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Hybrid model for the damped transient response of giant dipole resonances
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We suggest the hybrid model for the description of the dipole spreading widths, in which the strength
function is built on the one-phonon strength distribution folded with the energy-dependent Lorentzian. Its energy
dependence is brought about by (i) the energy-dependent smearing parameter and (ii) the energy-dependent
shift of the one-phonon states. These variables are estimated by means of the two-phonon density, provided by
a modified Fermi gas model with uniformly spaced states, and with the aid of the weak constant interaction
between the one-phonon states and the two-phonon states, considered as background states. Based on calculated
one-phonon states, the model is analytically solvable. To explore the validity of the model we analyze the
properties of the 1− spectrum in 206Hg, 206Pb, and 210Po nuclei. Our results demonstrate that the description of
the decay widths within the latter approach is in good agreement with that obtained in the quasiparticle random
phase approximation, by means of the random distribution of the coupling between microscopic one-phonon
states and two-phonon states, generated by the Gaussian orthogonal ensemble distribution.
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I. INTRODUCTION

Nowadays, various nuclear reaction and nuclear structure
studies have become high demand fields for analysis of stellar
structure, stellar evolution, and nucleosynthesis applications
(e.g., Ref. [1]). These studies provide important constraints for
the equation of state of neutron-rich matter, which is important
for an understanding of the formation of neutron stars [2]
and core-collapse supernovas [3]. Among many considered
phenomena the analysis of photon interactions with nuclei
provides as well important information on stellar star forma-
tion rate and on the nuclear equation of state (see, for example,
Ref. [4]). Although there are phenomenological models em-
ployed for the latter analysis, there is a need for a simple
but reliable microscopic model of the nuclear response to an
electromagnetic radiation. In this way we can establish the
consistency between nuclear structure theory and heuristic
assumptions in stellar physics.

In nuclear structure the response of a nucleus to an electro-
magnetic probe is provided by strength functions that describe
the photoexcitation as well as the deexcitation of a nucleus by
means of γ radiation. In fact, the strength function is a synergy
product of the theoretical modeling of nuclear reactions and
nuclear structure dynamics. It is based on the assumption that
the nuclear level density is high enough at high excitation
energies, and, therefore, the nuclear decay properties can be
described statistically [5]. In particular, in the energy region
of 10–20 MeV reaction theory correlates the strength func-
tion with the photoabsorption cross section, dominated by

*rashid@theor.jinr.ru

the electric dipole (E1) radiation. This region characterizes
the properties of the giant dipole resonance (GDR), treated
in nuclear structure theory as a collective coherent motion of
protons against neutrons.

Starting from a seminal paper of Migdal [6], there is a vast
literature devoted to numerous attempts to describe spectral
as well as decay properties of the GDR consistently (see
for a review Refs. [7–13] and references therein). Various
microscopic approaches circumscribe quite well the centroid
energy, operating on the premise that the GDR is essentially
excited by an external field through a one-body interaction.
Another important characteristic that provides valuable infor-
mation on the excitation and decay of the GDR is its width
�. There is a consensus that any giant resonance width con-
sists of the contribution of Landau damping �L, an escape
width �↑, and a spreading width �↓, i.e., � = �L + �↑ + �↓.
The Landau damping is responsible for the fragmentation of
the initial excitation into one-particle–one-hole (1p-1h) states
serving as doorway states; a direct particle emission gives rise
to an escape width; and the decay evolution of the doorway
states along the hierarchy of more complicated (2p-2h, 3p-3h,
etc.) configurations to compound states determines a spread-
ing width. An understanding of spreading widths associated
with the cascade of couplings and their fragmentations due
to these couplings (see Refs. [14–16]) remains an open fun-
damental problem for microscopic approaches. Evidently, the
insurmountable obstacle is the existence of many degrees of
freedom for a many-body quantum system.

According to a general wisdom, the one-particle contin-
uum and, at least, 2p-2h configurations coupled to the random
phase approximation (RPA) phonons are imperative elements
for the microscopic description of the GDR width. At these
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conditions the escape width �↑ is important for the inter-
pretation of the total width in light and exotic nuclei (see
Refs. [17–19]). However, for intermediate and heavy nuclei
the contribution of �↑ to the total width is small and can be
ignored. Among acceptable approximations to the problem
of the GDR width in heavy nuclei within microscopic ap-
proaches is omitting from consideration the escape width (�↑)
in calculations. We recall that, in contrast to spherical nuclei,
in deformed nuclei the experimental widths are systematically
larger, and may develop a two- or three-peak structure. In
this paper we consider only spherical or near-spherical nuclei
around 208Pb and focus our attention on the decay width
� ≈ �L + �↓.

