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We study the nuclear isoscalar giant quadruple resonance (ISGQR) based on the Boltzmann-Uehling-
Uhlenbeck (BUU) transport equation. The mean-field part of the BUU equation is described by the Skyrme
nucleon-nucleon effective interaction, and its collision term, which embodies the two-particle–two-hole (2p-2h)
correlation, is implemented through the stochastic approach. We find that the width of ISGQR for heavy
nuclei is exhausted dominated by collisional damping, which is incorporated into the BUU equation through
its collision term, and it can be well reproduced through employing a proper in-medium nucleon-nucleon cross
section. Based on further Vlasov and BUU calculations with a number of representative Skyrme interactions, the
isoscalar nucleon effective mass at saturation density is extracted, respectively, as m∗

s,0/m = 0.83 ± 0.04 and
m∗

s,0/m = 0.82 ± 0.03 from the measured excitation energy Ex of the ISGQR of 208Pb. The small discrepancy
between the two constraints indicates the negligible role of 2p-2h correlation in constraining m∗

s,0 with the ISGQR
excitation energy.

DOI: 10.1103/PhysRevC.104.044603

I. INTRODUCTION

Nuclear giant resonances are a global feature of nuclei
that arises from the collective motion of their constituent
nucleons [1–13]. Following the isovector giant dipole reso-
nance (IVGDR) [1], the isoscalar giant quadruple resonance
(ISGQR), discovered in the early 1970s [2], was the second
fundamental mode of nuclear giant resonances. Systematic
studies on giant resonance for different nuclear masses have
been carried out by (d , d ′) or (α, α′) reactions [3–9], which
preferentially excites isoscalar transitions due to their zero
isospin nature. One of the important features of the nuclear
ISGQR is that its excitation energy Ex is related to the nu-
cleon effective mass in symmetric nuclear matter, or isoscalar
nucleon effective mass, m∗

s (ρ) [14]. It is well known that the
strong exchange effects of nuclear interaction lead to a mo-
mentum dependence of nucleon potential in nuclear medium
[15]. The nucleon effective mass is usually employed to char-
acterize this momentum dependence of the single-nucleon
potential, and it plays an important role in the dynamics of
heavy-ion collisions [16–19]. Apart from this, the isospin
splitting of the nucleon effective masses, which is related
to the m∗

s and the isovector nucleon effective mass m∗
v , has

strong influences on various quantities or processes, e.g., the
properties of mirror nuclei [20], transport properties of asym-
metric nuclear matter [21,22], neutrino emission in neutron
stars [23]. Therefore, how to constrain accurately the nucleon
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effective mass has been a hot topic in nuclear physics, and one
may refer to Ref. [24] for a recent review.

Since the excitation energy Ex of the nuclear ISGQR is
an effective probe of the m∗

s , several methods have been em-
ployed to calculate the Ex of the ISGQR and consequently
constrain the m∗

s , e.g., the (quasi-)random-phase approxi-
mation (RPA) approach [25–31], the macroscopic Langevin
equation [32], and dynamical approaches like transport mod-
els [33,34]. One of the advantages of the transport model
is that the beyond mean-field effects can be easily included
via the collision term. The Boltzmann-Uehling-Uhlenbeck
(BUU) equation [35] is one of the main transport models that
has been widely applied to the study of heavy-ion collisions.
On the one hand, with the absence of the collision term, the
BUU equation reduces to the Vlasov equation, which can
be regarded as a semiclassical approximation of the mean-
field level time-dependent Hartree-Fock (density functional)
approach [36–38]. On the other hand, the nucleon-nucleon
scatterings in the BUU equation embodies beyond-mean-field
correlations, or the two-particle–two-hole (2p-2h) correlation,
and it incorporates two-body dissipation into the evolution.
It has been shown that the nucleon-nucleon scatterings are
essential to describe the experimental full width at half maxi-
mum � of IVGDR for heavy nuclei [39].

