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The energies and decay widths of the states of the exotic 7He nucleus are studied in an ab initio approach. The
spectrum of these states is calculated using the no-core shell model (NCSM) and a corresponding extrapolation
procedure. The Daejeon16 potential, well proved on a large amount of data, is used in the calculations. The
previously developed NCSM-based approach, which includes a method for constructing the basis of functions
of cluster channels and a procedure for matching the cluster form factors obtained within this method with the
corresponding asymptotic wave functions, is applied to compute the decay widths of the levels. The possibilities
of the approach are demonstrated for calculating the partial decay widths of nuclear states into various channels
that strongly differ in type of fragmentation, spin, angular momentum of relative motion, and amplitude. The
results obtained are compared with the results of other microscopic calculations.
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I. INTRODUCTION

In recent decades, research related to low-energy nuclear
physics has shown two basic trends.

In experimental research, there has been a rapid transition
from the study of stable and neighboring long-lived nuclei
to the study of exotic systems, including nucleon-unstable
ones. The most important factor in the development of such a
research is the upgrade of existing radioactive beam facilities
and construction of new ones. Programs for upgrading exist-
ing facilities are being implemented in RIKEN (creation of
RIBF), GANIL (SPIRAL2), GSI (FAIR), and NSCL (FRIB).
Building of new centers, HIAF and RAON, for the study of
radioactive isotopes is in progress.

In theoretical research, largely due to the rapid progress
of computer technologies, an increasingly significant place is
occupied by high-precision microscopic approaches, in par-
ticular ab initio (from first principles) methods of describing
nuclear systems.

An important place among ab initio methods is taken by
different versions of the no-core shell model (NCSM) [1–5],
the Gamov shell model (GSM) [6–8], the Green’s function
Monte Carlo method [9–12], the coupled cluster method
[13,14], the hyperspherical harmonic approach [15,16], the
in-medium similarity renormalization group [17], the selfi-
consistent Green’s function method [18–20], and the lattice
effective field theory for multinucleon systems [21,22]. These
methods are based on realistic two-nucleon (NN) and three-
nucleon (NNN) potentials. These potentials could be derived
from chiral effective field theory [23–25] or from nucleon
scattering data by the use of the J-matrix inverse scattering
method [26].

Recently, there has been a sharp increase in the attention
of various theoretical groups to the problems of describing
unbound nuclear states within the framework of ab initio
approaches or methods approaching them in terms of their
theoretical level. This trend is clearly reflected in the review
[27].

In view of the circumstances mentioned above, the choice
of the object of research and the methodology for solving the
problem posed in this work seem to be timely.

It should be noted that ab initio approaches focused on
the discussed problem are already present in the literature.
Among them the methods which combine NCSM and the
resonating group model (RGM), namely the no-core shell
model/resonating group model (NCSM/RGM) [28] and the
no-core shell model with continuum (NCSMC) [29–35], seem
to be the most versatile. To describe resonances (including
those undergoing multiparticle decay) using calculations of
scattering phase shifts, the NCSM-based SS-HORSE method
was proposed [36,37]. Some nuclear resonances can be also
studied with the use of GSM [8], mentioned above.

A significant place among the methods of high-precision
description of unbound states of nuclei is occupied by ab
initio microscopic approaches, which are not, in strict defi-
nition, ab initio, but accurately take into account almost all
dynamic properties of unbound systems. Among such ap-
proaches are, in particular, the microscopic cluster model
(MCM) [38–41], the version of RGM [42] which exploits
realistic NN potentials, and the fermionic molecular dynamics
(FMD) [43–45]. Admittedly, all the above-mentioned ap-
proaches aimed at describing unbound states can be applied
to a very limited number of nuclear resonances compare to
the list of bound states whose total binding energies (TBEs)
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and electromagnetic properties are described by conventional
ab initio methods, NCSM, for example.

In our previous papers [46–48], an ab initio approach
was developed. It allows one to calculate the asymptotic
characteristics of the real decay of unbound and virtual split-
ting of bound states of nuclei, namely the total and partial
decay widths and the asymptotic normalization coefficients
(ANCs) of certain channels, respectively. This approach in-
cludes NCSM as a basic building block.

Both in the previous works and in the present one, at
the first stage the A-nucleon Schrödinger equation with re-
alistic NN potentials is solved using the basis of totally
antisymmetric A-nucleon oscillator wave functions (WFs).
The M-scheme, in which one-nucleon functions are charac-
terized by the angular momentum ji and its projection mi,
is exploited. The discussed basis is built to be complete up
to the maximal total number of oscillator quanta Nmax

tot . The
size of the used basis in the M-scheme in our calculations
is usually in the range 108–109 components. The binding
energies and the WFs of the ground, excited, and resonance
states of nuclei are computed. In the current paper we use
the Daejeon16 potential [23], which is based on chiral ef-
fective field Theory and is well proved for calculating the
spectra of nuclei with mass A � 16, their sizes, and other
characteristics. Next, the so-called cluster channel orthogo-
nalized functions method (CCOFM) [49–51] is applied. The
procedure, as a whole, looks as follows. A basis of the or-
thogonalized cluster-channel WFs is built by this method, and
the eigenfunctions computed in the NCSM are projected onto
the functions of this basis. At the third stage, the functions
obtained within the projecting procedure—so-called cluster
form factors (CFFs)—are matched with the asymptotic WFs
of the corresponding channels.

The most important problem determining the prospects for
the application of the discussed approach as a whole is that
the range of distances where solutions of the Schrödinger
equation are correctly described by NCSM A-nucleon WFs
expands proportionally to the size of the classically allowed
area of the harmonic-oscillator potential and therefore propor-
tionally to [N tot

max]1/2. So this range is somewhat limited. Does
the CFF obtained in these calculations reproduce the shape of
the asymptotic WF at intercluster distances where the nuclear
interaction is negligible? The results of our studies presented
in Refs. [47,48] give the answer “yes” to this question in a
certain formulation of the problem of asymptotics for nuclei
7Li and 8Be, which are close to 7He in mass, and not only for
one-nucleon but even for cluster channels.

We also point out that the methodological scheme of
this work includes a new element in comparison with those
discussed above. For a more precise determination of the
energies of the levels calculated in NCSM, the extrapolation
procedure presented in Ref. [7] is used.

In Secs. II and III, we give a brief outline of the just
described methodology.