To carry out our study we employ the quasiparticle ran-
dom phase approximation (QRPA) with Skyrme interactions
in a separable approximation [20,21]. Hereafter, we use the
parameter set of SLy4 [22], which is adjusted to reproduce
the nuclear matter properties, as well as nuclei charge radii,
binding energies of doubly magic nuclei. Making use of the
finite rank separable approximation [20] for the residual in-
teraction enables us to perform QRPA calculations in very
large two-quasiparticle spaces. In particular, the cutoff of the
discretized continuous part of the single-particle spectra is
at the energy of 100 MeV. Following the basic ideas of the
quasiparticle-phonon model [9], the Hamiltonian is then diag-
onalized in a space spanned by states composed of one and
two QRPA phonons [23,24].

It was shown recently that the microscopic phonon-phonon
coupling (PPC) describes reasonably well the gross struc-
ture of spreading widths of giant monopole, dipole, and
quadrupole resonances in the doubly magic heavy nuclei [25].
Further, the comparison of the microscopic results with those
obtained by means of the random coupling of the one-phonon
with the two-phonon states established a good correspondence
between the two approaches. We named the approach based
on the random coupling as the damped transient response.
Within this approach, the description of the GDR spreading
widths, calculated for a few nuclei around 208Pb, demonstrates
again a close similarity with those obtained with the aid of the
microscopic PPC [26].

The purpose of the present paper is twofold: first, to de-
velop a model that simplifies the calculations of the GDR
spreading width, and relies only on one-phonon states, calcu-
lated microscopically; second, to demonstrate that this model
can be successfully implemented for the description of the
damped transient response of the GDR in heavy nuclei, pro-
viding a reliable approximation of the PPC approach.

II. PRELIMINARIES

The experimental systematics for spherical as well as
deformed nuclei in the 150 < A < 190 and 220 < A < 253
ranges provides the following estimation for the GDR centroid
energy [12,27]:

Ec = e1(1 − I2)1/2 A−1/3

[1 + e2A−1/3]1/2 , (1)

where e1 = 128.0 ± 0.9 MeV, e2 = 8.5 ± 0.2, and I = (N −
Z )/(N + Z ). The GDR width is estimated from a simple

FIG. 1. Comparison of the results for the dipole strength dis-
tribution for 206Pb, obtained by means of (a) the one-phonon
approximation, (b) the PPC approach, and (c) the random coupling
matrix elements between the one- and two-phonon configurations
(the doorway model, solid line). The strength distributions are de-
scribed by the Lorentzian function with the smoothing parameter
of 100 keV. The results, based on the one-phonon approximation
(the hybrid model), are connected by dotted and dashed lines [see
panel (c)]. The dashed curve is associated with the results where the
perturbation correction to the one-phonon energy, �E [Eq. (30)], is
taken into account (see Sec. III B). The dotted line is associated with
the results where �E = 0. The experimental centroid and width of
the GDR are 13.59 and 3.85 MeV [28], which are denoted by arrows
and lines in panels (a)–(c), respectively.

power-law expression � = cEd
c with c = 0.42 ± 0.05 MeV

and d = 0.90 ± 0.04.
Let us go briefly through the details of the microscopic

approach. The calculated position of the resonance centroids
Ec and the spreading width � have been defined with the
aid of the energy-weighted moments mk = ∫

b(E1; E )Ek dE :
(i) Ec = m1/m0 and (ii) � = 2.35

√
m2/m0 − (m1/m0)2 [29].

From our experience it is good enough to define the en-
ergy interval for location of the resonance width, taking 95%
of the energy-weighted sum rule symmetrically around the
centroid’s position (Ec) (see details in Ref. [26]). A typical
dipole strength distribution, obtained in the QRPA, is shown
in Fig. 1(a). Hereafter, for the presentation of the strength
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TABLE I. Centroid energies Ec and the spreading widths � of the GDR for 206Hg, 206Pb, and 210Po nuclei. These characteristics, calculated
in the energy region 9.5–18.5 MeV, are provided by the following approaches: (i) within the QRPA, (ii) by means of the PPC, (iii) employing
the random distribution of coupling matrix elements (Random), and (iv) within the hybrid model (Hybrid). For comparison, we present as well
the centroid energy and width values, given by the empirical systematics [12,27] (Syst.) and by available experimental data [28] (Expt).

Ec (MeV) � (MeV)

Theory Theory

Expt. Syst. QRPA PPC Random Hybrid Expt. Syst. QRPA PPC Random Hybrid

206Hg 13.53 14.1 14.1 13.8 13.7 4.38 4.6 5.0 5.0 5.0
206Pb 13.59 13.59 14.2 14.1 14.0 13.9 3.85 4.40 4.6 4.9 4.9 4.9
210Po 13.54 14.2 14.1 13.9 13.8 4.38 4.7 4.9 5.0 5.0

distribution, described by the standard Lorentzian function (if
not mentioned otherwise), we use the smoothing parameter
100 keV. It is nearby to the experimental resolution of the
dipole strength distribution.

