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The equation of motion for the two-fermion two-time correlation function in the pairing channel is considered
at finite temperature. Within the Matsubara formalism, the Dyson-type Bethe-Salpeter equation (Dyson-BSE)
with the frequency-dependent interaction kernel is obtained. Similarly to the case of zero temperature, it is
decomposed into the static and dynamical components, where the former is given by the contraction of the
bare interaction with the two-fermion density and the latter is represented by the double contraction of the
four-fermion two-time correlation function, or propagator, with two interaction matrix elements. The dynamical
kernel with the four-body propagator, being formally exact, requires approximations to avoid generating pro-
hibitively complicated hierarchy of equations. We focus on the approximation where the dynamical interaction
kernel is truncated on the level of two-body correlation functions, neglecting the irreducible three-body and
higher-rank correlations. Such a truncation leads to the dynamical kernel with the coupling between correlated
fermionic pairs, which can be interpreted as emergent bosonic quasibound states, or phonons, of normal and
superfluid nature. The latter ones are, thus, the mediators of the dynamical superfluid pairing. In this framework,
we obtained the closed system of equations for the fermionic particle-hole and particle-particle propagators.
This allows us to study the temperature dependence of the pairing gap beyond the Bardeen-Cooper-Schrieffer
approximation that is implemented for medium-heavy nuclear systems. The cases of 68Ni and 44,46Ca are
discussed in detail.
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I. INTRODUCTION

Superfluidity and superconductivity phenomena in nuclear
systems, after their recognition in late 1950s [1], attracted a
tremendous amount of theoretical effort since then. Although
the theory of Bardeen, Cooper, and Schrieffer (BCS) [2]
appeared to be very successful when applied to supercon-
ductivity in metals, building a consistent theory of nuclear
pairing correlations was complicated by the nature of the
nuclear forces. In particular, the presence of the repulsive
core in the nucleon-nucleon interaction and strong in-medium
correlations made the direct applicability of the BCS theory
to nuclear matter and finite nuclei problematic. The devel-
opment of powerful many-body methods, such as numerous
variants of perturbative and cluster expansions, the correlated
basis function method, the Monte Carlo approach and oth-
ers, together with the advancements of the nucleon-nucleon
potentials, has helped significantly to clarify microscopic
mechanisms of nuclear superfluidity, eventually going far be-
yond the BCS theory [3].

While the observations, such as the rotational anomalies in
pulsar periods and measurements of their surface temperatures
evidence unambiguously about superfluidity of neutron stars,
theoretical models still vary considerably in the description
of its characteristics, for instance, the pairing gaps. The use

of different nucleon-nucleon interactions and regularization
techniques as well as different treatments of polarization ef-
fects may cause substantial differences in model predictions.
Refining the models of superfluidity in both symmetric and
asymmetric nuclear matters, in particular, clarifying the role
of induced pairing in screening and antiscreening is a topic of
active research [4–10].

Investigation of pairing correlations in finite nuclei seems
to be less intense. In most of the applications to nuclear struc-
ture calculations, rather simplistic concepts of pairing like
BCS, Hartree-Fock-Bogoliubov, or Gor’kov Green functions
are employed, which is unavoidable to make otherwise sophis-
ticated many-body calculations feasible. The accuracy of such
simplified treatments of pairing is comparable with the errors
introduced by other model approximations, such as neglecting
high-rank many-body correlations, multiparticle interactions,
and coupling to the continuum, to name a few. However, with
the progress of those aspects also more accurate treatment of
pairing correlations should be considered.

One of the most intriguing issues in strongly coupled
many-body systems is the emergence of collective phenom-
ena. Understanding their significant role in the formation of
the nuclear ground and excited states has been progressed
impressively over the decades, since Bohr and Mottelson
[11,12]. The impact of collective effects on nuclear pairing
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was investigated in various phenomenological frameworks
[13–18], which revealed that coupling between nucleons and
collective surface vibrations (particle-vibration coupling or
PVC) can be responsible for a large fraction of the pairing
gap. The PVC effects identified with the major contribution
to the induced pairing are widely known to be of prime im-
portance in electronic condensed matter systems, where they
induce superconductivity by reversing the sign of the repulsive
Coulomb interaction [3,19,20].

Atomic nuclei embedded in stellar environments are of
special interest. Their response to various changes of those
environments and the associated nuclear reactions are compli-
cated by the thermodynamical conditions, first, by the nonzero
temperature. It is widely recognized that the modifications
of nuclear properties by finite temperature can noticeably
influence the star evolution scenarios. In particular, the de-
pendence of nuclear superfluidity on temperature may play
a non-negligible role for the electron capture in collapsing
stars and r-process nucleosynthesis in neutron star mergers.
Although the temperature-dependent BCS is well understood
and known for the superfluid to nonsuperfluid phase transition
at the critical temperature Tc ∼ 0.6�(T = 0), the temperature
dependence of the induced pairing is more complicated as
well as the induced pairing itself.

This kind of pairing at finite temperature was investigated
more intensely for nuclear matter, although abundant shell-
model Monte Carlo studies for finite nuclei are available, see
Refs. [21,22] and references therein. In recent Ref. [10] finite-
temperature calculations of the singlet pairing gap in dilute
neutron matter were performed. The authors investigated the
pairing gaps and the critical temperature of the superfluid
phase transition. The Vlow-k interaction derived from the Ar-
gonne potential AV18 was employed for the static kernel of
the pairing gap equation and the effective interaction from
the Skyrme family was used for the RPA vertices, which
determine the dynamical kernel with the induced pairing.
At higher densities the full RPA lead to stronger screening
than the reference Landau approximation. As previously, for
instance, in the studies of the Bose-Einstein condensation
(BEC)-BCS crossover and the liquid-gas phase transition in
hot and dense nuclear matter [23], it was pointed out that the
pairing gap and the phase transition temperature are sensitive
to the approximation used to describe the medium polarization
effects responsible for the induced pairing.