Although there already exist several works that aim to
study the ISGQR and its constraint on the m∗

s using the BUU
transport equation [33,34], they suffer from the problems of
unstable nuclear ground-state evolution and inaccurate treat-
ment of the collision term, especially the Pauli blocking,
which has been shown to have significant effect on the width
� of nuclear giant resonances [39,40]. In the present work,
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to study the ISGQR of finite nuclei, we employ a lattice
Hamiltonian method [41] to solve the BUU equation, and
its nucleon-nucleon collision term is implemented through a
full-ensemble stochastic collision approach [39,40,42]. The
ground state of a nucleus is obtained by varying the total
energy with respect to the nucleon density distribution based
on the same Hamiltonian that governs the equations of motion
of nucleons. Besides that, the present framework of solving
the BUU equation is implemented numerically through GPU
(graphics processing unit) high-performance parallel com-
puting [43], which enables us to employ huge amounts of
test particles when solving the BUU equation, and increases
the numerical efficiency and accuracy profoundly. The above
features help to improve the ground-state stability and the
accuracy of the collision term significantly, and make it pos-
sible to solve the BUU equation precisely. Therefore, one
might describe through the BUU equation the time evolution
of the ISGQR and obtain its strength function S(E ), and
subsequently its excitation energy Ex and width �.

The present article is organized as follows. In Sec. II, we
introduce the basic concept of solving the BUU equation,
and the necessary formalism of nucleon effective masses in
the Skyrme-Hartree-Fock (SHF) approach, as well as how to
study nuclear collective motions in the transport approach. In
Sec. III, we study the ISGQR of 208Pb and its strength function
within the BUU equation, and present a correlation between
its excitation energy Ex and isoscalar nucleon effective mass
m∗

s through the BUU calculation from various Skyrme in-
teractions, based on which we constrain the m∗

s . Finally, we
summarize the present work in Sec. IV.

II. METHOD

In the present study, the ISGQR of finite nuclei is studied
within the framework of the BUU transport equation. In this
section, we briefly present how we solve the BUU equation
effectively, i.e., the lattice Hamiltonian method adopted for
the mean-field evolution and the stochastic method employed
for the collision term, and how to describe the nuclear collec-
tive motions with Wigner function f (�r, �p). Since we employ
the Skyrme effective nucleon-nucleon interaction to describe
the mean-field part of the BUU equation, we also introduce
several basic features of the Skyrme interaction and nucleon
effective masses within the Skyrme interaction.

A. Boltzmann-Uehling-Uhlenbeck transport equation

The BUU transport equation describes the time evolution
of the Wigner function f (�r, �p). If we consider a momentum-
dependent potential U (�r, �p), the BUU equation can be written
as

∂ f

∂t
+ �p

E
��r f + � �pU (�r, �p)��r f − ��rU (�r, �p)� �p f = Ic. (1)

In the above equation, the left-hand side describes the time
evolution of the f (�r, �p) in the mean-field U (�r, �p), while the
collision integral Ic is responsible for part of the beyond mean-

field many-body correlation. The general form of Ic is

Ic = −g
∫

d3 p2

(2π h̄)3

d3 p3

(2π h̄)3

d3 p4

(2π h̄)3

× |M12→34|2(2π )4δ4(p1 + p2 − p3 − p4)

× [ f f2(1 − f3)(1 − f4) − f3 f4(1 − f )(1 − f2)], (2)

where fi is short for f (�r, �pi ), g is a degeneracy factor, and
M12→34 is the in-medium transition matrix element. The 1 −
f in Ic is added to take the Pauli principle into account due to
nucleons’ Fermion statistics.

The lattice Hamiltonian method [41] is adopted to solve the
mean-field evolution of the BUU equation. We first mimic f
by a large number of test nucleons [44],

f (�r, �p, t ) = 1

g

(2π h̄)3

NE

ANE∑
i

S[�ri(t ) − �r]δ[ �pi(t ) − �p] (3)

with A to be the mass number of the system and NE the
number of parallel ensembles (or the number of test particles
in some literature). A form factor S in coordinate space is
introduced to modify the relation between test nucleons and
f . Based on the f in Eq. (3), we then calculate the total
Hamiltonian H approximated by the lattice Hamiltonian HL,