Using the QRPA basis, we consider the linear superposition
of one-phonon and two-phonon configurations. This wave
function of the 1− states is constructed, taking into account
all two-phonon terms that are built from the phonons with
different multipolarities Iπ = 0+, 1−, 2+, 3−, 4+, coupled to
the 1− state. Considering the coupling between the one- and
two-phonon configurations, we diagonalize the model Hamil-
tonian and obtain new states, described by a wave function
which contains the mixture of one- and two-phonon configu-
rations.

With the chosen set of multipolarities, the coupling (the
PPC) of the one-phonon states with a complex background of
two-phonon states yields a strong redistribution of the one-
phonon dipole strength in the region of the GDR in the heavy
spherical nucleus 208Pb (see Fig. 1 in Ref. [25]), providing a
good description of the experimental data. The coupling sup-
presses the double bump humping and pushes the high-lying
one-phonon strength near ≈17 MeV down. As it was already
mentioned in Ref. [30] the Skyrme forces do not possess the
correct neutron-proton symmetry properties, and hence one
could fit the parameters of phenomenological interactions to
improve the description of the spreading width, additionally
to the coupling of the RPA phonons with complex config-
urations. In particular, following a similar scenario, a good
description of the spectral strength distribution for 208Pb is
obtained within the phonon-coupling model [18], where only
collective phonons were used in the complex configurations. It
is noteworthy that in our approach the RPA solutions, treated
as quasibosons, consist of one-phonon states corresponding
to collective GDR states, as well as of pure two-quasiparticle
states, that contribute to the coupling on an equal footing.
The inclusion of higher multipoles and magnetic phonons
is highly likely to increase the fragmentation. However, the
main aim of our paper is to provide an efficient approach that
could supersede the cumbersome PPC calculations and might
describe the GDR decay width on the same level of accuracy.

The obtained results [see Fig. 1(b)] demonstrate evidently
two facts. First, the presence of the two-phonon components
increases slightly the decay width value � in comparison with
that obtained in the QRPA (see also Table I). We conclude

that the Landau damping is the basic mechanism of the decay
in the considered case. Second, the influence of the PPC is
much more prominent on the strength redistribution, which
could be compared with a possible experimental dataset. The
obtained results raise the reasonable question on the degree of
the energy shift, produced by the presence of the two-phonon
components. An additional question arises on the energy de-
pendence of the smoothing parameter: does it depend on the
excitation energy, or should it be a fitting constant in theoret-
ical approaches? The underlying motivation for this question
is the energy dependence of the resonance width in the phe-
nomenological expression for the strength function (see, e.g.,
Sec. 4.2.1 in Ref. [12]).

III. SPREADING WIDTHS

To answer the above questions and to reach our announced
aim, we recapitulate first our doorway model for the fragmen-
tation.

A. Doorway model

Thus, we consider the Hamiltonian

H = Hd + Hb + V, (2)

where the doorway Hamiltonian has the form

Hd =
Nd∑
i

ωiQ
+
i Qi. (3)

Here, the energies ωi are obtained from the microscopic
QRPA calculations of the dipole phonon states |d; ωi〉; Nd

one-phonon states constitute the doorway states. Transition
matrix elements between the ground state and the one-phonon
state are obtained from the QRPA calculation as

Bi = 〈d; ωi|M1−|0〉, (4)

where |0〉 is the QRPA ground state, and the operator M1− is

M1− = −Z

A
e

N∑
k=1

rkY1μ(r̂k ) + N

A
e

Z∑
k=1

rkY1μ(r̂k ). (5)

Here, N , Z , and A are the neutron, proton, and mass numbers,
respectively; rk indicates the radial coordinate for neutrons
(protons); and Y1μ(r̂k ) is the corresponding spherical har-
monic. This definition of the dipole operator eliminates
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contaminations of the physical response due to the spurious
excitation of the center of mass.

The Nb background states are described by the Hamiltonian

Hb =
Nb∑
k

�ka+
k ak, (6)

with eigenstates |b; �k〉 and corresponding energies �k . The
number of background states is much larger than the number
of doorway states, Nb�Nd . The E1 matrix element between
the ground state and all background states is zero:

〈b; �k|M1−|0〉 = 0. (7)

We assume that there is no coupling between individual
one-phonon states, and no coupling between the background
states. The coupling, V , between the doorway (one-phonon)
states |d; ωi〉, and the background states, |b; � j〉, is taken as

V =
∑
i,k

Vdi,bk (Q+
i ak + Qia

+
k ), (8)

with

Vdi,bk = 〈d; ωi|V |b; �k〉, (9)

and fulfilling

Vdi,bk = Vbk ,di . (10)

We also assume that these coupling matrix elements can be
replaced by a random interaction where the matrix elements,
Vdi,bk , are Gaussian distributed random numbers,

P
(
Vdi,bk

) = 1

σ
√

2π
exp

(−V 2
di,bk

2σ 2

)
, (11)

with the width or strength

σ =
√〈

V 2
di,bk

〉
. (12)

Solving the eigenvalue problem for the total doorway
Hamiltonian, Eq. (2), by a numerical diagonalization

H |μ〉 = Eμ|μ〉, (13)

one obtains the total wave functions as a mixture between one-
phonon states and background states:

|μ〉 =
Nd∑
i=1

cμ
i |d; ωi〉 +

N∑
k=Nd +1

cμ

k |b; �k〉. (14)

Such wave functions yield a fragmentation of the GDR
strength on all N states, where N=Nb + Nd is the total number
of states considered in the model.