In this paper we present the results of its application to
the detailed theoretical study of characteristics of the 7He
nucleus spectrum. The choice of this object is determined by
the following motivations. Despite the fact that the 7He system
has no bound states, there are experimental data on some of its

states. The prospects for a more detailed experimental study of
this object appear to be good. We have successful experience
in studying nuclei of the same and close mass. The literature
contains theoretical works devoted to ab initio studies of this
object, which makes it possible to compare the results of the
approaches used in them with the results of this one.

II. OUTLINE OF METHODOLOGY OF THE APPROACH

A. Total binding energy extrapolation procedure

In our previous works [46–48], it was shown that even
a not too large deviation of the calculated resonance energy
from the experimental one leads to a noticeable change in
the calculated value of the decay width. For this reason, the
use of experimental resonance energies in calculating decay
widths is preferable. In the framework of theoretical study of
exotic nuclei such as 7He, it is much more difficult to rely
on experimental results due to their incompleteness, unreli-
ability, or absence. So, the requirements for the accuracy of
calculating the level energies for this kind of problems are
stringent. At present, despite broad capabilities of the shell
model calculations, for neutron-rich nuclei such as 6He and
7He they are not fully converged. The only way out of this
situation is the use of one of the extrapolation procedures.
There are three widely known techniques, namely, the deep
learning extrapolation tool based on artificial neural networks
(ANNs) [52], or the five-parameter “Extrapolation A5” [7]
or three-parameter “Extrapolation B” [53] methods. The “Ex-
trapolation B” method adopts a three-parameter extrapolation
function that contains a term that is exponential in total num-
ber of quanta above the minimum harmonic oscillator energy
configuration (cutoff parameter), N∗max

tot . The “Extrapolation
A5” method adopts a five-parameter extrapolation function
that contains a term proportional to exp(−N∗max

tot
1/2) in addi-

tion to the single exponential term exp(−N∗max
tot ) used in the

“Extrapolation B” method. According to paper [52] both these
methods give comparable results with the ANN deep learning
tool, and at the same time they are much easier. The “Extrap-
olation A5” method demonstrates slightly smaller deviation
values, so in our work we used this method for obtaining total
binding energies of 7He and 6He states in “infinite” shell-
model basis. The extrapolation function proposed in Ref. [7]
depends on the five free parameters E∞, a, c, d, k∞ and
also on parameters b = √

h̄/mω, �i = b−1√2(N∗max
tot,i + 3/2),

Li = b
√

2(N∗max
tot,i + 3/2), Lt = Li + 0.54437b(Li=0/b)−1/3. It

is written in the following form:

Estate
(
N∗max

tot,i , h̄ω
) = E∞ + a exp

( − c�2
i

) + d exp(−2k∞Lt ).
(1)

The values of free parameters are determined for each
level independently by fitting this function to theoretically
calculated total binding energies. For the 6He nucleus states
we fit these parameters in the h̄ω range from 10 to 25 MeV
with 2.5 MeV steps and N∗max

tot,i = 4, 6, 8, 10, 12, 14. For the
7He nucleus states the h̄ω range is from 2.5 to 22.5 MeV
with 2.5 MeV steps and N∗max

tot,i = 5, 7, 9, 11, 13. Changes in
energy values resulting from this fit are presented below in
Tables I–III.
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TABLE I. TBEs and excitation energies (MeV) of the lowest 6He
nucleus states (T = 1).

Jπ Eexp. [72] E lim.
th. E extr.

th. E∗
exp. E

∗lim.
th. E

∗extr.
th.

0+
1 29.269 29.239 29.397 0 0 0

2+
1 27.472 27.199 27.533 1.797 2.040 1.864

2+
2 23.7 24.161 25.856 5.6 5.087 3.541

B. Cluster channel orthogonalized basis constructing

The method of construction of the basis of the WFs of
cluster channels is described in detail in our previous works
[46–51], so here we demonstrate only its key points.

Let us consider translationally invariant A-nucleon WFs of
arbitrary two-fragment decay channel basis corresponding to
the separation A = A1 + A2:

�
{k1,k2}
A ,nlm = Â

{
�

{k1}
A 1

�
{k2}
A 2

ϕnlm(�ρ)
}

Jc,MJc ,MJ T , (2)

where Â is the antisymmetrizer, �
{ki}
A i

is a translationally
invariant internal WF of the fragment labeled by a set of
quantum numbers {ki}, and ϕnlm(�ρ) is the WF of the relative
motion. The channel WF as a whole is labeled by the set of
quantum numbers cκ that includes {k1}, {k2}, l, Jc, MJc , MJ , T ,
where Jc is the channel spin. The basic idea of the method
is to represent each function of the cluster basis as a linear
combination of the functions of the M-scheme. To do that,
function (2) is multiplied by the function of the center-of-mass
(CM) zero vibrations 	000( �R). Then the transformation of
WFs caused by changing from �R, �ρ to �R1, �R2 coordinates—
the different-mass Talmi-Moshinsky-Smirnov transformation
[54]—is performed and WF (2) takes the form

	000( �R)�{k1,k2}
A ,nlm

=
∑

Ni,Li,Mi

〈
000
nlm

∣∣∣∣ N1, L1, M1

N2, L2, M2

〉

× Â
{
	

A1
N1,L1,M1

( �R1)�{k1}
A 1

	
A2
N2,L2,M2

( �R2)�{k2}
A 2

}
Jc,MJc ,MJ T .

(3)

The key technical procedure of the method is to transform
each of the two products of the internal WF of the fragment
by the function of nonzero oscillations of its CM into a super-

TABLE II. TBEs (MeV) and resonance energies (keV) of 7He
nucleus states (T = 3/2).

Jπ Eexp. [72] E lim.
th. E extr.

th. E extr.
n En [30] En [8] En [37]

3/2−
1 28.83a 28.625 28.850 547 710 390 240

1/2+
1 26.057 27.701 1696

1/2−
1 25.864 27.079 2318 2390 2700

5/2−
1 25.91b 24.743 25.960 3437 3130 3470 3630

3/2+
1 24.115 25.905 3492 4100

5/2+
1 23.937 25.833 3564 4200

3/2−
2 23.966 25.455 3921

aE exp.
n = 430 keV [73].

bE exp.
n = 3360 keV [72].

position of Slater determinants (SDs),

	
Ai
Ni,Li,Mi

( �Ri )�
{ki}
A i

=
∑

k

X Ai (k)
Ni,Li,Mi

�SD
A i (k). (4)

It is the possibility of implementing this procedure that im-
poses restrictions on the list of cluster channels available
for research within the framework of this method. Quantity
X Ai (k)

Ni,Li,Mi
is called a cluster coefficient (CC). The technique

of using these objects is presented in detail in [55]. Various
approaches to calculating these coefficients, convenient in
various special cases, are presented in papers [56–61] In the
present work we use the formalism based on the method of
the second quantization of the oscillator quanta described in
detail in [47,48]. As a result of these transformations, the
antisymmetrized product of functions in the right-hand side
of expression (3) also turns out to be a superposition of SDs.