H =
∫

H(�r)d�r ≈ lxlylz
∑

α

H(�rα ) ≡ HL, (4)

to obtain the equations of motion of test nucleons and sub-
sequently other physical quantities. In the above formula, �rα

represents certain lattice site, and lx, ly, lz are lattice spacing.
We adopt the stochastic collision approach [45,46] to deal

with the collision term Ic. The scattering probability of a
scattering event, involving test nucleons i and j in a time
interval �t , can be calculated directly through the collision
term by substituting the f in Eq. (3) into Eq. (2). It reads

Pi j = υrelσ
∗
NN S(�ri − �rα )S(�r j − �rα )lxlylz�t, (5)

where υrel is the relative velocity between the two test nucle-
ons, and σ ∗

NN is the in-medium nucleon-nucleon cross section.
Note its difference with the probability in normal stochas-
tic approach [46], due to the existence of the form factor
S in the present study. If the collision of the ith and jth
test nucleons happens, we calculate a Pauli blocking factor
[1 − f (�rα, �p′

i )][1 − f (�rα, �p′
j )] according to their final state

momentum �p′
i and �p′

j , to determine whether the collision is
blocked by the Pauli principle.

We have omitted the isospin degree of freedom in the above
context for clarity. The present lattice BUU framework of
solving the BUU equation has been applied successfully to
the giant resonances of heavy nuclei [39,42]. One can find
more detailed descriptions about the present framework, e.g.,
the equations of motion of test nucleons, in Ref. [40].

B. Nucleon effective mass in Skyrme-Hartree-Fock approach

As mentioned above, we employ the SHF approach
[47–49] to describe the mean-field in the BUU equation.
The standard parametrization form of the Skyrme interaction
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[48,49] is

υ12 = t0(1 + x0P̂σ )δ(�r1 − �r2)

+ 1
6 t3(1 + x3P̂σ )ρα ( �R)δ(�r1 − �r2)

+ t1(1 + x1P̂σ ) 1
2 [δ(�r1 − �r2)�̂k′2 + �̂k2δ(�r1 − �r2)]

+ t2(1 + x2P̂σ )�̂k′δ(�r1 − �r2)�̂k
+ iW0( �̂σ1 + �̂σ2)�̂k′ × δ(�r1 − �r2)�̂k (6)

with the �R = 1
2 (�r1 + �r2). The relative momentum operators

�̂k = ( �̂∇1 − �̂∇2)/2i and �̂k′ = −( �̂∇1 − �̂∇2)/2i act on the right

and left, respectively. The �̂σi and �̂Pσ are the Pauli spin matrices
and the spin exchange operator, respectively. The t0 − t3,
x0 − x3, α are Skyrme parameters. In Eq. (6), the first term
is the local density term, and the second term is the density-
dependent term, which is used to describe effectively the
three-body interaction between nucleons. The third and fourth
terms are momentum dependent terms, and the fifth term is
spin-orbit coupling term which is omitted in the present study
due to the assumption of spin saturation.

We can include in Eq. (6) additional high-order momen-
tum dependent terms, to form the Skyrme pseudopotential
[50,51]. The Skyrme pseudopotential with next-to-next-to-
next-to-leading order (N3LO) momentum dependent terms
can reproduce the empirical nuclear optical potential up to
about 1 GeV in kinetic energy [52].

In the SHF approach [47–49], the nucleon effective mass
m∗

q/m for a nucleon q (n or p) in asymmetric nuclear matter
with density ρ can be obtained as follows:

h̄2

2m∗
q (ρ, δ)

= h̄2

2m
+ 1

4
t1

[(
1 + 1

2
x1

)
ρ −

(
1

2
+ x1

)
ρq

]

+ 1

4
t2

[(
1 + 1

2
x2

)
ρ +

(
1

2
+ x2

)
ρq

]
(7)

with isospin asymmetry δ = (ρn − ρp)/(ρn + ρp). When set-
ting ρq = ρ/2, we obtain the isoscalar nucleon effective mass

h̄2

2m∗
s (ρ)

= h̄2

2m
+ 3

16
t1ρ + 1

16
t2(5 + 4x2)ρ. (8)

Its expression in the Skyrme pseudopotential can be obtained
straightforwardly.