If there is no interaction between the one-phonon states and
the background states (σ=0), the dipole strength distribution,

bd (E1; E ) =
Nd∑
i=1

|Bi|2δ(E − Ei ), (15)

is concentrated on the one-phonon states. With the introduced
coupling, the strength is spread over all μ = 1. . .N states with

matrix elements given by

Pμ = 〈μ|M1− |0〉 =
Nd∑
i=1

cμ
i Bi, (16)

where Eqs. (4) and (7) are used. The dipole strength distribu-
tion becomes

b(E1; E ) =
N∑

μ=1

|Pμ|2δ(E − Eμ), (17)

where δ(E − Eμ) is replaced, for convenience, by the
Lorentzian function with the smoothing parameter � =
100 keV. The dipole strength distribution is finally averaged
over ten realizations of the random interaction (see details in
Ref. [26]). Figure 1(c) illustrates the result of the ensemble
averaging. We recall that in this case the QRPA results are
completed by the calculations in which the doorway one-
phonon 1− states interact randomly with the background
two-phonon states, generated by the Gaussian orthogonal en-
semble (GOE) distribution.

B. The hybrid model

In this section we introduce an analytical solvable model of
the spreading width, �↓, in terms of mixing of the one-phonon
dipole strength with complex background states. Next, by
means of this width we aim to provide the dipole strength
distribution that would supersede the PPC description.

Let us consider two-phonon states as our background
states. The amplitudes cμ

i describe the distribution of the prop-
erties of the one-phonon (doorway) states i over the spectrum
Eμ [see Eqs. (13) and (14)]. As a result, the strength function
(17) is defined by the matrix element (16) with the probability
of the state |d; ωi〉 per unit energy interval of the spectrum Eμ,
given by the Breit-Wigner function (see, e.g., Ref. [5]):

Pd (E ; ωd ) =
(
cμ

i

)2

D
(Eμ≈E ) = 1

2π

�↓

(ωd − E )2 + [�↓/2]2
.

(18)

Here, the spreading width �↓=2πσ 2/D is determined by the
local density of two-phonon states ρtwo-phonon(Eμ≈E ) = 1/D.
As before, σ is the average coupling strength.

Before we proceed further, there are a few comments in
order. First, with the increase of the excitation energy the
density of two-phonon states is increasing. Second, the cou-
pling matrix elements strongly fluctuate (see, e.g., Fig. 5
in Ref. [26]). However, it was shown in Refs. [26,31] that
the PPC matrix elements, following a Gaussian distribution
or a truncated Cauchy distributions, produce the same final
spreading of the B(E1) strength in the doorway model, pro-
vided the root-mean-square values σ of the matrix elements
(a constant for a chosen nucleus) are the same. We recall that
in the full microscopic calculations the two-phonon energies
are calculated by the coupling of the corresponding two one-
phonon energies, each obtained in the QRPA calculations. The
cumulative density of two-phonon states for 206Hg and 210Po
is shown in Fig. 2. In the next subsection we derive a simple
expression for the density of two-phonon states composed of
one-phonon states, utilizing Fermi-type level densities.
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FIG. 2. Cumulative level densities of one-phonon, N1(E ) (top
and bottom, left-hand scale), and two-phonon, N2(E ), states (top
and bottom, right-hand scale) of 206Hg (top) and 210Po (bottom). All
one-phonon states with 0+, 1−, 2+, 3−, and 4+ are included. The
two-phonon states are coupled to the angular momentum 1−. Results
from the QRPA calculations are shown by solid black lines, and those
from the Fermi gas model are shown by dashed red lines.

1. Density of two-phonon states

Before describing the density of two-phonon states in a
simple model, we start our discussion from the one-phonon
states.

We assume that mean-field proton (neutron) single-particle
energies are uniformly spaced in the vicinity of the Fermi
surface with a spacing constant ε=1/g. For the considered
nuclei we get εp ≈ εn ≈ 0.29 MeV from the states in the
energy range of 8 MeV around the Fermi surface for protons
as well as for neutrons, where the effective mass m�/m=0.7
in the SLy4 Skyrme interaction is accounted for. A small
value of g, or a small value of the level-density parameter
a=π2(gp + gn)/6 = π2g/3=11.3 MeV−1, is expected for nu-
clei around 208Pb (e.g., Ref. [32]). If states more distant to
the Fermi surface are accounted for, corresponding to higher
excitation energies, a smaller ε value appears.