It should be noted that WFs of cluster-channel basis terms
(2) of one and the same channel cκ characterized by the pair
of internal functions �

{k1}
A1

, �
{k2}
A2

and extra quantum numbers
l, Jc, J, MJ , T (i.e., the vector coupling is meant here), briefly
denoted as �

cκ

A ,n, are non-normalized due to the properties
of the antisymmetrization operator and, with rare exceptions,
nonorthogonal. Creation of orthonormalized basis functions
of a separate channel cκ is performed by the diagonalization
of the overlap kernel matrix

||Nnn′ || ≡ 〈
�

cκ

A ,n′ |�cκ

A ,n

〉
= 〈	00( �R)�{k1}

A1
�

{k2}
A2

ϕnl (ρ)

×|Â2|�{k1}
A1

�
{k2}
A2

ϕn′l (ρ)	00( �R)〉. (5)

The eigenvalues and eigenvectors of this overlap kernel
are the same in the shell-model and translationally invariant
representations and can be written as

εκ,k = 〈
Â
{
�

{k1}
A1

�
{k2}
A2

f k
l (ρ)}∣∣1̂|Â{

�
{k1}
A1

�
{k2}
A2

f k
l (ρ)

}〉
, (6)

f k
l (ρ) =

∑
n

Bk
nlϕnl (ρ). (7)

On the other hand, the WFs of the orthonormalized channel
basis cκ

�
SD,cκ

A ,kl = ε
−1/2
κ,k

∣∣	00( �R)Â
{
�

{k1}
A1

�
{k2}
A2

f k
l (ρ)

}〉
. (8)

turn out to be represented in the form of the superposition of
the SDs. The basis of such functions is complete in the sense
that a function of this channel,

�SD,cκ = 	00( �R)Â{�{k1}
A 1

�
{k2}
A 2

	(ρ)Yl (�)}Jc,MJ T , (9)

including arbitrary WF 	(ρ) can be represented as a superpo-
sition of such WFs.

These functions can be introduced into the basis of the
NCSM calculations for its expansion towards large N tot

max or
used to find the cluster characteristics of nuclear states calcu-
lated in the NCSM basis, both extended due to their inclusion,
and in the traditional one.

C. Cluster characteristics in ab initio calculations

In this work, the energies of the levels of the initial and
resulting nuclear states are calculated in the usual M-scheme
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TABLE III. Resonance energies, decay widths of open channels (keV), and channel spectroscopic factors of 7He nucleus states for “new”
definitions of the CFF and SF. Numeric subscript denotes the value N∗max

tot .

Jπ (7He) Jπ (6He) E lim.
n E extr.

n l (S) SF �lim. �extr.
11 �extr.

13 �tot [30] �tot [8] �tot [37] �
exp.
tot

3/2−
1 0+

1 614 547 1(1/2) 0.730 387 336 334a 300 178 110 182
1/2+

1 0+
1 3184 1696 0(1/2) 0.844 3670 2670 2670

1/2−
1 0+

1 3375 2318 1(1/2) 0.814 2440 1940 1850 2890 4300 750b

2+
1 1335 454 1(3/2) 0.509 253 221

3(5/2) 0.21 × 10−3 812 0.47 eV 0.46 eV
5/2−

1 0+
1 4496 3437 3(1/2) 0.37 × 10−3 110 eV 56 eV 52 eV

2+
1 2606 1573 1(3/2) 0.420 1366 980 881

1(5/2) 0.758 1783 1200 1060 1070 2300 1360 1990
3/2+

1 0+
1 5124 3492 2(1/2) 0.041 125 84.4 83.4

2+
1 3084 1628 0(3/2) 0.752 3430 2590 2490

2(3/2) 0.051 58 22.3 17.9 4400
5/2+

1 0+
1 5302 3564 2(1/2) 0.126 382 285 258

2+
1 3262 1700 0(5/2) 0.704 3100 2210 2240

2(5/2) 0.019 29 13.7 11.1 5000
2+

2 224 23 0(5/2) 0.001 9.3 3.33 2.98
2(3/2) 0.012 38.6 eV 0.15 eV 0.14 eV

3/2−
2 0+

1 5273 3921 1(1/2) 0.069 276 249 229
2+

1 3233 2057 1(3/2) 0.190 556 408 399
1(5/2) 0.470 1486 1150 1060

2+
2 196 380 1(3/2) 0.268 44 126 108

aFor the experimental value of 3/2−
1 state resonance energy 430 keV, computed value � = 250 keV.

bThere are other experimental results: 2.0 MeV [74], 10.0 MeV [75], or 1.0 MeV [76].

NCSM model, and the basis described above is used to calcu-
late the cluster characteristics of decay channels: the cluster
form factor and the spectroscopic factor (SF).

The CFF 	
cκ

A (ρ) describes the relative motion of sub-
systems in A-nucleon configuration space. In the modern
(so-called “new”) definition, CFF is the following overlap:

	
cκ

A (ρ) =
〈
�A|Â

{
�

{k1}
A 1

�
{k2}
A 2

N̂−1/2 δ(ρ − ρ ′)
ρ ′2 Yl (�)

}
Jc,MJ T

〉
,

(10)

where �A is the WF of the initial nucleus—the NCSM so-
lution of the A-nucleon Schrödinger equation—and N̂ is the
norm operator of the generalized function of the cluster chan-
nel, which takes the form:

N̂ (ρ ′, ρ ′′) =
〈
Â

{
�

{k1}
A 1

�
{k2}
A 2

δ(ρ − ρ ′)
ρ ′2 Yl (�)

}
Jc,MJ T

∣∣∣∣
×

∣∣∣∣Â
{
�

{k1}
A 1

�
{k2}
A 2

δ(ρ − ρ ′′)
ρ ′′2 Yl (�)