In the present work we aim at investigating the temper-
ature dependence of the induced pairing in finite nuclei.
Technically, we consider nuclear correlation functions in the
equation of motion (EOM) framework, which is one of the
most universal methods known across the many areas of quan-
tum physics from condensed matter to quantum chemistry
[24–30]. Following our previous developments reported in
Ref. [31] for the zero-temperature case, in Sec. II we gen-
erate the EOM for the fermionic pair, or particle-particle,
propagator but now evolving in the domain of imaginary time
introduced by Matsubara [32]. We show that the four-fermion
correlation function in the dynamical kernel of the resulting
EOM, which is responsible for the induced pairing, can be
approximated with various degrees of accuracy, in analogy
with the zero-temperature case. At finite temperature, how-

ever, this kernel carries a nontrivial temperature dependence,
which is different from that of the static kernel implied in the
BCS theory. The impact of the latter temperature dependence
on nuclear pairing gaps is studied numerically in Sec. III. The
conclusions are drawn in the summary Sec. IV.

II. FERMIONIC PAIR PROPAGATOR IN A HEATED
CORRELATED MEDIUM

In analogy with Ref. [31], we stay within the formalism of
correlation functions, such as the Green functions, or propaga-
tors. As the propagators are directly related to observed excita-
tion spectra and ground-state properties of the many-body sys-
tems, this formalism is one of the most convenient and power-
ful ones in the description of phenomena that occur in strongly
coupled media. Following Matsubara [32], the temperature-
dependent propagator of a fermionic pair in a heated
correlated medium can be defined as a thermal average [33],

G (12, 1′2′) ≡ G12,1′2′ (τ − τ ′) = −〈Tτψ (1)ψ (2)ψ̄ (2′)ψ̄ (1′)〉,
(1)

with the chronological ordering Tτ of the one-fermion fields
in the imaginary time domain of the Wick rotated picture:

ψ (1) ≡ ψ1(τ1) = eHτ1ψ1e−Hτ1 ,

ψ̄ (1) ≡ ψ̄1(τ1) = eHτ1ψ†
1e−Hτ1 . (2)

The operator H is given by H = H − λN , where H is the
many-body Hamiltonian

H = H (1) + V (2) =
∑

12

t12ψ
†
1 ψ2 + 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3,

(3)
with the antisymmetrized matrix elements v̄1234 = v1234 −
v1243, λ is the chemical potential, and N is the particle number
operator. Here and in the following the number subscript de-
notes the full set of the single-particle quantum numbers in a
given representation and the imaginary time variables τ are re-
lated to the real times t as τ = it . The fermionic fields ψ1 and
ψ

†
1 satisfy the usual anticommutation relations, and the angu-

lar brackets in Eq. (1) stand for the thermal average [33,34],

〈O〉 =
∑

ν

wν〈ν|O|ν〉, (4)

with the summation over the expectation values in the
eigenstates of the Hamiltonian |ν〉 weighted with the
probabilities wν of finding the system in those states
within the grand-canonical ensemble. In the present work
the Hamiltonian of Eq. (3) is confined by the two-body
interaction; however, as in the zero-temperature case and as
it follows from the discussion below, the generalization to
multiparticle forces is straightforward.

The first equation of motion probing the evolution of the
correlation function of a fermionic pair defined by Eq. (1) with
the imaginary time can be generated by the differentiation of
this function with respect to the first time variable τ :

∂τG12,1′2′ (τ − τ ′) = −δ(τ − τ ′)〈[ψ1ψ2, ψ
†

2′ψ†
1′ ]〉

−〈Tτ [H, ψ1ψ2](τ )(ψ̄2′ψ̄1′ )(τ ′)〉, (5)
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where we adopted the notation:

[H, A](τ ) = eHτ [H, A]e−Hτ (6)

for an arbitrary operator A. After the evaluation of the com-
mutators the first EOM reads:

−(∂τ + ε1 + ε2)G12,1′2′ (τ − τ ′)

= δ(τ − τ ′)N121′2′ + 〈Tτ [V, ψ1ψ2](τ )(ψ̄2′ψ̄1′ )(τ ′)〉, (7)

where the single-particle energies ε1 are ε1 = t11 − λ and we
assumed that the working basis diagonalizes the one-body part
of the Hamiltonian. The norm matrix in the pp channel N121′2′

is the thermal average:

N121′2′ = 〈[ψ1ψ2, ψ
†

2′ψ
†
1′ ]〉 = δ121′2′ (1 − n1 − n2)

= δ121′2′n12, (8)

where the one-body density matrix ρ11′ obeys ρ11′ =
〈ψ†

1′ψ1〉 = δ11′n1 with n1 being, in general, the correlated
fermionic occupancies at the given temperature T . In Eq. (8)
we adopt the antisymmetrized Kronecker symbol δ121′2′ =
δ11′δ22′ − δ21′δ12′ and the notation n12 = 1 − n1 − n2.

Differentiating the last term on the right-hand side of the
first EOM (7) F121′2′ (τ − τ ′) = 〈Tτ [V, ψ1ψ2](τ )(ψ̄2′ψ̄1′ )(τ ′)〉
with respect to the second time argument τ ′ generates the
second EOM:

(∂τ ′ − ε1′ − ε2′ )F121′2′ (τ − τ ′)

= −δ(τ − τ ′)〈[[V, ψ1ψ2], ψ†
2′ψ

†
1′ ]〉

+〈Tτ [V, ψ1ψ2](τ )[V, ψ̄2′ψ̄1′ ](τ ′)〉. (9)

Applying the operator (∂τ ′ − ε1′ − ε2′ ) to the first EOM (7)
and combining Eqs. (7) and (9), we perform the Fourier trans-
formation to the domain of the Matsubara’s discrete energy
variable ωn = 2πnT . The spectral image in this domain is
defined by the relation:

G12,1′2′ (τ − τ ′) = T
∑

n

e−iωn (τ−τ ′ )G12,1′2′ (ωn). (10)

In this way, we obtain:

G12,1′2′ (ωn) = G (0)
12,1′2′ (ωn)

+1

4

∑
343′4′

G (0)
12,34(ωn)T343′4′ (ωn)G (0)