We suppose that one-phonon states are constructed from
proton and neutron contributions on an equal footing, which
implies a factor 2 in the level density. Additionally, a factor
1/2 comes from the assumption of equal contribution from
each parity. Consequently, the energy dependence of the den-
sity of one-phonon states with an angular momentum I and a
parity π can be expressed as

ρone-phonon(Iπ , E ) = 1
2 F (I, T )2g2E , (19)

where the density of one-phonon states is approximated by
the density of one-particle–one-hole states with a given spin
and parity (see for details Ref. [33], and also the textbook
[34]). The factor F (I, T ) describes the fraction of angular
momentum I states. Assuming a random coupling of angular
momenta at a temperature T , one arrives to the distribution

function:

F (I, T ) = 2I + 1

2σ 2
T

exp

[
− I (I + 1)

2σ 2
T

]
(20)

with the spin cutoff parameter σ 2
T =JrigT/h̄2. Here,

Jrig=A5/3/72 MeV, is the moment of inertia of a rigid
body with the same density distribution as the nucleus.
The latter assumption is well justified by the study of shell
correction behavior at high excitation energies [35].

We are interested in two-phonon states as background
states for the GDR states populated around 14 MeV. A typical
one-phonon energy that contributes to the formation of the
two-phonon energies is thus U ≈ 7 MeV. It results in the
temperature value T =√

U/a ≈ 0.79 MeV, and spin cutoff pa-
rameters σT ≈ 8.8 and 9.0 for 206Hg and 210Po, respectively.
These values are adopted for the statistical description of the
distribution (20).

To test the validity of these approximations we study the
energy dependence of the one-phonon level density. To im-
prove the statistics all QRPA calculated one-phonon states
with 0+, 1−, 2+, 3−, and 4+ are added. The corresponding
one-phonon level density becomes in the Fermi gas model

ρone-phonon(E ) =
4∑

I=0

ρone-phonon(Iπ , E ). (21)

The cumulative densities

N1(E ) =
∫ E

0
ρone-phonon(E ′) dE ′ (22)

are shown for 206Hg and 210Po in Fig. 2 (top and bottom left-
hand scale, respectively). The comparison of the Fermi gas
results with the microscopic QRPA results demonstrates the
excellent agreement.

Taking into account the above arguments, we define that
the coupling of two phonons with angular momenta Iπ1

1 and
Iπ2
2 to angular momentum I determines the density of two-

phonon states with energy E as

ρtwo-phonon(I1, I2; E )

=
∫ E

0
ρone-phonon

(
Iπ1
1 , e

)
ρone-phonon

(
Iπ2
2 , E − e

)
de

= 1

6
g4E3F (I1, T )F (I2, T ). (23)

We recall that in the PPC model the two-phonon states with
1− are built from the phonons with Iπ = 0+, 1−, 2+, 3−, and
4+. Correspondingly, in the simple model we have

ρtwo-phonon(1−, E ) = 1

6
g4E3

3∑
j=0

F ( j, T )F ( j + 1, T )

≡ 1

6ε4
E3S(T ). (24)

From Eqs. (20) and (24) we obtain S(T )=0.0041 and 0.0038
for 206Hg and 210Po, respectively. Thus, Eq. (24) describes the
selection of angular momentum 1− states from the considered
one-phonon combinations in the neighborhood of the centroid
location of the GDR.
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In Fig. 2 (top and bottom, right-hand scale) the cumulative
level density of the two-phonon 1− spectrum, obtained within
the QRPA in the energy interval 8–20.5 MeV, is compared to
the cumulative version of Eq. (24):

N2(E ) = S(T )

6ε4

∫ E

E1

E ′3 dE ′ = 1

24ε4

(
E4 − E4

1

)
S(T ). (25)

The remarkable agreement between the QRPA calculated
level densities and the level densities, calculated in the simple
models (see Fig. 2), guides us to the following proposal,
discussed below.

2. Dipole strength distribution

We recall that the results, obtained within the doorway
model, are based on the assumption that it is enough to gener-
ate the one-phonon GDR states with a good accuracy within
the microscopic approach, while the background states as well
as the coupling matrix elements can be replaced by random
matrix elements of the GOE type. Note also that the results,
obtained within the PPC and the doorway model, demonstrate
evidently that the background states can be treated perturba-
tively, since the decay is basically due to the Landau damping.
In this case the RPA approach should provide the reliable
description of the spreading width. In virtue of the results
discussed above, we suggest (i) to use only the microscopic
one-phonon states of the dipole nature and (ii) to mimic the
background states with the aid of the Fermi gas model with the
density (24). We recall that in the PPC calculations the energy
interval for the location of the resonance width is defined by
the fulfillment of the energy-weighted sum rule, symmetri-
cally around the centroid’s position (Ec), giving E1 = 8 MeV
and Emax = 20.5 MeV for the nuclei here considered. States
outside of this energy interval do not contribute to the GDR
strength function. Consequently, it is natural to choose the
same approach and the same interval for the hybrid model.