}
Jc,MJ T

〉
. (11)

Representation of the generalized function of the relative
motion in the form of an expansion in terms of oscillator
functions,

[δ(ρ − ρ ′)/ρ ′2]Ylm(�) =
∑

n

ϕnlm(�ρ )ϕnlm(�ρ ′), (12)

first, reduces the norm operator to the overlap kernel matrix
(5) and, second, makes it possible to write the CFF in the form

	
cκ

A (ρ) =
∑

k

ε
−1/2
κ,k 〈�A|Â{�{k1}

A1
�

{k2}
A2

f k
l (ρ ′)}〉 f k

l (ρ). (13)

After that the CCF can be expressed in the form of an ex-
pansion in the oscillator basis using the techniques presented
above:

	
cκ

A (ρ) =
∑

k

ε
−1/2
κ,k

∑
n,n′

Bk
nl B

k
n′lC

n′l
AA1A2

ϕnl (ρ). (14)

The coefficient contained in this expression has the form

Cnl
AA1A2

= 〈
Â
{
�

{k1}
A1

�
{k2}
A2

ϕnl (ρ)
}|�A

〉
= 〈

�
SD,cκ

A,nl

∣∣	000(R)|�A〉 = 〈
�

SD,cκ

A,nl

∣∣�SM
A

〉
. (15)

This coefficient is traditionally called the spectroscopic ampli-
tude (SA). A number of very diverse methods of its calculation
depending on the masses of the initial nuclei and fragments
were described in [55,58–60]. All of them are based on the
CCs formalism.

The SF is defined as the norm of CFF; for the discussed
channel cκ it can be written as

Scκ

l =
∫

|	cκ

A (ρ)|2ρ2dρ

=
∑

k

ε−1
k

∑
nn′

Cnl
AA1A2

Cn′l
AA1A2

Bk
nl Bk

n′l . (16)

The “old” definition of CFF, commonly used for many
years, is similar to the definition of the “new” one (10) but its
expression does not contain the normalization operator N̂−1/2:

	̃
cκ

A (ρ) =
〈
�A|Â

{
�

{k1}
A 1

�
{k2}
A 2

δ(ρ − ρ ′)
ρ ′2 Yl (�)

}
Jc,MJ T

〉
, (17)

044323-4



DETAILED THEORETICAL STUDY OF THE DECAY … PHYSICAL REVIEW C 104, 044323 (2021)

Its expression through the spectroscopic amplitudes looks
simpler than expression (14):

	̃
cκ

A (ρ) =
∑

n

Cnl
AA1A2

ϕnl (ρ). (18)

The “old” SF is defined by the first equality of expression (16),
and its calculation formula reads

S̃cκ

l =
∑

n

(
Cnl

AA1A2

)2
. (19)

We note that an alternative method for calculating CFFs
in the NCSM (and obviously SFs, if necessary) that does not
use the formalism of cluster coefficients is presented in the
literature [62]. In this paper we use the “old” definitions of
CFF and SF.

D. About the “old” and “new” definitions of CFF

The definitions of the CFF (10) and SF (16) are completely
equivalent to those proposed in [63] (in this work they were
called “new” spectroscopic factor and CFF as opposed to
“old” ones). In contrast to the traditional definition, the new
CFF and SF characterize the total contribution of orthonor-
malized cluster components to the solution of the Schrödinger
equation describing an A-nucleon system. Reasons for the ne-
cessity of their use to describe nuclear decay and reactions can
be found in [64,65]. In [66,67], it was shown that the correct
definitions eliminate a sharp contradiction between theoreti-
cally calculated values of the cross sections for reactions of
knockout and transfer of α clusters and the experimental data.
For example the use of the “old” definition of the SF, that
is, the loss of normalization of the asymptotic wave function,
leads to an underestimation of the cross section of knockout
reaction 40Ca(p, p′α) 36Ar by more than 20 times, while using
the “new” definition gives a result close to the measured one.
Using this fact, one can talk about “experimental” confirma-
tion of validity of the latter definition.

Nevertheless it is pertinent to note one significant circum-
stance. For the decay of the7He nucleus studied here, only
neutron channels are relevant. In contrast to cluster channels,
the “old” definition is still often used for form factors and SFs
of single-nucleon channels. This is due to a well-established
tradition and the fact that the numerical differences in the
results of calculations employing the “old” and “new” defi-
nitions are usually not large for single-nucleon channels, in
contrast to cluster channels. In some instances, the calcula-
tions within the framework of the “old” approach may turn out
to be closer to the experimental ones because of the influence
of some other used approximations. There were cases when
the same research team in earlier works had preferred to use
the “old” [40] definition and in later works preferred to use
the “new” [41] definition. Taking into account all these facts, it
seems reasonable to calculate the widths of one-nucleon decay
of the states of the 7He nucleus, using both the “new” and
“old” system of the definitions of the CFF and SF, to compare
the results and to give a detailed comment on this problem as
a whole.

In principle, within the framework of the procedure for
matching the CFF with the asymptotic wave function of the

channel at large distances, both the “new” and “old” ver-
sions of CFF can be used, since they coincide at rather large
distances (see below). However, within the framework of
NCSM, it is difficult to achieve a correct description of the
wave functions in the region where nontrivial permutations
contained in the antisymmetrization operator do not play an
appreciable role. For this reason, it becomes necessary to
use more accurate (i.e., correctly describing the properties of
the channel at distances which are well described by means
of NCSM) multinucleon functions as the asymptotic wave
functions of the channel. The most convenient approach to
solving the problem of “short-distance asymptotics” would be
a direct use of the RGM wave functions as asymptotic ones.
Obviously, this conclusion applies to any approach in which
functions—solutions of a multinucleon problem—need to be
combined with asymptotic ones. The RGM wave function has
the form

F A1+A2
l = |Â{�A1�A2φl (ρ)Ylm(�ρ )}Jc,MJ T 〉. (20)

where φl (ρ) is the sought-for function. It is important to note
that the condition of normalization of the RGM multinucleon
wave function of the channel (for example let us consider one-
open-channel RGM problem)

〈
F A1+A2

l

∣∣ F A1+A2
l

〉 =
(

1
δ(E − E ′), δ(k − k′), etc.