3′4′,1′2′ (ωn),

(11)

where the free particle-particle propagator is introduced as:

G (0)
12,1′2′ (ωn) = N121′2′

iωn − ε1 − ε2
. (12)

The interaction kernel of Eq. (11) has the meaning of T matrix
and reads:

T121′2′ (ωn) = 1

4

∑
343′4′

N−1
1234

[
T (0)

343′4′ + T (r)
343′4′ (ωn)

]
N−1

3′4′1′2′ . (13)

The components T (0)
343′4′ and T (r)

343′4′ (ωn) are, formally, the
Fourier images of the two last terms on the right-hand side
of Eq. (9), i.e.,

T (0)
121′2′ (τ − τ ′) = −δ(τ − τ ′)〈[[V, ψ1ψ2], ψ†

2′ψ†
1′]〉

T (r)
121′2′ (τ − τ ′) = 〈Tτ [V, ψ1ψ2](τ )[V, ψ̄2′ψ̄1′ ](τ ′)〉, (14)

so that T (0) is the instantaneous, or static, part of the T
matrix and T (r) is its dynamical part. In analogy with the case
of the particle-hole response [35] and the zero-temperature
particle-particle response [31], Eq. (11) can be transformed
to an equation of the Dyson type

G12,1′2′ (ωn) = G (0)
12,1′2′ (ωn) + 1

4

∑
343′4′

G (0)
12,34(ωn)

×K343′4′ (ωn)G3′4′,1′2′ (ωn) (15)

by introducing the kernel K(ω) irreducible with respect to the
uncorrelated pp propagator (12):

T121′2′ (ωn) = K121′2′ (ωn) + 1

4

∑
343′4′

K1234(ωn)G (0)
34,3′4′ (ωn)

×T3′4′1′2′ (ωn), (16)

or K(ωn) = T (irr)(ωn). Thus, at finite temperature the EOM
for the propagator of a fermionic pair also acquires the form
of the Dyson Bethe-Salpeter equation (Dyson-BSE) [36]. To
further specify the interaction kernel of the latter equation,
one has to evaluate the commutators of Eq. (14). For the static
part, we find, similarly to the case of T = 0 [24,31],

T (0)
121′2′ = δ121′2′n12(̃1 + ̃2) + K(0)

121′2′ , (17)

K(0)
121′2′ = v̄121′2′n12n1′2′

−
[(∑

il

v̄i12′lσ
(2)
l2i1′ + δ22′

2

∑
ikl

v̄i1klσ
(2)
kli1′

)

−
(

1′ ↔ 2′
)]

−
[
1 ↔ 2

]
, (18)

where σ
(2)
i jkl is the correlated part of the two-body density

ρi jkl = 〈ψ†
k ψ

†
l ψ jψi〉 = ρikρ jl − ρilρ jk + σ

(2)
i jkl (19)

and ̃11′ is the mean-field part of the single-particle self-
energy

̃11′ =
∑

l

v̄1l1′l nl , ̃11′ = δ11′̃1. (20)

The latter ones can be absorbed in the uncorrelated propaga-
tor, so that the Dyson-BSE takes the form:

G12,1′2′ (ωn) = G̃ (0)
12,1′2′ (ωn) + 1

4

∑
343′4′

G̃ (0)
12,34(ωn)K343′4′ (ωn)

×G3′4′,1′2′ (ωn), (21)

where G̃ (0)
12,1′2′ (ωn) is the uncorrelated particle-particle propa-

gator in the mean field,

G̃ (0)
12,1′2′ (ωn) = Ñ121′2′

iωn − ε̃1 − ε̃2
, ε̃1 = ε1 + ̃1, (22)

while the kernel K does not contain the mean-field term in its
static part. The full interaction kernel of Eq. (21) can then be
written as K = Ñ−1(K(0) + K(r) )Ñ−1, and the symbol “˜” in-
dicates the mean-field character of the quantity. Remarkably,
the static kernel has the same form as at T = 0 because of

044330-3



ELENA LITVINOVA AND PETER SCHUCK PHYSICAL REVIEW C 104, 044330 (2021)

its instantaneous character, however, it depends implicitly on
temperature via the fermionic densities.

The presence of the static kernel is a direct consequence
of the instantaneous nature of the bare interaction v̄, that was
our initial assumption about the Hamiltonian (3). In general,
the fermionic bare interaction does not have to be instanta-
neous, for instance, it can be mediated by a boson, whose
exchange between fermions must have retardation. In the case
of nuclear forces, that is the meson exchange between two
nucleons in the vacuum. We will see in the following that the
in-medium analog of this type of interaction can be generated
in the present EOM framework, if the dynamical kernel is
taken into account. Certain approximations, such as cluster
decompositions of the dynamical kernel, bring its structure
to the boson-exchange form, where the emergent bosons are
correlated fermionic pairs, and the intermediate propagators
of these bosons are associated with retardation effects of the
in-medium induced interation. As we showed in detail in
Refs. [31,35], the in-medium dynamical kernel in the form
of the phonon-exchange interaction is completely analogous
to the meson-exchange interaction between the nucleons in
the vacuum. In turn, the latter interaction should be, in prin-
ciple, derivable from the Hamiltonian of quarks and gluons.
However, if one wants to rely on the scale separation and
consider nucleons as elementary degrees of freedom, then the
consistent framework implies neglecting the time dependence
of the meson-exchange interaction. The latter approximation

is widely used in the low-energy nuclear physics in the so-
called ab initio calculations.

The most common practice for various applications of the
many-body theory is to treat the EOM (21) in the simplest ap-
proximation, which retains only the static part K(0) of the ker-
nel and neglects the correlations originating from K(r). Such
an approach forms the content of the self-consistent particle-
particle random-phase approximation (RPA) [37], the analo-
gous particle-hole RPA and the self-consistent quasiparticle
random-phase approximation, or SCQRPA, which combines
both of them and demonstrates great success in applications
to exactly-solvable models [38]. In nuclear physics, more-
over, the common practice is not to compute the static kernel
according to Eq. (18), but rather use effective interactions
adjusted to finite nuclei or the G matrix of the Brückner’s type.

