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Semiclassical shell-structure micro-macroscopic approach for the level density
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Level density p(E, A) is derived for a one-component nucleon system with a given energy E and particle
number A within the mean-field semiclassical periodic-orbit theory beyond the saddle-point method of the Fermi
gas model. We obtain p o 1,(S)/S", with [,(S) being the modified Bessel function of the entropy S. Within
the micro-macro-canonical approximation (MMA), for a small thermal excitation energy U, with respect to
rotational excitations E,,, one obtains v = 3/2 for p(E, A). In the case of excitation energy U larger than E,y
but smaller than the neutron separation energy, one finds a larger value of v = 5/2. A role of the fixed spin
variables for rotating nuclei is discussed. The MMA level density p reaches the well-known grand-canonical
ensemble limit (Fermi gas asymptote) for large S related to large excitation energies, and also reaches the finite
micro-canonical limit for small combinatorial entropy S at low excitation energies (the constant “temperature”
model). Fitting the p(E, A) of the MMA to the experimental data for low excitation energies, taking into account
shell and, qualitatively, pairing effects, one obtains for the inverse level density parameter K a value which differs

essentially from that parameter derived from data on neutron resonances.

DOLI: 10.1103/PhysRevC.104.044319

I. INTRODUCTION

Many properties of heavy nuclei can be described in terms
of the statistical level density [1-23]. A well-known old
example is the description of neutron resonances using the
level density. Usually, the level density p(E,A), where E
and A are the energy and nucleon number, respectively, is
given by the inverse Laplace transformation of the partition
function Z(B, o). Within the grand-canonical ensemble the
standard saddle-point method (SPM) is used for integration
over all variables, including B, which is related to the total
energy E [2,4]. This method assumes large excitation energies
U, so that the temperature 7 is related to a well-determined
saddle point in the integration variable 8 for a finite Fermi
system of large particle numbers. However, data from many
experiments for energy levels and spins also exist for regions
of low excitation energy U, where such a saddle point does
not exist. For presentation of experimental data on nuclear
spectra, the cumulative level-density distribution—cumulative
number of quantum levels below the excitation energy U—is
conveniently often used for statistical analysis [24-26] of the
experimental data on collective excitations [26-29]. For cal-
culations of this cumulative level density, one has to integrate
the level density over a large interval of the excitation energy
U. This interval extends from small values of U, where there
is no thermodynamic equilibrium (and no meaning to the
temperature), to large values of U, where the standard grand
canonical ensemble can be successfully applied in terms of the
temperature 7 in a finite Fermi system. Therefore, to simplify
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the calculations of the level density, p(E, A), we will, in the
following, carry out the integration over the Lagrange multi-
plier B in the inverse Laplace transformation of the partition
function Z(B, o) more accurately beyond the SPM [30-32].
However, for a nuclear system with large particle number A
one can apply the SPM for the variable «, related to A. The
case of neutron-proton asymmetry of the Fermi system will be
worked out separately. Thus, for remaining integration over
B we shall use approximately the micro-canonical ensem-
ble which does not assume a temperature and an existence
of thermodynamic equilibrium. Notice that there are other
methods to overcome divergence of the full SPM for low
excitation-energy limit U — 0; see Refs. [18,21,33-35]. The
well-known method suggested in Ref. [34] is applied success-
fully for the partition function of the extended Thomas-Fermi
(ETF) theory at finite temperature to obtain the smooth level
density and free energy; see also Refs. [35,36], and references
therein.

For formulation of the unified microscopic canonical and
macroscopic grand-canonical approximation (MMA) to the
level density, we will find a simple analytical approximation
for the level density p which satisfies the two well-known
limits. One of them is the Fermi gas asymptote, p o exp(S),
with the entropy S, for large entropy S. Another limit is the
combinatorics expansion in powers of S for a small entropy
S or excitation energy U, always at large particle numbers
A; see Refs. [2,7,37,38]. The empiric formula, p o exp[(U —
Ey)/T] with free parameters Ey, T, and a preexponent factor,
was suggested for the description of the excited low energy
states (LESs) in Ref. [3]. Later, this formula was named the
constant “temperature” model (CTM) where the “tempera-
ture” is considered an “effective temperature” related to the
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excitation energy (with no direct physical meaning of temper-
ature for LESs); see also Refs. [21,22]. We will show below
that the MMA has the same power expansions as the CTM for
LES at small excitation energies U. We will also show that,
within the MMA, the transition between these two limits is
sufficiently rapid, when considered over the dimensionless en-
tropy variable S. Therefore, our aim is to derive approximately
a simple statistically averaged analytical expression for the
level density p(S) with the correct two limits, mentioned
above, for small and large values of S.