)
(21)

implies the condition for the relative motion function con-
tained in the RGM multi-nucleon wave function (20):

〈
N̂1/2

ρ φl (ρ)
∣∣ N̂1/2

ρ φl (ρ)
〉 =

(
1

δ(E − E ′), δ(k − k′), etc.

)
.

(22)
As a result, it is not function φl (ρ) but function

χl (ρ) = N̂1/2
ρ φl (ρ) (23)

that has the correct two-body asymptotics, and the RGM func-
tion can be written in the form

F A1+A2
l = |Â{�A1�A2 N−1/2χl (ρ)Ylm(�ρ ′ )}Jc,MJ T 〉. (24)

To compare multinucleon wave functions in the region
where both NCSM and RGM descriptions are valid, it is
required to compare quantities that have the same meaning,
for example, their projections on a certain hypersurface. This
hypersurface may be defined in the usual form

|Â{�A1�A2

1

ρ2
δ(ρ − ρ ′)Ylm(�ρ ′ )}Jc,MJ T 〉. (25)

As a result, the expression of the “old” CFF (17) is obtained.
The same projecting procedure for the RGM wave function

leads to a nontrivial result:〈
F A1+A2

l

∣∣Â
{
�A1�A2

1

ρ2
δ(ρ − ρ ′)Ylm(�ρ ′ )

}
Jc,MJ T

〉

= N̂ρφl (ρ) = N̂1/2χl (ρ). (26)

Comparison of these two projections at “short-range asymp-
totic” (sas) distances leads either to the appearance of the
operator in the function describing this asymptotics,

	̃
cκ

A (ρsas) = N̂1/2χl (ρsas), (27)
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or to the appearance of the operator in the expression for the
projection of the NCSM solution [see expression (10)],

	
cκ

A (ρsas) = χl (ρsas). (28)

Evidently the results of two versions of comparison are equiv-
alent. Within the framework of the just presented procedure
of description of the internal and asymptotic solutions, it is
impossible to eliminate the indicated integral transformation
using any identical rearrangement of the formulas.

It must be pointed out that the approach we use includes
not RGM wave functions (20) but simpler, approximate,
asymptotic ones. The cause is that, in the case where NCSM
solutions are used as the functions of fragments, the calcula-
tion of RGM wave functions turns out to be even more difficult
than the direct NCSM calculations. Therefore, the following
approximations are introduced into the original RGM-based
formalism:

(1) As is usual for the description of asymptotics, it is
assumed that the effect of strong interaction on the
wave function in a given distance range is negligible.

(2) The Coulomb interaction between the protons of the
fragments is replaced by the Coulomb interaction of
point charges. Numerous studies demonstrate the high
reliability of this approximation.

The antisymmetric A-nucleon function built in this way
is projected using procedure (26) with χl (ρ) replaced by
Gl (η, ρ) and compared with the “old” CFF; or, when pro-
jecting using a procedure similar to (26), but onto normalized
function∣∣∣∣Â

{
�A1�A2 N−1/2 1

ρ2
δ(ρ − ρ ′)Ylm(�ρ ′ )

}
Jc,MJ T

〉
, (29)

a comparison is made with the “new” CFF. The results of this
comparison, as we indicated above, are equivalent. It should
be emphasized that, within the framework of the indicated
approximations, the integral transformation N1/2 or N−1/2

does not disappear.
Exchange kernel N̂ (ρ ′, ρ ′′) degenerates into unity at large

distances; therefore, the replacement N̂ (ρ ′, ρ ′′) → 1 resulting
in the “old” CFF formula at such distances is quite adequate.
But this replacement is an approximation to the just pre-
sented “new” version for any example and for any area of the
space anyway. On the other hand, the “new” approach is also
approximate.

Nevertheless, it should be noted in advance that, with
regard to the predictions of the decay widths of 7He states
presented below, we give preference to those obtained within
the framework of the “new” scheme. The issue is that, in the
standard two-body collision theory, asymptotic regular and
irregular wave functions [Bessel jl (ρ), Coulomb Gl (η, ρ),
etc.] are given over the entire range range of ρ. The “new”
approach allows one to construct multinucleon asymptotic
functions with the same properties. At the same time, an at-
tempt to describe the multinucleon asymptotic wave function

F as
l = |Â{�A1�A2 [ jl (ρ), or Gl (η, ρ), etc.]Ylm(�ρ ′ )}〉 (30)

1 2 3 4 5 6 7
, fmρ
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FIG. 1. Illustration of the conditions for matching CFFs in the
“new” and “old” definitions with an asymptotic function.

over the entire range of ρ leads to violation of the relation
(21). Because of this, one should be treated with caution the
results obtained in the framework of “old” matching proce-
dure even at not very large distances.

E. Application of CFFs for studies of decay characteristics
of nuclear states

Both SFs and CFFs are objects used in theoretical studies
on nuclear decays and reactions. Evidently CFF is the more
informative characteristic of a cluster channel. In the current
work the obtained CFFs (both “new” and “old”) are ex-
ploited for computing the widths of resonances. The norms of
these values—SFs—are used to distinguish the main channels
against the background of a multitude of other ones, existence
of which practically do not affect the results of experiments.

As in our previous works [47,48], we use the procedure of
matching the CFF with the asymptotic wave function of the
corresponding channel. The results of our studies presented in
these works demonstrate that the CFF in its new definition al-
lows matching with the asymptotic wave function at relatively
small distances, where the nuclear interaction is negligibly
weak, but exchange effects generated by the antisymmetry of
the total channel wave function and manifested through the
exchange terms of the overlap kernel are still not negligible.
“Switch off” the effects of antisymmetrization—the vanishing
of the matrix elements of the permutation operators included
in the antisymmetrizer—occurs at larger distances. Here we
demonstrate one more illustration of the indicated behavior of
CFFs and asymptotic wave functions.

In Fig. 1 the pattern of matching “old” and “new” CFFs
of the decay channel of the ground state of the 7He nucleus
into channel 6He +n with an irregular function Gl (η, ρ) is
presented. This figure clearly shows the range of distances
3.1 � ρ � 3.7 fm at which NCSM calculations reproduce
well the Coulomb function Gl (η, ρ). Thus, on the one hand,
the model adequately describes this area of space and, on
the other hand, the nuclear interaction is negligibly weak:
CFFs behave almost the same as the asymptotic function. It
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TABLE IV. Resonance energies, decay widths of open channels (keV), and channel spectroscopic factors of 7He nucleus states for “old”
definitions of the CFF and SF. Numeric subscript denotes the value N∗max

tot .