Following the above proposal, we simulate the dipole
strength distribution b(E1; E ) without the numerical diagonal-
ization (13), only on the basis of the one-phonon transitions
(15):

b(E1; E ) =
∫ Emax

E1

bd (E1; x) f (Ẽ ; x) dx =
Nd∑
i=1

|Bi|2 f (Ẽ ; Ei ),

(26)

folded by the energy-dependent Lorentzian

f (Ẽ , x) = 1

2π

�↓(x)

(Ẽ − x)2 + [�↓(x)/2]2
. (27)

Due to the interaction with the two-phonon background states,
the one-phonon energies x ≡ Ei are shifted in energy: Ẽ −
x ⇒ E − (Ei − �E ). The spreading width

�↓(x) = 2πσ 2ρtwo-phonon(x), (28)

where the density ρtwo-phonon(x) is defined by Eq. (24).
From these equations it follows that in our approach

�↓∼Eβ , where β=3. We recall that in the Lorentzian model
[36] it was found that the value β=3.5 gives a satisfactory
description of experimental data in 208Pb. In a way, our results
(26)–(28) for near-spherical nuclei around 208Pb are in a close

correspondence with the Lorentzian model, while the two
approaches have different backgrounds.

The energy shift �E depends on energy and can be approx-
imated by the second-order term of the perturbation theory if
we assume a weak interaction σ between the one-phonon state
and the background of two-phonon states:

�E (E ) =
∫ Emax

E1

σ 2ρtwo-phonon(x)

x − E
dx, E1 < E < Emax.

(29)

Here, the energy variable E corresponds to the unperturbed
one-phonon energy. Taking into account Eq. (24), the integra-
tion (29) leads us to the following result for the energy shift:

�E (E ) = σ 2S(T )

6ε4

[
1

3

(
E3

max − E3
1

) + 1

2
E

(
E2

max − E2
1

)

+ E2(Emax − E1) + E3 ln
(Emax − E

E − E1

)]
. (30)

It should be pointed out that the validity of our approximation
is based on the fact that one-phonon states do not overlap, and
each of them can be treated separately.

Although our results are obtained by simple means, similar
results for the dipole strength distribution have been derived in
the extended RPA theory in the diagonal approximation with
respect to the RPA states [37]. In addition to the difference
between the methods used in both approaches, there is a differ-
ence in the energy argument of the width �↓(x). In Ref. [37]
the variable x is the energy variable, while in our approach it
is the one-phonon energy Ei. However, the root of differences
becomes obvious, if we apply the ideas of the doorway model,
Eqs. (9) and (12), to the definition of the width of the RPA
one-phonon state (1ph) of Ref. [37]:

�↓(ω) = 2π
∑
2p2h

|〈1ph|V |2p2h〉|2δ(h̄ω − ε2p2h)

≈ 2πσ 2ρ2p2h(ε2p2h) ⇒ ω ≡ ε2p2h.

Here, the variable σ is the rms value of the interaction between
the very collective RPA state and two particle-two hole (2p2h)
states, and ρ2p2h(ε2p2h) is the local density of 2p2h states.

The energy shift (30) for 210Po is shown in Fig. 3 for the
energy interval 9.5–18.5 MeV. This energy range corresponds
to the interval, taken for the calculations of the integral char-
acteristics in Table I. For the sake of illustration we use the
continuous variable E . For most states the energy shift is
positive; they are pushed down in energy due to the interaction
with higher-lying states. However, due to the energy cutoff
at Emax the energy shift is negative for the highest energies
considered.

Additionally to results displayed in Fig. 1 for 206Pb, we
compare the results for the dipole strength for two N=126
isotones 206Hg and 210Po, obtained in the QRPA [see Figs. 4(a)
and 4(d)], with the microscopic coupling [see Figs. 4(b) and
4(e)], and within the doorway and hybrid models for 210Po
and 206Hg [compare Figs. 4(c) and 4(f)]. Evidently, the results
are very similar in all considered cases (see also Table I).
We recall, however, that it is required to average over a few
realizations of the random interaction in the doorway model to
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FIG. 3. Energy shift �E (E ) [Eq. (30)] vs energy, E , for 210Po
with E1 = 8 MeV and Emax = 20.5 MeV.

obtain the agreement with the PPC. In contrast, it is enough to
calculate the strength distribution once and only once within
the hybrid model. After all, we obtain a very close agree-
ment with the results of the doorway model. Comparing the
results for the hybrid model without (�E = 0) and with the
energy shift (�E = 0), we find that the main peak of the
GDR strength distribution moves down in energy by about
400 keV in the latter case [see Figs. 1(c), 4(c), and 4(f)]. In
total, the energy shift (30) yields a perceptible change in the
redistribution of the dipole strength.