C. Nuclear collective motions in the Wigner representation

One of the key quantities when studying the collective
motions is the expectation value of the excitation operator Q̂.
In the Wigner representation [53,54], i.e., the variable in the
equation of motion has been transformed from wave function
or density matrix to f (�r, �p), we should express the expectation
〈Q̂〉 in terms of f (�r, �p). The Q̂ is usually considered as a
one-body operator, which means that it can be expressed as
the sum of single-nucleon operator q̂i acting on each nucleon.

The expectation of Q̂ can then be expressed as

〈Q̂〉 ≡ 〈φ|Q̂|φ〉 =
A∑
i

〈φ|q̂i|φ〉

=
A∑
i

∫
〈φ|�r1 . . . �rN 〉〈�r1 . . . �rN |q̂i|�r′

1 . . . �r′
N 〉

×〈�r′
1 . . . �r′

N |φ〉d3�r1 . . . d3�rN d3�r′
1 . . . d3�r′

N

=
∫

ρ(�r′
i, �ri )〈�ri|q̂i|�r′

i〉d3�rid
3�r′

i, (9)

where |�ri〉 and |�r′
i〉 are coordinate eigenstates, and ρ(�r′

i, �ri )
is the one-body density matrix. By transforming the relative
coordinate �ri − �r′

i in Eq. (9) to momentum space, we obtain
〈Q̂〉 in terms of the Wigner function f (�r, �p), i.e.,

〈Q̂〉 =
∫

f (�r, �p)q
(
�r, �p

)
d3�rd3 �p, (10)

where the q(�r, �p) is the Wigner transform of 〈�ri|q̂i|�r′
i〉 and �r =

(�ri − �r′
i )/2. Therefore, the expectation of Q̂ can be calculated

within the framework of BUU equation. The specific form of
the excitation operator Q̂ for isoscalar quadruple mode will be
given in Sec. III A.

III. RESULTS AND DISCUSSION

A. Strength function of ISGQR

In the transport approach, an excited nucleus can be gen-
erated by changing the f (�r, �p) of a ground state nucleus
according to the form of the excitation operator. This is equiv-
alent to changing the initial coordinates and momenta of test
nucleons if we adopt the test particle ansatz. For the coordi-
nates �ri and momenta �pi of test nucleons of a ground state
nucleus, since we deal with a semiclassical transport equation,
they are obtained based on the Thomas-Fermi approach. In
the Thomas-Fermi approach, the radial density distribution
ρτ (r) of a ground state nucleus is obtained by varying the total
Hamiltonian with respect to it. Since the same Hamiltonian
also governs the evolution of the test nucleons, a very stable
ground state evolution can be obtained in the transport calcu-
lation. The initial coordinates �ri of test nucleons are generated
according to the obtained radial density distribution, while
their initial momenta �pi are generated from a zero-temperature
Fermi distribution with the Fermi momentum given as pF

τ =
h̄[3π2ρτ (r)]

1/3
.

For the ISGQR, the excitation operator Q̂ISQ can be written
as the sum of single-nucleon operator q̂ISQ,

Q̂ISQ =
A∑

i=1

q̂ISQ =
A∑

i=1

1

A

√
5

16π

(
3ẑ2

i − r̂2
i

)
, (11)

where r̂i and ẑi are the coordinate operator of the ith nucleon
and its third component, respectively, and A is the mass num-
ber of the nucleus. For q̂ISQ, its corresponding qISQ(�r, �p) in
Eq. (10) is expressed as

qISQ(�r, �p) = 1

A

√
5

16π
(3z2 − �r2). (12)
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Note here the coordinate operators have been replaced by their
eigenvalues.