Jπ (7He) Jπ (6He) E lim.
n E extr.

n l (S) SF �lim. �extr.
11 �extr.

13

3/2−
1 0+

1 614 547 1(1/2) 0.472 234 202 202a

1/2+
1 0+

1 3184 1696 0(1/2) 0.882 3860 2860 2810
1/2−

1 0+
1 3375 2318 1(1/2) 0.814 2420 1920 1820

2+
1 1335 454 1(3/2) 185 59.8 52.2

3(5/2) 0.129 0.21 × 10−3 0.47 eV 0.46 eV
5/2−

1 0+
1 4496 3437 3(1/2) 0.37 × 10−3 114 eV 54.9 eV 51.3 eV

2+
1 2606 1573 1(3/2) 0.089 297 204 190

1(5/2) 0.828 1910 1315 1198
3/2+

1 0+
1 5124 3492 2(1/2) 0.042 127 86.6 84.5

2+
1 3084 1628 0(3/2) 0.773 3520 2660 2560

2(3/2) 0.046 51.2 19.7 16.0
5/2+

1 0+
1 5302 3564 2(1/2) 0.137 403 304 270

2+
1 3262 1700 0(5/2) 0.736 3360 2450 2430

2(5/2) 0.019 30.0 13.8 11.2
2+

2 224 23 0(5/2) 0.003 7.09 2.61 2.27
2(3/2) 0.012 40.68 eV 0.16 eV 0.14 eV

3/2−
2 0+

1 5273 3921 1(1/2) 0.060 257 213 215
2+

1 3233 2057 1(3/2) 0.311 856 648 593
1(5/2) 0.512 1570 1240 1110

2+
2 196 380 1(3/2) 0.213 32.6 94.5 81.1

aFor the experimental value of 3/2−
1 state resonance energy 430 keV, computed value � = 146 keV.

is interesting that in the discussed example for the “new”
and “old” CFFs the range of reproduction of the asymptotic
function is practically the same. At the same time, the absolute
values of the the matching parameter β differ markedly. This
leads to a significant difference in the decay widths of a given
state, presented below in Tables III and IV.

The figure also shows the influence of the exchange terms
of the overlap kernel. Indeed, in the region where this influ-
ence turns out to be negligible, the “new” and “old” CFFs for
the same solution to the multinucleon problem coincide. One
may see that this area begins at about the value ρ � 7.0 fm.
To obtain, within the framework of the “old” approach, results
coinciding with those obtained in the “new” one, it would be
necessary to achieve a satisfactory description of this spatial
domain using NCSM. This is precisely what constitutes the
advantages of the “new” definition as applied to the study of
nuclear decays. This property is very important for dealing
with NCSM CFFs.

It must be emphasized that the argument just given is
purely mathematical in nature. It only demonstrates the area
where the influence of the overlap kernel ends, but evidently
in this area the results obtained in NCSM do not correspond
to physical reality.

So, in the discussed approach, a direct matching proce-
dure described in classical textbooks of quantum mechanics
is applied to calculate the widths of narrow resonances. For
such resonances or, more precisely, for those of them whose
small width is due to a low penetrability of the potential
barrier, we used a very compact procedure proposed in [68].
This procedure is applicable because for such resonances
there is a sufficiently wide range of distances in which the
nuclear attraction is already switched off and at the same
time the potential barrier is high enough. At any inner point

ρin of this area, the relationship between the regular and
irregular solutions of the two-body Schrödinger equation in
the Wentzel-Kramers-Brillouin (WKB) approximation has the
form

Fl (ρin )/Gl (ρin ) = Pl (ρin ) � 1, (31)

where Pl (ρin ) is the penetrability of the part of the potential
barrier that is located between the point ρin and the outer turn-
ing point. The smallness of this penetrability is the condition
of applicability of the approximation in which the contribution
of the regular solution can be neglected. To determine the
position of the matching point ρm of the CFF (either “old”
or “new”) and the irregular wave function in this range, we
use the condition of equality of the logarithmic derivatives,

d	
cκ

A (ρ)/dρ

	
cκ

A (ρ)
= dGl (ρ)/dρ

Gl (ρ)
. (32)

Comparison of the values of the CFF and function Gl (ρ) in the
matching point allows one to determine the amplitude of the
channel wave function in the asymptotic region, which takes
the form βGl (ρ), where

β = 	
cκ

A (ρm)/Gl (ρm). (33)

As a result, the decay width is given by the expression

� = h̄2

μk

[
	

cκ

A (ρm)

Gl (ρm)

]2

. (34)

To make the list of the properties of the states of a certain
nucleus broader, large-width resonances are considered too. If
the resonance is wide and so the penetrability Pl (ρin ) (31) is
not small, the width of this resonance is calculated using the

044323-7



D. M. RODKIN AND YU. M. TCHUVIL’SKY PHYSICAL REVIEW C 104, 044323 (2021)

simple version of the conventional R-matrix theory:

� = h̄2

μk0

[
F 2

l (ρm) + G2
l (ρm)

]−1[
	

cκ

A (ρm)
]2

. (35)

Naturally the use of this version leads to reduction in ac-
curacy of calculation results. However, this technique seems
natural for describing experimental decay widths, since, when
extracting their values from the cross sections of resonance
processes, different versions of the R-matrix theory of nuclear
reactions are also used. Besides that, the accuracy of the data
concerning large-width resonances, both decay widths and
excitation energies, extracted from various experiments, is
also very limited. It is important to note that, in contrast to
calculating the total fragmentation width of any resonant state,
finding the partial widths of its decay into various channels
requires calculating the amplitudes of channel wave functions
in the asymptotic region.

In this paper the proposed approach is utilized to study the
spectrum of resonance states of the 7He nucleus and the partial
decay widths of these states.

An important point is that the Daejeon16 potential [23] is
exploited as a model of NN interaction in the current work. It
is built using the next-to-next-to-next-to leading order (N3LO)
limitation of chiral effective field theory [69] softened by a
similarity renormalization group (SRG) transformation [70].
This potential is designed to calculate all kinds of charac-
teristics of nuclei with masses A � 16. It was tested in the
framework of large-scale computations of the total binding
energies, excitation energies, radii, moments of nuclear states,
and the reduced probabilities of electromagnetic transitions.
These tests demonstrated that such characteristics are, in gen-
eral, reproduced well. Besides that, this choice is supported by
our previous studies of the asymptotic characteristics of the
cluster channels of light nuclei, in which other NN potentials
were also involved in the analysis. The results of these studies
are presented in Refs. [46,49,51].