C. Concluding remarks

The hybrid model provides a simplified analytical solution
for the spreading width �↓, avoiding the full microscopic PPC
calculations. The calculation procedure can be divided into the
following steps.

(1) Energies and transition matrix elements of the GDR
one-phonon states are calculated in the QRPA.

(2) The level density of two-phonon states, considered as
background states, is described by Eq. (24), where
the parameter ε is determined from the single-particle
states around the Fermi surface (accounting for the
effective mass).

(3) The coupling strength σ , Eq. (12), may be obtained
from the following considerations.

We recall that, varying the coupling strength between the
one-phonon and the two-phonon states, the degree of com-
plexity (chaoticity) is changed. In Ref. [26] it was found that
the coupling strength can be determined from the condition
σ=σrand, where σrand is the coupling strength where chaos sets
in (measured in terms of spectrum fluctuations).

With the assumption σ=σrand, we have obtained the follow-
ing results for σrand: 24 keV for 210Po and 206Hg and 20 keV
for 206Pb.

(4) Alternatively, a simple estimation of the strength pa-
rameter σ may be done in the following way. Our
analysis shows that the PPC results as well as those
obtained by means of the doorway model manifest
about ≈10% increase of the decay width in compar-
ison to the one-phonon prediction, i.e., �↓≈0.1�L;
see Table I. This result guides us to suppose that the
parameter σ can be estimated from Eqs. (24) and (28),
assuming that the values Ec and �L are calculated
within the standard QRPA. As an example, for 206Pb
we obtain σ≈18 keV, which is not too far from the
random value σrand = 20 keV.

(5) The energy-dependent energy shift, �E (E ), is cal-
culated from Eq. (30). Finally, the dipole strength
distribution is obtained from Eq. (26).

IV. SUMMARY

The results for decay widths of the GDR in heavy nuclei
around 208Pb have been obtained in the one-phonon approx-
imation and in the PPC approach, in the framework of the
microscopic model (see details in Ref. [26]). The comparison
of these results demonstrates that the Landau damping shows
up as the basic mechanism of the decay. Our analysis confirms
as well that the influence of the PPC is much more prominent
on the strength redistribution, while it is less important for the
location of the resonance energy centroid. Further, we con-
firm that the calculations, in which the doorway microscopic
one-phonon 1− states interact randomly with the background
two-phonon states of the GOE type, are also in a good agree-
ment with the PPC results for the considered nuclei. These
results give us impetus to simplify drastically the description
of the dipole strength distribution by considering microscopi-
cally only one-phonon states.

We found that fragmentation and the redistribution of
the one-phonon states can be reproduced with the aid of
the energy-dependent Lorentzian function (27). This energy
dependence is brought about by the energy-dependent one-
phonon width �↓(E ) and the energy shift �E (E ). In the
definition of these variables the crucial role is played by the
two-phonon density, provided by the Fermi gas model with
uniformly spaced states with a constant spacing that mimics
the background states. The comparison of the results for the
spreading width of the GDR, obtained within the hybrid and
the doorway model, demonstrates as well a good agreement
(see Figs. 1 and 4 and Table I).

The hybrid model can be extended to include the coupling
of other types of phonons like magnetic phonons and phonons
with higher angular momenta. And, in principle, also back-
ground states of three-phonon character can be accounted for.
It should be noted as well that the ground state correlations
beyond the RPA [38,39] may play an important role. In this
context the problem of convergence and stability of solutions
of the beyond RPA models [40] and the so-called problem of
double counting [41] have been discussed recently. However,
all these questions are beyond the scope of the present paper,
and require separate studies.

Thus, the analytically solvable hybrid model enables us
to overcome the difficulty of microscopic calculations of the
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FIG. 4. Similar to Fig. 1, for 206Hg (left panels) and 210Po (right panels). The empirical systematics of the centroid energy and width are
denoted by arrows and lines in panels (a)–(f), respectively.

dipole decay evolution through the sequence of the complex
configurations to compound states. This model might be use-
ful for an efficient description of the decay width of the GDR
in heavy nuclei, once the calculation of the microscopic one-
phonon states is done in the RPA (QRPA). It seems reasonable
to conjecture that the proposed approach could be useful as
well for other microscopic models of spreading width of the
GDR, where the application of the RPA (QRPA) approach is
well justified.
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J. Kopecky, M. Krtička, V. Plujko, R. Schwengner, S. Siem, H.
Utsunomiya, S. Hilaire, S. Péru, Y. S. Cho, D. M. Filipescu, N.
Iwamoto, T. Kawano, V. Varlamov, and R. Xu, Eur. Phys. J. A
55, 172 (2019).

[13] P. von Neumann-Cosel and A. Tamii, Eur. Phys. J. A 55, 110
(2019).

