMMARY

We have investigated the multistep effects between the
ground and the resonant states by comparing the results of
CC calculations and one-step calculations. In the CDCC, the
resonant state is fragmented into multiple discretized states
where the number of fragmented resonant states is dependent
on the size of the model space. In this paper, we introduced
two approaches for the one-step calculations, which we refer
to as conventional one-step calculation and resonant one-step
calculation. The former includes no coupling effects between
the fragmented resonant states, whereas the latter considers
only the multistep effects between the fragmented resonant
states.

In the analysis of ®Li 4+ %°Ca scattering, we confirmed
the model-space dependence in the conventional and resonant
one-step calculations. The numerical results obtained from
the conventional one-step calculation did not converge with
increasing the size of the model space; in other words, this
result was unphysical. In contrast, the results of the resonant
one-step calculation were independent of the size of the model
space. Therefore, the resonant one-step calculation is suitable
for investigating the multistep effects between resonant states
and other states. We have also discussed the multistep ef-
fects for the resonance 21F in °He via the ®*He + p reaction.
The numerical results demonstrated that the multistep effects
between the 2/ and the ground states were negligible in accor-
dance with Ref. [18] in which the resonance ZT was obtained
as a single state. We, thus, conclude that it is reasonable to de-
scribe the resonant state as an excited bound state. Meanwhile,
the coupling effects to nonresonant states for I = 0%, 17,
and 27 are important and reduce the cross section by approx-
imately 20-30% at 41 MeV /nucleon and become stronger at
25 MeV /nucleon. This result originates from the fact that °He
is an unstable nucleus. Therefore, analyses of unstable nuclei
should take into account the coupling effects to nonresonant
states.
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APPENDIX

In Fig. 8, we show the radial wave-functions u of the frag-
mented resonant and nonresonant states, which are obtained
by diagonalizing the internal Hamiltonian of °Li in sets I
and II. The wave functions are normalized as fooo lu|*>dr =
1. As the fragmented resonant states, we select states with
¢ = 3.05 MeV in set I (left top panel) and 2.99 MeV in set 11
(left bottom panel), which are near the resonant energy of 2.75
MeV. The states with ¢ = 4.60 MeV in set I (right top panel)
and &€ = 5.05 MeV in set II (right bottom panel) correspond
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FIG. 8. The radial wave functions of °Li in sets I and IL.

to the nonresonant states. One can see the wave functions in
set IT oscillate at a longer distance than those in set I because
the maximum value of the range parameter ry,,x in Gaussian
bases for sets I and II are taken as 20 and 40 fm, respectively.
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Figure 9 shows the radial wave functions in set I. The
left and right panels represent the wave functions and the
probability densities, respectively. Here we select states with
& = 2.54 MeV (top panel) and 3.05 MeV (midpanel) as the
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FIG. 9. The radial wave functions of ®Li and the probability densities in set I.
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TABLE I. The probabilities obtained of the fragmented resonant
and nonresonant states in set I by integrating the probability densities
over r up to 20 fm.

2.54 MeV 3.05 MeV 4.60 MeV
resonance resonance nonresonance
Probability 0.532 0.548 0.369

resonant state, and a state with ¢ = 4.60 MeV (bottom panel)
as the nonresonant state. It is found that the fragmented reso-
nant states have large amplitudes in the internal region up to
rmax. On the other hand, the nonresonant state has a constant
amplitude in the whole region. To clear this point, we show the
probabilities obtained by integrating the probability densities
over r up to ry,y in Table I, and the values of the fragmented
resonant states are larger than one of the nonresonant state.
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