III. RESULTS OF THE CALCULATIONS AND DISCUSSION

In this work, we calculate the total binding energies
(TBEs), excitation energies, as well as decay energies and
widths of the levels of the 7He system; and also calculate
TBEs of the lower levels of the fragment 6He nucleus nec-
essary for that. The NCSM calculations were carried out with
the use of newest version of BIGSTICK shell model code [71].
The basis is limited by the value of cutoff parameter N∗max

tot =
13, i.e., maximal total number of oscillator quanta Nmax

tot = 16.
For a limited basis, the optimal value of the oscillator param-
eter turns out to be h̄ω = 12.5 MeV.

Let us consider, first of all, the calculated values of the total
binding energy and the excitation energy of the 6He nucleus.
They are presented in Table I. Despite the fact that the ground
state of the 6He nucleus is a classic example of a nuclear sys-
tem with a two-neutron halo, the experimental value of its total
binding energy-TBE (Eexp.) is well reproduced in the shell-
model calculations on a limited basis (values of such type are
denoted by symbol E lim.

th. ). The extrapolated TBE value E extr.
th.

deviates from the experimental result even somewhat more
significantly, but, in any case, the deviation does not exceed

0.4%. The magnitude of the absolute deviation, which is equal
to 128 keV, also appears to be satisfactory. This is not the
case for the first excited state, for which the deviation of the
TBE calculation result from the experimental one is 273 keV.
This fact, and especially the significant overestimation of the
excitation energy for this level, demonstrates the need to use
an extrapolation procedure. As for the second excited state
of the 6He nucleus, its gigantic width (≈12 MeV), obviously,
does not allow simultaneously evaluating its excitation energy
from the experiment with an accuracy better than several MeV.

An even more expressive pattern is observed for the lower
resonance level 3/2−

1 of the 7He nucleus and the higher reso-
nance 5/2−

1 , for which experimental data have been obtained
so far. For the former one the calculations on the limited
basis underestimate TBEs by 200 keV; for the latter case, this
underestimation exceeds 1 MeV. In contrast, the extrapolated
results are in good agreement with the measurement ones. The
differences between the results obtained on the limited basis
and the extrapolation results for other levels that have not yet
been discovered also exceed 1 MeV.

In Table II and its caption, the energies of neutron decay
of the 7He nucleus into the 6Hegs channels presented in pub-
lished papers are also given, both calculated and obtained in
experiments. The experimental data are better described by
the GSM [8], although the energy of higher lying level 5/2−

1
is reproduced rather well in all approaches. Our data correlate
fairly well with the data obtained within the framework of NC-
SMC [30]. It is interesting to compare the resonance energies
which are calculated in the current work with the same values
obtained in the framework of approach SS-HORSE [37], since
this approach, first, is also based on NCSM and, second, this
work also uses the NN potential Daejeon16. This comparison
shows that the use of the extrapolation procedure lowers the
values of the resonance energies more than the simultaneous
use of a higher value of the cutoff parameter N∗max

tot and the
inclusion of the continuous spectrum in the calculations per-
formed by the SS-HORSE method for all states of the 7He
nucleus, excluding the ground state.

The results of our calculations of the decay widths of 7He
nucleus resonances are presented in Tabsles III and IV for
“new” and “old” definitions of CFF and SF. A wide list of
decay channels was analyzed, including decays into channels
in which fragment 6He is in 2+

1 or 2+
2 excited state. Because

of the gigantic decay width of the latter state, the results of
calculations of the characteristics of the channels in which
it is contained are physically of little interest. By including
the channels containing this state in the analysis, we, first,
demonstrate the capabilities of the developed method and,
second, we follow the tradition laid down in Ref. [30].

It is natural to start the discussion by assessing the accu-
racy of the method used. Comparison of the results contained
in the third and fourth and, respectively, in the seventh and
ninth columns of Tables III and IV demonstrates a strong
dependence of the decay width of a certain state on its en-
ergy. Roughly assessing the tendency, one may say that the
relative change in the decay energy leads to a proportional
change in the width. From this point of view, the relative
error in computing the decay energy value of a particular state
is reproduced when calculating its width. The relative decay
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energy errors of ab initio computations on a limited basis for
highly excited levels are quite large because decay energy val-
ues themselves are the difference between TBEs. Therefore,
the introduction of approaches that refine the energy values, in
particular the extrapolation method, is extremely important.

The size of the used basis affects the behavior of the CFF
curves, which also exerts some influence on the magnitude of
the decay width; however, this influence is somewhat weaker
in comparison with the effect produced by the change in the
decay energy. The scale of the change in the decay widths with
a change in the size of the basis from N∗max

tot = 11 to N∗max
tot =

13 is illustrated by columns 8 and 9 of Tables III and IV. The
computation results show that convergence has actually been
achieved for a significant part of the examples. Changes in
decay widths for other examples are in the region of 10%.
Only in two cases does this change exceed 20%. There is no
doubt that this accuracy is sufficient for planning experiments
aimed at studying the spectra of exotic nuclei.

It is interesting to compare the results of calculating the
decay widths and SFs in the “new” and “old” approaches.
It should be noted, first of all, that the decay width ratios
�new/�old are almost independent of the choice of the basis
dimensionality and are close to the corresponding SF ratios.
Large values of these ratios are typical for channels with the
moment of relative motion l = 1. Already for the width of the
lowest 7He resonance the ratio resulting from these two dif-
ferent approaches to descriptions of CFF is about 1.7. For two
examples of such channels, these ratios exceed 4. For l = 2, 3
these ratios are close to unity, and only in one such case is this
ratio close to 1.1. S-wave channels occupy an intermediate
position in this respect, the characteristic differences between
the calculation results in the two discussed approaches amount
to 10–30%. Such a relationship between the characteristic
results for channels with different values of l looks natural,
since the main components of the wave functions of the states
of residual nucleus 6He are those that, as a rule, contain single-
nucleon p orbitals; the nonorthogonality of these orbitals to
the wave function of the relative motion of neutron in the
corresponding channel leads to the strong renormalization of
the latter function by the overlap kernel.