More and more applications of such approaches to nuclear
systems, however, indicate that confining by only the static
part of the interaction kernel cannot lead to satisfactory re-
sults. The most spectacular examples are nuclear excitation
spectra and associated decay properties, where the part K(r)

of the kernel associated with dynamical processes induced by
the medium plays a decisive role [35,39,40]. In the description
of superfluid nuclear matter, this part of the kernel produces an
interplay of screening and antiscreening effects which can be
revealed, for instance, in the calculations of pairing gaps [5,9].

The evaluation of the commutators determining the dynam-
ical kernel leads to the following result:

K(r)
121′2′ (τ − τ ′) = 1

4

∑
ikl

∑
mnq

[v̄i1kl〈Tτ (ψ†
i ψ2ψlψk )(τ )(ψ†

mψ†
n ψ

†
2′ψq)(τ ′)〉irr v̄mn1′q

+ v̄i1kl〈Tτ (ψ†
i ψ2ψlψk )(τ )(ψ†

mψ†
n ψqψ

†
1′ )(τ ′)〉irr v̄mn2′q

+ v̄i2kl〈Tτ (ψ1ψ
†
i ψlψk )(τ )(ψ†

mψ†
n ψ

†
2′ψq)(τ ′)〉irrv̄mn1′q + v̄i2kl〈Tτ (ψ1ψ

†
i ψlψk )(τ )(ψ†

mψ†
n ψqψ

†
1′ )(τ ′)〉irr v̄mn2′q]

= K(r;11)
121′2′ (τ − τ ′) + K(r;12)

121′2′ (τ − τ ′) + K(r;21)
121′2′ (τ − τ ′) + K(r;22)

121′2′ (τ − τ ′), (23)

which, in complete analogy to the case of the particle-particle propagator at zero temperature [31], is determined by the two-time
four-fermion correlation functions contracted with two interaction matrix elements in all possible ways, which lead to a four-leg
interaction kernel. Each term of Eq. (23) contains a propagator of three particles and one hole (3p − 1h). Rather than generating
new EOM’s for such higher-rank propagators, we will follow the approach of cluster decomposition of Eq. (23) including up to
two-fermion correlation functions:

K(r;11)
121′2′ (τ − τ ′) = 1

4

∑
ikl

∑
mnq

v̄i1kl{[Ri2,q2′Glk,nm](τ − τ ′) + [Rik,qnGl2,2′m](τ − τ ′) + [Ril,qmGk2,2′n](τ − τ ′) − AS}v̄mn1′q, (24)

K(r;12)
121′2′ (τ − τ ′) = −1

4

∑
ikl

∑
mnq

v̄i1kl{[Ri2,qnGlk,m1′ ](τ − τ ′) + [Ril,q1′Gk2,nm](τ − τ ′) + [Rik,qmGl2,n1′ ](τ − τ ′) − AS}v̄mn2′q, (25)

K(r;21)
121′2′ (τ − τ ′) = K(r;12)

212′1′ (τ − τ ′), (26)

K(r;22)
121′2′ (τ − τ ′) = K(r;11)

212′1′ (τ − τ ′), (27)

where we implied that [Ri2,q2′Glk,nm](τ − τ ′) ≡ Ri2,q2′ (τ − τ ′)Glk,nm(τ − τ ′) and the finite-temperature particle-hole response
function R is introduced as

R(12, 1′2′) ≡ R12,1′2′ (τ − τ ′) = −〈Tτ ψ̄ (1)ψ (2)ψ̄ (2′)ψ (1′)〉. (28)
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Equations (24)–(27) are, again, completely analogous to the zero-temperature case [31]. The Fourier transformation of the latter
kernel to the domain of the Matsubara frequencies requires calculation of the following generic integral:

[R12,1′2′G34,3′4′ ](ωn) =
1/T∫

−1/T

dτeiωnτR12,1′2′ (τ )G34,3′4′ (τ ), (29)

which yields:

[R12,1′2′G34,3′4′](ωn) =
∑
ν ′ν ′′

wν′wν ′′

(∑
νμ

ρνν ′
21 ρνν ′∗

2′1′ α
μν ′′
43 α

μν ′′∗
4′3′

iωn − ωνν ′ − ω
(++)
μν ′′

{
e−[ωνν′ +ω

(++)
μν′′ ]/T − 1

}

−
∑
νκ

ρνν ′∗
12 ρνν ′

1′2′β
κν ′′∗
34 βκν ′′

3′4′

iωn + ωνν ′ + ω
(−−)
κν ′′

{e−[ωνν′ +ω
(−−)
κν′′ ]/T − 1}

)
. (30)

In Eq. (30) we have introduced the matrix elements of the normal ρνν ′
12 and pairing α

μν
12 , βκν

12 transition densities:

ρνν ′
12 = 〈ν ′|ψ†

2 ψ1|ν〉
α

μν
12 = 〈ν (N )|ψ2ψ1|μ(N+2)〉, βκν

12 = 〈ν (N )|ψ†
2 ψ

†
1 |κ(N−2)〉, (31)

where the former connects the states |ν〉 of the given N-particle system and the latter connect the states |ν〉 with the states
|μ〉, |κ〉 of the N ± 2-particle systems, respectively. The frequencies in the denominators correspond to the associated energy
differences. Similarly to Refs. [31,35], it is convenient to also introduce the vertices of the emergent normal and pairing phonons
as follows:

gνν ′
13 =

∑
24

v̄1234ρ
νν ′
42 , γ

μν(+)
12 =

∑
34

v1234α
μν
34 , γ

κν(−)
12 =

∑
34

βκν
34 v3412, (32)

where the presence of the two upper indices indicates that these vertices characterize transitions between excited states, in
contrast to the case of zero temperature, where only transitions between the ground and excited states were considered. Then,
the first component of the dynamical kernel takes the following form:

K(r;11)
121′2′ (ωn) = −

∑
ν ′ν ′′

wν′wν ′′
(∑

νμ

�
μν;ν ′ν ′′(+)
121′2′

iωn − ωνν ′ − ω
(++)
μν ′′

{
e−[ωνν′ +ω

(++)
μν′′ ]/T − 1

} −
∑
νκ

�
κν;ν ′ν ′′(−)
121′2′

iωn + ωνν ′ + ω
(−−)
κν ′′

{
e−[ωνν′ +ω

(−−)
κν′′ ]/T − 1

})

(33)

with

�
μν;ν ′ν ′′(+)
121′2′ =

∑
kn

[
gνν ′

1k α
μν ′′
2k α

μν ′′∗
2′n gνν ′∗

1′n + γ
μν ′′(+)

1k ρνν ′
2k ρνν ′∗

2′n γ
μν ′′(+)∗
1′n

]

�
κν;ν ′ν ′′(−)
121′2′ =

∑
kn

[
gνν ′∗

k1 βκν ′′∗
k2 βκν ′′

n2′ gνν ′
n1′ + γκν ′′(−)∗

k1 ρνν ′∗
k2 ρνν ′

n2′ γ
κν ′′(−)

n1′
]
, (34)

while the second component reads:

K(r;12)
121′2′ (ωn) =

∑
ν ′ν ′′

wν′wν ′′

( ∑
νμ


μν;ν ′ν ′′(+)
121′2′

iωn − ωνν ′ − ω
(++)
μν ′′

{
e−[ωνν′ +ω

(++)
μν′′ ]/T − 1

}

−
∑
νκ


κν;ν ′ν ′′(−)
121′2′

iωn + ωνν ′ + ω
(−−)
κν ′′

{
e−[ωνν′ +ω

(−−)
κν′′ ]/T − 1

})
, (35)

where


μν;ν ′ν ′′(+)
121′2′ =

∑
ik

[
γ

μν ′′(+)
1i ρνν ′

2i α
μν ′′∗
1′k gνν ′∗

2′k + gνν ′
1i α

μν ′′
2i ρνν ′∗

1′k γ
μν ′′(+)∗
2′k + gνν ′

1i α
μν ′′
2i α

μν ′′∗
1′k gνν ′∗

2′k
]


κν;ν ′ν ′′(−)
121′2′ =

∑
ik

[
γ
κν ′′(−)∗
i1 ρνν ′∗

i2 βκν ′′
k1′ gνν ′

k2′ + gνν ′∗
i1 βκν ′′∗

i2 ρνν ′
k1′ γ

κν ′′(−)
k2′ + gνν ′∗

i1 βκν ′′∗
i2 βκν ′′

k1′ gνν ′
k2′

]
. (36)

The two remaining components K(r;21)
121′2′ (ωn) and K(r;22)

121′2′ (ωn)
can be found from Eqs. (33)–(36) with the help of the symme-

try relations of Eqs. (26) and (27). Finally, all the expressions
can be analytically continued to the domain of real energies.
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It is easy to see that in the approximation of Eqs. (24)–
(27) to the dynamical kernel the many-body problem can be
formulated as a closed scheme. For that, one would need
to supplement Eq. (21) with an analogous EOM for the
particle-hole response function (28) and for the lower-rank
single-fermion propagator. With the cluster decomposition
confined by the two-fermion propagators, all these propaga-
tors can be, in principle, found by a self-consistent iterative
procedure. Possibilities to implement such a program for nu-
clear systems will be investigated elsewhere, and for the rest
of this work we will focus on calculations of the quantity
which is commonly referred to as pairing gap.

The equation for the pairing gap can be obtained from
Eq. (21) if, for instance, the energy argument of the pair propa-
gator is close to the transition frequency from the ground state
of the N-particle system to the ground state of the (N + 2)-
particle system. Then, the equation for the pairing transition
density αμν = αs in the vicinity of this frequency ωs reads:

αs
21 = 1 − n1 − n2

ωs − ε̃1 − ε̃2

1

4

∑
343′4′

δ1234K343′4′ (ωs)αs
4′3′ . (37)

If we assume that the ground state of the reference nucleus is
approximated by the finite-temperature BCS-like variational
ansatz, where

n1(T ) = v2
1[1 − f1(T )] + (

1 − v2
1

)
f1(T ), (38)

f1(T ) = 1

exp(E1/T ) + 1
, (39)

E1 =
√

(ε̃1 − λ̃)2 + �2
1 v2

1 = E1 − (ε̃1 − λ̃)

2E1
, (40)

the finite-temperature S-wave pairing gap �1 can be related to
the pairing transition density as

�1(T ) = αs
1̄1

2E1

1 − 2 f1(T )
, (41)

where the bar denotes the conjugate or the time-reversed state
[37]. In this approximation, at the frequency ωs = 2λ̃ Eq. (37)
takes the form of the well-known pairing gap equation:

�1(T ) = −
∑

2

V11̄22̄
�2(T )[1 − 2 f2(T )]

2E2
, (42)

which has formally the same structure as the finite-
temperature BCS equation, but with a more complicated
interaction kernel

V121′2′ = 1

2

[
K(0)

121′2′ + K(r)
121′2′ (2λ̃)

]
, (43)

whose both the static and dynamical components include the
〈Ñ−1 · · · Ñ−1〉 factors. The dynamical part, although taken in
the static limit, carries the retardation effects and the addi-
tional temperature dependence. Notice that Eq. (42) has the
same form regardless the approximations made for its static
K(0) and dynamical K(r) parts. As the fully self-consistent
treatment of those kernels is difficult even in the approxima-
tion made for K(r) in Eqs. (24)–(27), further approximations
can be made. Besides the most strong BCS-like one neglect-
ing correlations, such as the complete dynamical part K(r)

and the terms with σ (2) in K(0), one can make weaker ap-
proximations. For the static kernel K(0) this could be the G
matrix, various kinds of preprocessing of the bare interactions,
such as the renormalization group or low-k, and, eventually,
effective interactions. For the dynamical kernel K(r) the R,
G or both correlation functions appearing in Eqs. (24)–(27)
can be approximated by their uncorrelated mean-field analogs
or, alternatively, correlations in these propagators can be only
partly relaxed. This type of approaches were applied, for in-
stance, for the nuclear matter calculations of Refs. [5,41,42],
to name a few.