To obtain the isoscalar quadruple mode, we can either
change the initial �ri and �pi of test nucleons according to

�pi →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pxi + 2λ

√
5

16π
xi
A

pyi + 2λ

√
5

16π

yi

A

pzi − 4λ

√
5

16π
zi
A ,

(13)

or according to

�ri →

⎧⎪⎨
⎪⎩

xi − xiλ

yi − yiλ

zi + 2ziλ

�pi →

⎧⎪⎨
⎪⎩

pxi + 2pxiλ

pyi + 2pyiλ

pzi − pziλ

(14)

with λ to be a small quantity. The former scenario corresponds
to exciting the nucleus at t = t0, i.e., Ĥex ∝ λQ̂ISQδ(t − t0),
which is a common practice within the linear response theory
[55]. The latter scenario corresponds to starting the nucleus at
the ground state with the presence of the excitation operator
[56], and then remove the excitation at t = t0, i.e., Ĥex ∝
λQ̂ISQθ (t0 − t ). We will examine both of these two scenarios
when calculating the ISGQR.

After exciting the nucleus to a certain mode, we calcu-
late the time evolution of the expectation of the excitation
operator 〈Q̂〉(t ) within the BUU equation through Eq. (10),
and subsequently obtain the strength function S(E ) for that
mode. In the following we calculate the ISGQR of 208Pb
with the Skyrme interaction SkM* [57]. We consider two
cases, i.e., the pure Vlasov calculation, in which only the
mean-field, i.e., one-particle-one-hole (1p-1h) correlation is
taken into account, and the full BUU calculation, with the
nucleon-nucleon collision term reflects effectively additional
2p-2h correlation. This nucleon-nucleon collision term is re-
sponsible for the collisional damping of the nuclear collective
motions, which is indispensable for describing the width of
the latter [39]. It has been shown that a large in-medium
reduction of nucleon-nucleon cross section is essential to
reproduce the experimental width of IVGDR of 208Pb [39].
In the full BUU calculation, for simplicity, we employ a
constant in-medium correction, i.e., σ ∗

NN = 0.60σ free
NN . The

free nucleon-nucleon cross section σ free
NN is parametrized based

on the experimental nucleon-nucleon scattering data as in
Ref. [58]. This in-medium nucleon-nucleon cross section can
reproduce the weighted average of the experimental width
� = 3.0 ± 0.1 [26] of ISGQR of 208Pb. In the present study,
we choose lattice spacing lx = ly = lz = 0.5 fm, time step
�t = 0.5 fm/c, and NE = 10000, to ensure the convergence
of the numerical results.

In Fig. 1, we show the time evolution of the �〈Q̂ISQ〉
through Eq. (13) with the Skyrme interaction SKM∗. The
black and red solid lines represent the �〈Q̂ISQ〉 for pure
Vlasov and full BUU calculations, respectively. In both cases,
the expectation of the excited nucleus 〈φ|Q̂ISQ|φ〉 has been
subtracted by the that of the ground state nucleus 〈0|Q̂ISQ|0〉.
The latter is expected to be zero, and it is shown in Fig. 1
with the blue dashed line. We notice from the figure that in
the Vlasov calculation where only the mean-field (1p-1h) is

FIG. 1. The time evolution of the �〈Q̂ISQ〉 of 208Pb in the ground
state and after a perturbation excitation of Ĥex (t ) ∝ λQ̂ISQδ(t − t0 )
with λ = 0.1 GeV fm−1/c based on Eq. (13). The results correspond
to the ground state, the pure Vlasov and the full BUU calculation,
respectively, which are calculated with the Skyrme interaction SkM*.

included, the �〈Q̂ISQ〉 shows a regular oscillation, with the
amplitude of the oscillation almost unchanged. Meanwhile,
in the full BUU calculation where nucleon-nucleon scatter-
ings are also included, the oscillation of the �〈Q̂ISQ〉 damps
very quickly and return to zero eventually. The above feature
indicates that the collisional damping, which is a two-body
dissipation, dominates the ISGQR width of heavy nuclei,
while the Landau damping, the one-body dissipation that re-
lates only to the mean field, has negligible effect on it. This is
different from the IVGDR case where the Landau damping is
responsible for almost half of the width [39]. Such a feature
suggests the ISGQR to be an ideal site for constraining the
in-medium nucleon-nucleon cross section.