Comparison of the obtained results with experimental data
leads to the following conclusions. TBEs of the levels of the
7He nucleus, values of which were measured, are very well
reproduced in the framework of the calculations. Therefore
the first source of the discrepancy between measured values
of the decay width of the ground state of the 7He nucleus
and the ones calculated using the “new” approach is the over-
estimation of the binding energy of the 6He nucleus. This
overestimation, evidently, has nothing to do with the choice
of the parameters of the NCSM basis and, very likely, with
the peculiarities of the extrapolation procedure. Its causes
are, most likely, the properties of the Daejeon16 potential.
The second source of the 30% overestimation of the decay
width, revealed by its calculation using the experimental de-
cay energy, is not clear, since all the conditions listed above
for correct matching in this example are satisfied, and the
convergence of the result with respect to N∗max

tot is achieved. In
principle, it can be assumed that this discrepancy is generated
by the procedure of extracting the width from the experiment.

TABLE V. Channel spectroscopic factors of closed and strongly
suppressed decay channels of the 7He nucleus states for “old” and
“new” definitions. Symbol * indicates closed channels

Jπ (7He) Jπ (6He) l (S) “new” SF (“old” SF)

1(3/2) 0.691 (1.599)
3/2−

1 2+∗
1 1(5/2) 0.254 (0.305)

3(3/2) 0.0006 (0.0006)
3(5/2) 0.0046 (0.0046)

1(3/2) 0.338 (0.269)
2+∗

2 1(5/2) 0.0015 (0.0015)
3(3/2) 0.0003 (0.0003)
3(5/2) 0.0024 (0.0024)

1/2+
1 2+∗

1 2(3/2) 0.0258 (0.0296)
2(5/2) 0.0198 (0.0192)

2+∗
2 2(3/2) 0.0117 (0.0115)

2(5/2) 0.0017 (0.0014)

1/2−
1 2+∗

2 1(3/2) 0.562 (0.664)
3(5/2) 0.0004 (0.0004)

5/2−
1 2+

1 3(3/2) 0.0098 (0.0100)
3(5/2) 0.0036 (0.0036)

1(3/2) 0.641 (0.880)
1(5/2) 0.604 (0.287)

2+∗
2 3(3/2) 0.0008 (0.0007)

3(5/2) 0.0001 (0.0001)

3/2+
1 2+

1 2(5/2) 0.0052 (0.0050)

0(3/2) 0.124 (0.0076)
2+∗

2 2(3/2) 0.0014 (0.0014)
2(5/2) 0.0005 (0.0005)

2(3/2) 0.0052 (0.0046)
5/2+

1 2+
1 4(3/2) 0.0006 (0.0006)

4(5/2) 0.0000 (0.0000)

2(5/2) 0.0079 (0.0087)
2+

2 4(3/2) 0.0001 (0.0001)
4(5/2) 0.0002 (0.0002)

1(5/2) 0.0025 (0.0036)
3/2−

2 2+
1 3(3/2) 0.0064 (0.0065)

3(5/2) 0.0002 (0.0002)

1(5/2) 0.0025 (0.0036)
2+

2 3(3/2) 0.0064 (0.0064)
3(5/2) 0.0002 (0.0002)

Indeed, there are a variety of procedures used by evaluators to
determine the decay energy and width, and these procedures
contain various variation parameters. Thirty percent differ-
ences in the results of processing the same experiments can be
found in the same databases (see, for example, [72]). On the
other hand the GSM calculations [8] are in a good agreement
with the experimental data, while other theoretical methods
show overestimation or underestimation of 3/2−

1 resonance
width. So, in our opinion, the issue remains open.

The calculated values of the decay energy of state 5/2−
1 ,

which is equal to 3437 keV, and its total width 1941 keV are
in a very good agreement with the experimental data. A good
agreement was also achieved in the calculations based on the
GSM [8].
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As for the results of calculations of the decay widthes in the
“old” approach, the situation is the opposite. They describe the
decay width of the 7He nucleus ground state somewhat better,
which, quite possibly, may be an example of compensation
of one approximation by another. On the other hand this ap-
proach greatly underestimates the partial decay width into the
l = 1(J = 3/2) channel, which affects the value of the total
decay width of this state and makes it smaller in comparison
with the experimental one.

The differences between the predicted values of the ener-
gies and decay widths of the 7He nucleus states obtained by us
and the results of other authors are large enough. That makes
future experiments exciting.

Approaching the conclusion, it should be emphasized that
one of the main goals of this work is to support experiments
aimed at studying the spectrum of 7He that are carried out
or planned. We believe that the data presented in Tables III
and IV can be used as preliminary results for the analysis of
the decay properties of these states. For the same purposes,
we consider it useful to supplement the tabular data presented
above with one more table. Table V contains SFs of many
channels not discussed above. The data presented in the table
indicate that, in order to analyze the spectrum of the nucleus,
one can restrict oneself to specific channels, the parameters
of which are presented in Tables III and IV, since the other
channels are either closed or their SFs are small.

Data from Table V confirm the patterns in the behavior of
the relationship between the “new” and “old” SFs identified in
the analysis of Tables III and IV. The only exception is the ex-
ample of fragmentation of the 3/2+

1 state into a closed channel
l = 0(J = 3/2) for which the ratio Scκ

l /S̃cκ

l exceeds 1.5.
In Table V one can also find an example for which the

value of the “old” SF exceeds 1. This example demonstrates
that it is impossible to ascribe a sense of probability to this
quantity. That emphasizes the problems formulated above that

may arise in the framework of the application of the “old” def-
initions of quantities characterizing the clustering of nuclei.

IV. CONCLUSIONS

The main results of this work are the following.

(I) Based on the successful application of the cluster
channel orthogonalized functions method for de-
scribing 7Li and 8Be nuclei, total binding energies
(TBEs), excitation energies, as well as decay energies
and widths of the levels of 7He nucleus are calculated
in this NCSM-based ab initio scheme. The Extrapo-
lation A5 method is used to obtain TBEs with better
precision.

(II) The approach used allows one to solve multichannel
problems, which made it possible for the first time to
calculate in an ab initio scheme not only the total but
the partial widths of decay of the 7He nucleus into
many exit channels.

(III) The studies carried out demonstrate good prospects
of the method used for the theoretical study of
neutron-rich nuclei, in particular, for predicting the
results of planned experiments.

(IV) The prospects for using this approach in the field of
study of the interaction of neutrons with light nuclei
seem to be even wider.
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