III. DETAILS OF CALCULATIONS, RESULTS, AND
DISCUSSION

The numerical implementation of the approach of Eq. (42)
for the pairing gap with the kernel of Eq. (43) aimed at the
investigation of the temperature dependence of the induced
pairing, i.e., essentially of the role of the second term in
Eq. (43). Therefore, at this point we kept the static kernel
as simple as in Ref. [31], namely described by the effective
monopole-monopole force with adjustable strength to avoid
complications like taming the bare interaction with the hard
core. The latter will be investigated elsewhere.

As in the previous implementations of the relativistic finite-
temperature approaches with PVC, first we solve the closed
set of the relativistic mean-field (RMF) equations using the
nonlinear sigma-model and the NL3 parametrization [43],
where the Fermi-Dirac thermal fermionic occupation num-
bers self-consistently modify the classical meson fields. The
procedure generates a set of temperature-dependent single-
particle Dirac spinors and the corresponding single-nucleon
energies, which serve as the working basis {1, ε̃1}. Then
the finite-temperature relativistic random-phase approxima-
tion (FT-RRPA) equations are solved to obtain the phonon
vertices gm ≡ gνν ′

and their frequencies ωm ≡ ωνν ′ . In this
implementation we relaxed correlations in the particle-particle
propagator of Eqs. (24)–(27), because they are known to be
less important than the correlations in the particle-hole propa-
gator. This means, technically, (i) neglecting the terms with γ

vertices in the Eqs. (34) and (36) and (ii) replacing the pairing
transition densities α and β with their uncorrelated analogs
and, simultaneously, the pairing frequencies ω(±±) with the
sums of the single-particle energies. Thus, the model space
for the dynamical kernel is formed by the set of the obtained
FT-RRPA phonons and the thermal RMF single-particle states
coupled in the pp ⊗ phonon, hh ⊗ phonon, and ph ⊗ phonon
configurations. To avoid the divergencies of the norm factors
〈Ñ−1... Ñ−1〉 around the Fermi energy, their T = 0 Hartree
values were used in calculations. This approximation may be
relaxed in the self-consistent calculations of the dynamical
kernel if pairing correlations are included explicitly in K(r).

Particle-hole configurations with the energies εph � 100
MeV and the antiparticle-hole (αh) ones with εαh � −1800
MeV, with respect to the positive-energy continuum, limited
the particle-hole basis for the FT-RRPA calculations of the
phonons. The set of phonons included vibrations with spins
and parities Jπ = 2+, 3−, 4+, 5−, 6+ below 20 MeV. The
phonon modes with the reduced transition probabilities B(EL)
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FIG. 1. Sensitivity of the neutron pairing gap around the Fermi
surface of 68Ni to the strength of the static interaction: BCS and
BCS+PVC calculations with varying static pairing strength are
shown by diamonds and circles, respectively. In both approaches,
larger values correspond to larger static pairing strength, see text for
details. The vertical line marks the Fermi energy in the BCS+PVC
calculations at T = 0.

equal or more than 5% of the maximal one (for each Jπ ) were
included in the model space, and the single-particle intermedi-
ate states entering the matrix elements gνν ′

nk in the summations
of Eqs. (34) and (36) with the energy differences |εk − εn| �
50 MeV were included in the summation. The same truncation
criteria were applied for all temperature regimes, that is jus-
tified by our previous calculations [44–46]. Note that we did
not take into account the phenomenological static pairing in
the mean-field calculations and in the calculations of the PVC
vertices as it was done in the first application of the approach
at T = 0 in Ref. [31], therefore, the results at zero temperature
are slightly different (see a more detailed discussion below).
The main features of the solutions, however, remain intact.

The solutions obtained for the neutron pairing gap in 68Ni
at low temperature of T = 0.2 MeV are displayed in Fig. 1.
At this temperature the result is nearly identical to that at
T = 0. In this calculation we illustrate (i) the role of the
PVC effects in the formation of the pairing gap in the present
calculation scheme and (ii) the sensitivity of the pairing gap
values to the parameter G, which defines the strength of the
static part of the interaction kernel K(0). As in the previous
work of Ref. [31], the latter kernel was taken in the form of the
monopole-monopole interaction, which is given in detail, for
instance, in Ref. [47], so that the present study is fully focused
on the features of the dynamical kernel K(r). The parameter
G is the only free parameter used in solving the pairing gap
equation (42) and, ideally, will be eliminated in the ab initio
calculations, where the static kernel is determined explicitly
according to Eq. (18). Here we adjust this parameter to re-
produce on average the experimental value of the pairing gap
obtained in the BCS+PVC calculation, where the averaging is
weighted with the orbital degeneracy 2 j + 1. The experimen-
tal value of the neutron pairing gap in 68Ni was extracted from
the mass tables of Ref. [48] with the aid of the commonly used

FIG. 2. Temperature dependence of the pairing gaps in 68Ni in
BCS+PVC (a) compared to the pure BCS (b) approach. In both
cases, the pairing gaps are gradually decreasing with the temperature
increase. The vertical lines correspond to the Fermi energies in the
BCS+PVC and BCS calculations at T = 0.

three-point formula [49]. Such calculation scheme allows for
understanding the role of the dynamical PVC effects in the
formation of the pairing gap. One can see from Fig. 1 that
the dynamical PVC is responsible for more than 50% of the
pairing gap value. Its contribution is slightly above 50% in
the peripheral energy regions with respect to the Fermi energy
(FE) and increases to 60–70% for the states close to the FE,
where the pairing gap values exhibit a smooth maximum. The
presence of such maximum is attributed to the functional form
of the dynamical kernel K(r), namely its propagator structure.
This result is qualitatively consistent with our previous work
[31], where a different calculations scheme was employed, as
pointed out above, and with the results of Refs. [16,50]. As
in the case of nuclear matter [4–10], the dynamical kernel
is sensitive to details of the approximation made and to the
calculation scheme. In the present implementation the experi-
mental value of the pairing gap at T = 0 and low temperatures
T � 0.4 MeV is best reproduced in BCS+PVC approach at
G = 12.6 MeV, so that with this parameter value 〈�n〉 ≈ 1.6
MeV. The latter value of G is adopted for the BCS+PVC
calculations at higher temperatures, which are presented in
Figs. 2 and 3 and discussed below.