Similarly, we show the time evolution of the �〈Q̂ISQ〉 of
the 208Pb after a perturbative isoscalar quadruple excitation
through Eq. (14). Note that since in this case, the nucleus
starts at the ground state with the presence of the excitation
operator Q̂ISQ, the initial �〈Q̂ISQ〉 for the pure Vlasov and full
BUU calculations, shown as solid line in the figure, have finite
values. Similar features with Fig. 1 about the damping of the
�〈Q̂ISQ〉(t ) for Vlasov and BUU calculations can be observed
in Fig. 2. It is obviously seen that the result of the Vlasov cal-
culation has similar oscillation with Fig. 1, but more regular.

FIG. 2. Same as Fig. 1 but for perturbation excitation of Ĥex (t ) ∝
λQ̂ISQθ (t0 − t ) with λ = 0.01 GeV fm−1/c.
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FIG. 3. The S(E ) of the ISGQR for 208Pb obtained based on the
BUU equation. The solid line represents the result obtained through
the first excitation scenario [Eq. (13)], while the dashed lines corre-
spond to that through the second excitation scenario [Eq. (14)]. The
gray hatched band represents the weighted average of the experimen-
tal Ex for 208Pb at Ex = 10.9 ± 0.1 MeV. The green symbols are the
experimental E2 EWSR by Youngblood et al. [7].

One explanation to this phenomenon is that if one excites the
nucleus through Eq. (13), it is easier for the test nucleons at the
surface of the nucleus along x and y axis to escape, whereas in
the excitation scenario in Eq. (14) this effect is suppressed due
to the deformation in the initial coordinate space. However, by
adding the number of NE , the escape of the test nucleons for
the first excitation scenario can be diminished.

Based on the obtained �〈Q̂ISQ〉(t ), the strength function
S(E ) for the isoscalar quadruple mode can be calculated
through the Fourier transform. If one excites the nucleus
through Eq. (13), the S(E ) can be obtained from

S(E ) = − 1

πλ

∫ ∞

0
dt�〈Q̂〉(t )sin

Et

h̄
. (15)

For the excitation scenario in Eq. (14), analogous expression
can be obtained by replacing the sine in the above equation
with the cosine.

We exhibit in Fig. 3 the full BUU calculations of the
strength function S(E ) for the isoscalar quadruple excitation
of 208Pb with two standard Skyrme interactions, SkM*, and
KDE [59] and one Skyrme pseudopotential SP6h [52]. For
KDE and SP6h, we excite the nucleus through Eq. (14), shown
as black and blue dashed lines, respectively. For SkM*, apart
from the result through Eq. (14), represented by the red dashed
line, the result through Eq. (13) is also adopted and the result
is shown as the red solid line. The results with SkM* indi-
cate that the two different excitation scenarios expressed in
Eqs. (13) and (14) give similar peak energies and width, as
well as the shape of the strength function. In the following,
we employ the excitation scenario in Eq. (14) to generate the
isoscalar quadruple mode of the nucleus, since it is easier to
obtain a regular oscillation of �〈Q̂ISQ〉. The gray hatched band
in Fig. 3 at E = 10.9 ± 0.1 MeV represents the weighted
average of different experimental values of the excitation en-
ergy of ISGQR of 208Pb [26]. This value can be reproduced
by SkM*, whose Ex = 10.86 MeV. Different peak energies
of different Skyrme interactions actually reflect their different

iso-scalar single particle behavior, i.e., m∗
s,0. This correlation

can be used to constrain the m∗
s,0, which is the main topic

in the next subsection. The experimental E2 energy-weighted
sum rule (EWSR) measured by Youngblood et al. [7] is also
included for comparison, i.e., the green symbols in Fig. 3.
Since the original data in Ref. [7] are only shown in fraction,
the data point are scaled to the peak value of the S(E ) obtained
with SkM*. We notice from the figure that its overall shape
can be well reproduced within the framework of the BUU
equation.