[14] H. Aiba and M. Matsuo, Phys. Rev. C 60, 034307 (1999).
[15] D. Lacroix and P. Chomaz, Phys. Rev. C 60, 064307 (1999); 62,

029901(E) (2000).
[16] W. D. Heiss, R. G. Nazmitdinov, and F. D. Smit, Phys. Rev. C

81, 034604 (2010).
[17] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 57,

R1064(R) (1998).
[18] V. Tselyaev, N. Lyutorovich, J. Speth, S. Krewald, and P.-G.

Reinhard, Phys. Rev. C 94, 034306 (2016).
[19] N. Lyutorovich, V. Tselyaev, J. Speth, and P.-G. Reinhard, Phys.

Rev. C 98, 054304 (2018).
[20] N. Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57,

1204 (1998).
[21] A. P. Severyukhin, V. V. Voronov, and N. Van Giai, Phys. Rev.

C 77, 024322 (2008).
[22] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,

Nucl. Phys. A 635, 231 (1998); 643, 441(E) (1998).

[23] A. P. Severyukhin, V. V. Voronov, and N. Van Giai, Eur. Phys.
J. A 22, 397 (2004).

[24] A. P. Severyukhin, N. N. Arsenyev, and N. Pietralla, Phys. Rev.
C 86, 024311 (2012).

[25] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, and R. G.
Nazmitdinov, Phys. Rev. C 95, 061305(R) (2017).

[26] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, and R. G.
Nazmitdinov, Phys. Rev. C 98, 044319 (2018).

[27] S. Goriely and V. Plujko, Phys. Rev. C 99, 014303 (2019).
[28] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).
[29] E. Lipparini and S. Stringari, Phys. Rep. 175, 103 (1989).
[30] S. Adachi and N. Van Giai, Phys. Lett. B 149, 447 (1984).
[31] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, and R. G.

Nazmitdinov, Phys. Rev. C 97, 059802 (2018).
[32] W. Dilg, S. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A 217,

269 (1973).
[33] F. C. Williams, Jr., Nucl. Phys. A 166, 231 (1971).
[34] A. V. Ignatyuk, Statistical Properties of Excited Atomic Nuclei

(Energoizdat, Moscow, 1983).
[35] A. V. Ignatyuk, I. N. Mikhailov, L. H. Molina, R. G.

Nazmitdinov, and K. Pomorsky, Nucl. Phys. A 346, 191 (1980).
[36] C. B. Dover, R. H. Lemmer, and F. J. W. Hahne, Ann. Phys.

(NY) 70, 458 (1972).
[37] J. Wambach, Rep. Prog. Phys. 51, 989 (1988).
[38] V. V. Voronov, D. Karadjov, F. Catara, and A. P. Severyukhin,

Fiz. Elem. Chastits At. Yadra 31, 905 (2000) [Phys. Part. Nucl.
31, 452 (2000)].

[39] M. Tohyama, Phys. Rev. C 87, 054330 (2013).
[40] P. Papakonstantinou and R. Roth, Phys. Rev. C 81, 024317

(2010).
[41] V. I. Tselyaev, Phys. Rev. C 88, 054301 (2013).

044327-9

https://doi.org/10.1016/0375-9474(93)90315-O
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1140/epja/i2019-12840-1
https://doi.org/10.1140/epja/i2019-12781-7
https://doi.org/10.1103/PhysRevC.60.034307
https://doi.org/10.1103/PhysRevC.60.064307
https://doi.org/10.1103/PhysRevC.62.029901
https://doi.org/10.1103/PhysRevC.81.034604
https://doi.org/10.1103/PhysRevC.57.R1064
https://doi.org/10.1103/PhysRevC.94.034306
https://doi.org/10.1103/PhysRevC.98.054304
https://doi.org/10.1103/PhysRevC.57.1204
https://doi.org/10.1103/PhysRevC.77.024322
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/S0375-9474(98)00570-3
https://doi.org/10.1140/epja/i2004-10048-2
https://doi.org/10.1103/PhysRevC.86.024311
https://doi.org/10.1103/PhysRevC.95.061305
https://doi.org/10.1103/PhysRevC.98.044319
https://doi.org/10.1103/PhysRevC.99.014303
https://doi.org/10.1103/RevModPhys.47.713
https://doi.org/10.1016/0370-1573(89)90029-X
https://doi.org/10.1016/0370-2693(84)90363-0
https://doi.org/10.1103/PhysRevC.97.059802
https://doi.org/10.1016/0375-9474(73)90196-6
https://doi.org/10.1016/0375-9474(71)90426-X
https://doi.org/10.1016/0375-9474(80)90497-2
https://doi.org/10.1016/0003-4916(72)90275-8
https://doi.org/10.1088/0034-4885/51/7/002
https://doi.org/10.1103/PhysRevC.87.054330
https://doi.org/10.1103/PhysRevC.81.024317
https://doi.org/10.1103/PhysRevC.88.054301