Figure 2 illustrates the temperature dependence of the
neutron pairing gap in 68Ni in the BCS+PVC approach in
comparison with the pure BCS model. For the latter case
the parameter G was increased accordingly to reproduce the
experimental pairing gap, and the calculated pairing gap is
almost state-independent except for the energy window bor-
der, where it smoothly decreases to the zero value because
of the “soft pairing window” implied in the monopole forces
[47]. In this way, it is possible to illuminate the difference
in the temperature evolution between the descriptions with
only the static and with both static and dynamical kernels. In
the conventional BCS, where only the static kernel is taken
into account, the temperature dependence is fully determined
by the factor 1 − 2 f2(T ) in Eq. (42), while the static ker-
nel itself has no explicit temperature dependence. Implicitly,
this kernel depends on temperature, if its matrix elements
are computed in a self-consistent cycle, but this dependence
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FIG. 3. Pairing gaps for the states around Fermi energy (filled
symbols) and the average pairing gap (empty circles) as functions of
temperature in BCS+PVC approach compared to the average pairing
gap in BCS model (empty diamonds) in 68Ni.

is relatively weak. Some additional temperature dependence
may originate from the two-body density if the static kernel
is calculated microscopically via Eq. (18). Otherwise, from
the transformation (29) it follows that the explicit temperature
dependence of the interaction kernel is the consequence of
the time dependence, i.e., of the retardation effects present in
the dynamical kernel components (24)–(27). For this study,
the pairing gaps were calculated at temperatures 0 � T � 1.4
MeV with the step of 0.2 MeV. One can see from Fig. 2 that
in the BCS case the pairing gap decreases quickly with the
temperature increase: At T = 1.2 MeV it already disappears,
while in the BCS+PVC calculation the gap values are still
quite sizable grouping around 1 MeV. Another observation
is that the pairing gap retains its peaked character in the
BCS+PVC approach even when its average value decreases
with the temperature increase.

The critical temperature in the theory of superfluidity is
known as the temperature, at which the pairing gap vanishes.
The canonical BCS relationship between the critical temper-
ature and the value of the pairing gap at T = 0 �0 is Tc ≈
0.6�0. In our BCS calculation, the pairing gap disappears
at the temperature below ≈1.1 MeV, so that the coefficient
between �0 and Tc is close to the canonical value. In the
BSC+PVC approach with the additional temperature depen-
dence of the dynamical kernel one could expect a different
ratio between the �0 and Tc values and also a variation of
this ratio from state to state. These trends are illustrated in
Fig. 3, where we display the pairing gap as a function of
temperature for selected neutron states in 68Ni, which was
obtained in the BCS+PVC calculations. Namely, we show
this function for the examples of states near and far from
the Fermi energy. The average pairing gap is also shown,
and these results are compared to the average BCS pairing
gap. This representation helps determine more accurately the
values of the critical temperatures for all the cases. The first
observation from Fig. 3 is that in the BCS+PVC calculations
the pairing gaps for all the states collapse at the same critical

FIG. 4. Pairing gaps as functions of temperature in 44,46Ca. Con-
ventions are the same as in Figs. 1 and 3.

temperature. In the approximation described above we get the
value Tc ≈ 1.4 MeV for all the states, independently on the
pairing gap values for these states at T = 0. Another obser-
vation is that the critical temperature in the approach with the
dynamical kernel is higher than the BCS critical temperature
at the same values of the T = 0 average pairing gaps. This
indicates that the retardation effects in the dynamical compo-
nent of the in-medium nucleon-nucleon interaction can help
superfluidity survive at higher temperatures than it is expected
in simpler models with only the static kernels.

Figures 4 and 5 display the analogous calculations for two
calcium isotopes, 44Ca and 46Ca. The upper panels of Fig. 4
show the results for the pairing gaps in these two nuclei
obtained within BCS+PVC and pure BCS approximation at
T = 0.2 MeV, which are nearly identical to T = 0 results.
Both calculations are performed with the same static pairing
strength (only slightly different for 44Ca and 46Ca), in order
to isolate the PVC effects. In contrast to the case of 68Ni, in

FIG. 5. Pairing gaps as functions of temperature in 44,46Ca. Con-
ventions are the same as in Fig. 2.
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calcium isotopes the PVC produces peaks in the pairing gaps
mainly around the Fermi energy while affecting very little the
pairing gaps of the peripheral states. As in Ref. [31], this may
be due to a stronger cancellation between the self-energy and
exchange PVC terms for the peripheral states in these nuclei.
One can also notice some irregularities in the BCS+PVC pair-
ing gaps in 46Ca, namely the small gaps at 1d3/2 and 2s1/2. The
remaining variance with Ref. [31] pertains to the differences
in the calculation schemes, that is discussed below. The lower
panels show the temperature dependence of the BCS+PVC
pairing gaps for the states closest to the Fermi energy and their
weighted averages in comparison to the behavior of the pure
static pairing gaps. The latter are computed with readjusted
strength to reproduce the experimental pairing gaps at T = 0.
These calculations illustrate the drastic difference in the super-
fluid phase transition temperature in the two models. Similarly
to the case of 68Ni, in the BCS+PVC calculations the criti-
cal temperature is considerably higher than that in the BCS,
with approximately the same ratio between the BCS+PVC
and BCS values. Thus, this feature of the dynamical kernel
remains robust also in calcium isotopes.