B. Correlation between Ex and m∗
s,0

Based on the quantal harmonic oscillator approach [60],
one can obtain a direct relation between the excitation energy
Ex of the ISGQR and the isoscalar nucleon effective mass,

Ex =
√

2m

m∗
s,0

h̄ω0, (16)

where h̄ω0 is the frequency of the harmonic oscillator, which
is related to the restoring force of the ISGQR, and m∗

s,0 is the
isoscalar effective mass at the nuclear saturation density ρ0.
By this semiempirical equation, we obtain that a strong linear
correlation exists in between 103/E2

x and m∗
s,0/m,

103

E2
x

= m∗
s,0

m
k + b, (17)

where the slope k is approximately equal to 103/2(h̄ω0)2 and b
is the intercept. Based on the BUU equation, we can calculate
the Ex of the ISGQR for certain nucleus employing various
Skyrme interactions with different m∗

s,0.
In order to obtain the correlation between the Ex and

the m∗
s,0, we select 65 representative Skyrme interactions

or Skyrme pseudopotentials, to calculate the strength func-
tion of the ISGQR of various heavy nuclei based on the
Eq. (14). All of these interactions (SV-m56-O, SkI5, SkI3,
SGI, SkA, SV-m64-O, SkI6, SkMP, SLy9, SAMi, SLy6,
NRAPR, SkI1, SLy4, SLy0, SLy1, SLy3, SV-mas07, KDE0v,
KDE0v1, SKRA, KDE, SK272, Rs, Gs, SGII, SkM, SkM*,
SK255, SV-mas08, MSL0, MSL1, SkT7, SkT7a, SkT8,
SkT8a, SkT9, SkT9a, SkS3, SkS1, SkS4, SV-sym32, SkO’,
SV-bas, SV-K241, BSk13, BSk5, SV-min, Skxs20, SKXm,
Skxs15, Ska25s20, Ska35s20, SKX, SkSC15, SkT1, SkT2,
SkT3, SKXce, Ska35s15, Ska45s20, BSk1, MSk7, details
about these standard Skyrme interactions can be found in
Ref. [61] and references therein, Skχm* [62], SP6h [52])
can roughly reproduce the empirical values of several char-
acteristic quantities of the nuclear equation of state [63], i.e.,
nuclear saturation density ρ0, energy per nucleon for sym-
metric nuclear matter at saturation density E0, the nuclear
incompressibility at saturation density K0, and the symmetry
energy at saturation density Esym(ρ0). The m∗

s,0/m in these
Skyrme interactions range from 0.56 to 1.05, which can be
calculated through Eq. (8).

Figure 4 displays the pure Vlasov results of the inverse
squared excitation energy 1/E2

x of ISGQR versus m∗
s,0/m with

the above 65 Skyrme interactions for 208Pb, 144Sm, 116Sn,
and 90Zr. The obtained Ex of the ISGQR decreases from
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FIG. 4. The correlation between the m∗
s,0/m and the Ex of the

ISGQR for 208Pb, 144Sm, 116Sn, and 90Zr obtained by pure Vlasov
calculation with 65 Skyrme interactions. Their linear fittings are
shown in solid lines. The hatched bands correspond to the experi-
mental Ex of the ISGQR these nuclei.

light to heavy nuclei, which follows the general trend. As
can be noticed in the figure, the 1/E2

x and m∗
s,0/m for these

nuclei exhibit nice linear correlations (their linear fits are
shown as solid lines), which indicates that Eq. (17) holds
for a large nuclear mass range. The experimental Ex of
the ISGQR for different nuclei extracted in Refs. [7,8] are
also included in Fig. 4 with different hatched bands, i.e.,
10.89 ± 0.30 MeV, 12.78 ± 0.20 MeV, 13.50 ± 0.35 MeV,
and 14.56 ± 0.20 MeV for 208Pb, 144Sm, 116Sn, and 90Zr,
respectively. Due to the limitation of the density functional,
the Skyrme interactions which reproduce the experimental Ex

of heavier nuclei give slightly lower Ex of lighter nuclei com-
pared with their experimental value, and vice versa, though
the deviations are very small. This result is consistent with
those from similar systematic analyses with Skyrme interac-
tions based on the RPA [30] and the macroscopic Langevin
equation [32].

In principle, mean-field calculations are more suitable for
heavier nuclei, therefore we choose 208Pb to constrain the m∗

s,0.
In Fig. 5, in addition to the pure Vlasov result of the Ex-m∗

s,0/m
correlation, the result from full BUU calculation with the
nucleon-nucleon scatterings is also included. Through a linear
fit, shown as solid lines in Fig. 5, we obtain the slope k and
intercept b in the relation expressed by Eq. (17), and they are
also given in Fig. 5 along with the Pearson coefficient of the
fittings. As shown in the figure, the results of Vlasov and BUU
calculation are quite similar except a small deviation. Due to
the damping provided by the nucleon-nucleon scatterings, the
slope k obtained from BUU calculations is a little bit larger
then that in the Vlasov calculation. The constrains on the
m∗

s,0/m can be obtained through m∗
s,0/m = (103/E2

x − b)/k.
Here, a weighted average value of Ex = 10.9 ± 0.1 MeV
over several experiment measurements [26] is adopted, and
represented by pink hatched band in Fig. 5. For the Vlasov

FIG. 5. The correlation between the m∗
s,0/m and the Ex of the

ISGQR for 208Pb. The green circles and red triangles are results
from the pure Vlasov and the full BUU calculations, respectively, for
different Skyrme interactions. Their linear fittings are shown in solid
lines, whose slope k, intercept b and Pearson coefficient r are also
listed. The pink hatched band corresponds to the weighted average
of the experimental Ex = 10.9 ± 0.1 MeV.

calculation, we have

m∗
s,0

m
= 0.83 ± 0.04, (18)

while for the BUU calculation
m∗

s,0

m
= 0.82 ± 0.03. (19)

The uncertainties in the above constraints on m∗
s,0/m are prop-

agated from the uncertainties of k, b, and Ex. The central
value of the constraint from the BUU calculation is slightly
lower than that from the Vlasov calculation, whereas they are
within the errors of each other. This indicates the inclusion of
the nucleon-nucleon scatterings (2p-2h correlation) has only
negligible effect on the constraint of the m∗

s,0/m. These effec-
tive mass constraints are consistent with the m∗

s,0/m ≈ 0.8–0.9
obtained from the ISGQR of the spherical nucleus 144Sm and
the deformed nucleus 154Sm [27]. The constraint on m∗

s,0 from
the Vlasov calculation is also in agreement with the constraint
m∗

s,0/m = 0.91 ± 0.05 obtained from a conventional anal-
ysis [28] and m∗

s0
/m = 0.87 ± 0.04 from a recent Bayesian

analysis [31] of ISGQR of 208Pb based on the Skyrme-RPA
calculations, where the 2p-2h correlation is also missing.

IV. SUMMARY

In the present study, the nuclear ISGQR has been inves-
tigated based on the BUU transport equation. The mean-field
part of the BUU equation is described by the Skyrme nucleon-
nucleon effective interaction, and numerically solved through
a lattice Hamiltonian method. We employ the stochastic ap-
proach to deal with the collision term of the BUU equation,
which provides a two-body dissipation and is responsible for
the collisional damping of the nuclear collective motions.
The measured ISGQR width and the overall shape have been
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reproduced based on the BUU equation with a proper in-
medium nucleon-nucleon cross section. Unlike in the case of
the IVGDR, where collisional damping is only responsible for
about half of the total width, we find that the width of ISGQR
of heavy nuclei (208Pb) is dominantly exhausted by the colli-
sional damping, which suggests the ISGQR to be an ideal site
for constraining the in-medium nucleon-nucleon cross sec-
tion. A strong linear correlation between the isoscalar nucleon
effective mass m∗

s,0 and 1/E2
x , the inverse of the squared exci-

tation energy of ISGQR, has been obtained for 90Zr, 116Sn,
144Sm, and 208Pb based on the collisionless BUU equation,
i.e., the Vlasov equation. Through the weighted average of
the experimental excitation energy Ex of 208Pb, we have ex-
tracted a constraint on the isoscalar nucleon effective mass at
m∗

s,0/m = 0.83 ± 0.04. If we include the collision term of the
BUU equation, which embodies the beyond mean-field 2p-2h

correlation, the constraint on m∗
s,0/m only decreases slightly

to 0.82 ± 0.03, which indicates that the 2p-2h correlation has
negligible effect on the excitation energy, and subsequently on
the constraint of the isoscalar nucleon effective mass.
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