In Fig. 5 one can see a more global description of the
temperature dependencies of the pairing gaps in 44Ca and
46Ca. As in the previous case, the BCS+PVC and pure BCS
calculations were performed with different values of the static
pairing strength, so that the weighted average pairing gap
values reproduce the T = 0 data in both approaches. The
general result here is a noticeably slower temperature evolu-
tion of the BCS+PVC pairing gaps, as compared to the BCS
ones, because of the presence of the nontrivial temperature
dependence in the dynamical kernel in the former case. This
is observed for all states under study. Remarkably, the shape of
the pairing gap as function of energy evolves with temperature
becoming less and less peaked in the Fermi energy region with
the temperature growth.

As briefly mentioned above, the calculation scheme em-
ployed in this work is somewhat different from the one of
Ref. [31] for T = 0 calculations. There are technical reasons
why we do not adopt the same calculation scheme here. In
the latter scheme, on the first step, we initiated the procedure
by running the RMF+BCS calculations. The BCS equation
was solved self-consistently with the RMF in the usual static-
kernel approximation with the monopole forces and pairing
strength adjusted to the odd-even mass differences, since
the phonon vertices are not yet available at this step. On
the second step, the obtained pairing gap was subsequently
used in the relativistic QRPA (RQRPA), and the phonon
vertices and frequencies were extracted. These vertices and
frequencies were used on the final step for solving the gap
equation in the BCS+PVC approximation with both static
and dynamical kernels. Notice that in this scheme, using the
RQRPA phonons is only partially self-consistent, because
in the final BCS+PVC calculation the strength constant of
the static pairing kernel has to be refitted to reproduce the
final pairing gap. In addition, the denominators of the dy-
namical kernel contain the pure single-particle energies (no
quasiparticle energies) in combination with RQRPA phonon
frequencies, which have the information about superfluid
pairing.

To adopt an analogous calculation scheme at finite tem-
perature, we would need to (i) generalize the RQRPA to
finite temperature, which is a nontrivial task on its own, (ii)
take into account a more complex structure of the phonon
vertices, which means (iii) rederiving the entire approach for
the pairing propagator and, thus, for the pairing gap in the
thermal RMF+BCS [or Hartree-(Fock)-Bogoliubov] quasi-
particle basis. This would be essentially a more complicated
and advanced solution at finite temperature, which goes be-
yond the scope of the present article, but which will be
considered in the future.

To avoid such complications, in this work we did not in-
clude pairing correlations on the first two steps, and, instead,
ran thermal RMF and finite-temperature relativistic RPA to
obtain the mean-field and phonon characteristics. On one
hand, this reduces the accuracy of the phonon calculations at
T = 0, but, on the other hand, allows us to avoid the incon-
sistency between the denominators of the dynamical kernel,
which would contain the energies and frequencies obtained in
the quasiparticle picture, and exponential factors with the tem-
perature dependence, which are not yet adopted to superfluid
pairing.

These differences in the calculation schemes, which are
both approximate and may be replaced by a more accurate one
in the future, are responsible for somewhat different behavior
of the resulting pairing gaps obtained in this work at T = 0, as
compared to Ref. [31]. However, their enhancements for the
states surrounding the Fermi energy and the general trends
in nickel and calcium nuclei remain similar, although in the
Ref. [31] the peaks of the pairing gaps are not always centered
at the Fermi surface. This may be because of only partial
self-consistency described above, which modifies the location
of the poles of the dynamical kernel. Slightly weaker PVC
effects in Ref. [31] are observed mainly due to the reduction of
the PVC vertices, as they are multiplied with the combinations
of the occupation factors in RQRPA [47].

IV. SUMMARY AND OUTLOOK

The equation of motion for the two-time two-fermion
correlation function in a strongly coupled many-body sys-
tem at finite temperature is considered. We show that, as in
the case of zero temperature, the EOM for this propagator
takes the form of the Dyson-Bethe-Salpeter equation with
the interaction kernel, which is split into the static and dy-
namical components. This kernel includes, in principle, all
the in-medium physics derived from the underlying bare two-
fermion interaction. While the static component of the kernel
depends on the correlated two-fermionic density, the dynam-
ical component contains a higher-rank fermionic propagator.
The latter, in the case of the symmetric form of the kernel, is
represented by the propagator of four fermions. Factorization
of this propagator allows for the truncation of the many-body
problem at the level of two-body correlation functions whose
EOM’s, together with those for the one-fermion correlation
function discussed in Ref. [35] form a closed system of in-
tegral equations. The equation for the temperature-dependent
pairing gap, which is related to the residue of the two-time
particle-particle propagator, is formulated as a static limit of
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the EOM for this propagator. To extract the pairing gap, which
is one of the most common characteristics of superfluidity,
we adopt the BCS-like variational ansatz for the ground-state
wave function. The resulting equation allows for an extension
of the BCS approximation to correlations of higher com-
plexity, which introduce an additional nontrivial temperature
dependence of the pairing gap.

The effects of the dynamical kernel at finite temperature
are illustrated in the calculations of the neutron pairing gaps
for 68Ni and two calcium isotopes, 44Ca and 46Ca. The pole
character of this kernel gives rise to the peak of the pairing gap
around the Fermi surface at all temperatures when the pairing
gap has nonzero values. We find that the time dependence,
mostly the retardation, present in this kernel translates to a
different temperature dependence of the pairing gap than the
one of the BCS approximation. In particular, the presence
of the dynamical term leads to noticeably higher values of
the critical temperature. This finding may be important for

numerous applications. For instance, in applications to nuclear
astrophysics, such as the r-process nucleosynthesis in the neu-
tron star mergers and the supernovae explosion, the nuclear
input for temperatures below 1–2 MeV is involved. Crossing
the critical temperature, i.e., the superfluid phase transition
can affect considerably the excitation spectra snd, thus, var-
ious reaction rates. An example of the electron capture is
discussed in Ref. [51]. Therefore, the form of the dynamical
kernel and its temperature dependence has to be computed as
accurate as possible. Self-consistent calculations of this kernel
as well as the static one, desirably in an ab-initio framework,
thus, remain an important topic for future research.
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