Such an MMA for the level density p was suggested in
Refs. [30,31] in terms of the modified Bessel function of the
entropy variable in the case of small excitation energy U as
compared to the rotational energy E.. The so-called a “classi-
cal rotation” of the spherical or axially symmetric nucleus was
considered alignment of nucleons along the symmetry axis
on the basis of the periodic orbit theory with a fixed angular
momentum and its projection (see Ref. [39]), in contrast to
the collective rotation around the perpendicular axis [40,41].
The yrast line was defined to be at zero excitation energy for a
given angular momentum within the cranking model [42,43].
One of the important characteristics of the yrast line is the mo-
ment of inertia (MI). The Strutinsky shell-correction method
(SCM) [44,45], extended by Pashkevich and Frauendorf [46]
to the description of nuclear rotational bands, was applied
[30,31] for studying the shell effects in the MI near the yrast
line.

For a deeper understanding of the correspondence between
the classical and the quantum approach, especially their ap-
plications to high-spin physics, it is worthwhile to analyze
the shell effects in the level density p (see Refs. [7,8]), in
particular, in the entropy S and MI, within the semiclassical
periodic-orbit (PO) theory (POT) [36,39-41,47-52]. This the-
ory, based on the semiclassical time-dependent propagator,
enables determining the total level-density, energy, free-
energy, and grand canonical ensemble potential in terms of the
smooth ETF term and PO-shell corrections [30,31,36,40,50—
52].

We will extend the MMA approach [30], in order to con-
sider the shell effects in the yrast line as a minimum of
the nuclear level density (minimum excitation energy), for
the description of shell and collective effects in terms of
the level density itself for larger excitation energies U. The
level density parameter a is one of the key quantities under
intensive experimental and theoretical investigations; see, e.g.,
Refs. [1-5,7-9,14,23]. Mean values of a are largely propor-
tional to the particle number A. The inverse level density
parameter K = A/a is conveniently introduced to exclude a
basic mean A dependence in a. Smooth properties of K as
function of the nucleon number A have been studied within the
framework of the self-consistent ETF approach [9,20]. How-
ever, for instance, shell effects in the statistical level density
are still an attractive subject. This is due to the major shell
effects in the distribution of single-particle (s.p.) states near
the Fermi surface within the mean-field approach. The nuclear
shell effects influence the statistical level density of a heavy
nucleus, which is especially important near magic numbers;
see Refs. [7,8] and references therein. In the present study,
for simplicity, we shall first work out the derivations of the

level density p(E, A) for a one-component nucleon system,
taking into account the shell, rotational, and, qualitatively,
pairing effects. This work is concentrated on LESs of nuclear
excitation-energy spectra below the neutron resonances.

The paper is organized as the following. The level density
p(E,A) is derived within the MMA by using the POT in
Sec. II. We extend the MMA to large excitation energies U,
up to about the neutron separation energy, taking essentially
into account the shell effects. Several analytical approxima-
tions, in particular the spin dependence of the level density
are presented in Sec. III. Illustrations of the MMA for the
level density p(E, A) and inverse level density parameter K
versus experimental data, discussed for typical heavy nuclei,
are given in Sec. IV. Our conclusions are presented in Sec. V.
The semiclassical POT is described in Appendix A. The level
density, p(E, A, M), derived by accounting for the rotational
excitations with the fixed projection of the angular momentum
M and spin [ of nuclei in the case of spherically symmetric or
axially symmetric mean fields, is given in Appendix B. The
full SPM level density derivations generalized by shell effects
are described in Appendix C.

II. MICROSCOPIC-MACROSCOPIC APPROACH

For a statistical description of level density of a nucleus in
terms of the conservation variables, the total energy, £, and
nucleon number, A, one can begin with the micro-canonical
expression for the level density,

dBda
Qi) ¢ M

P(EA) =) 8(E —E)SA —A) =

where E; and A; represent the system spectrum, and S =
In Z(B8, ) + BE — oA is the entropy. Using the mean field
approximation for the partition function Z(8, @), one finds

[4]
InZ = Zln [1+ exp(a — B&)]

~ f de g(e)In[1 + exp(a — Be)], (@)
0

where ¢; are the s.p. energies of the quantum states in the mean
field. In the transformation from the sum to an integral, we
introduced the s.p. level density g(¢) as a sum of the smooth,
8(e), and oscillating shell, §g(e), components, using the SCM
(see Refs. [44,45]):

g(e) = g(e) +8g(e). 3

Within the semiclassical POT [36,50], the smooth and oscil-
lating parts of the s.p. level density, g(¢), can be approximated,
with good accuracy, by the sum of the ETF level density, g ~
gerp» and the semiclassical PO contribution, 5g(¢) ~ g,
Eqg. (AS). In integrating over « in Eq. (1) for a given 8 by the
standard SPM, we use the expansion for the entropy S(8, )
near the saddle point @ = o* as

o 17328\ .
S(ﬂ,a)=S(ﬂ,a)+§<W)(oe—a)2+--.. 4)
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The first-order term of this expansion disappears because the
Lagrange multiplier, «*, is defined by the saddle-point condi-

tion
s\ * dlnzZ\*
— ) = —A=0. (®)]
Ja o

Introducing, for convenience, the potential 2 = —1n Z/8,
one can use its SCM decomposition in terms of the smooth
part and shell corrections for the level density g, see Eq. (3)
and Ref. [30], through the partition function, In Z [Eq. (2)]:

QB, 1) = QB, 1) + 8B, ). (6)
Here, Q@ ~ Qpgpy is the smooth ETF component [23,30],

72
E -2 — —30), 7

TR (7)
where E ~ Egpy. is the nuclear ETF energy (or the liquid-drop
energy). For a given f, the chemical potential, A = «*/8, is
a function of the particle number A, according to Eq. (5), and
A & A is approximately equal to the SCM smooth chemical
potential. With the help of the POT [36,50,51], one obtains
[30] for the oscillating (shell) component, §€2, in Eq. (6),

QB =

@=-p /Oods 83(e)In {1+ exp[B(1 — )]}
0
= 89501(,3’ )‘) = 8Fsc1. (8)

For the semiclassical free-energy shell correction, §F; (see
Appendix A), we incorporate the POT expression:

8F = ZFPOv 9
PO
where
X Tt
F = E L y = —PO N 10
Po = Ero ) o = g (10)
and
2
Epo = - 8po(2). (11
PO

Here, 5 = k55! is the period of particle motion along the
PO (taking into account its repetition, or period number k),
and tﬁg' if the period of the particle motion along the primitive
(k = 1) PO.The period tp, (and tégl), and the partial oscillat-
ing level density component, gpq, given by Eq. (A6), are taken
at the chemical potential ¢ = A; see also Eqs. (A5) and (A6)
for the semiclassical s.p. level-density shell correction g (g)
(see Refs. [36,50]). Notice that equivalence of the variations
of the grand-canonical- and canonical- ensemble potentials,
Eq. (8), is valid approximately in the corresponding variables,
for large particle numbers A. This equivalence has to be valid
in the semiclassical POT.

Expanding, then, xpq/sinh(xpg, ), Eq. (10), in the shell cor-
rection 8§ [Eqgs. (8) and (10)] in powers of 1/82 up to the
quadratic terms, ocl /B2, one obtains

QA Ey— A — - (12)
132

Here E, is the ground state energy, Ey = E + 8E, and SE
is the energy shell correction of a cold nucleus, §E ~ §E,
Eq. (A14). In Eq. (12), a is the level density parameter a,

a=a-++da, (13)

where @ A~ agrp and da are the ETF and the shell correction
components,

2 2
a= ?gmp(k), ba = FSgsa(?»)- (14)
Note that for the ETF components one commonly ac-
counts for self-consistency using Skyrme interactions; see
Refs. [20,23,32,36,53,54]. For the semiclassical POT level
density, §gs1(A), one employs the method of Eqgs. (A5) and
(A6); see Refs. [36,40,49-52]. Note that in the grand canon-
ical ensemble the level density parameter a, Eqgs. (13) with
(14), is function of the chemical potential A. We may include,
generally speaking, the collective (rotational) component into
Ey; see Sec. Il E and Appendix B.
Substituting Eq. (4) into Eq. (1), and taking the error inte-
gral over « in the extended infinite limits including the saddle
point o*, one obtains

T

p(E,A) ~ dp B> T exp(BU +a/p), (15)

e
2riN/2m

where U = E — E| is the excitation energy and a is the level
density parameter, given by Egs. (13) and (14). In equation
(15), J is the one-dimensional Jacobian determinant [¢ num-
ber, J(A)] taken at the saddle point over o at « = o* = Af,

Eq. (5):
(SN 3%z
:ﬁ<aa2> :ﬂ< 9a? )
2Q\" _ .
:_(W> =J+48J. (16)

The asterisks mean the saddle point for integration over o
for any B (here and in the following we omit the superscript
asterisk in 7). Differentiating the potential €2, Eq. (6), over A
within the grand-canonical ensemble we obtain for the smooth
part of the Jacobian J = —(8?Qppp/d22)* ~ gprp(r). We
note that, for not too large thermal excitations, the main
contribution from the oscillating potential component §<2 as
function of X is coming from the differentiation of the sine
function in the PO energy shell correction factor Epg, Eq. (11),
through the PO action phase Spo(X)/% of the PO level density
component gpo(A), Eq. (A6). The temperatures T = 1/8%,
when the saddle point § = B* exists, are assumed to be much
smaller than the chemical potential A. The reason is that for
large particle numbers A the semiclassical large parameter,
~S8po/h ~ A'/3, appears. This leads to a dominating contri-
bution, much larger than that coming from differentiation of
other terms, the B-dependent function xpn(8), and the PO
period #p,(A). Using Egs. (8), (A16), and (Al7), one ap-
proximately obtains for the oscillating Jacobian part §.7 (1),
Eq. (16), the expression

8T ~ Z 820 Ginh () s1nh(xPO) (n
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where xp, (8, 1) [through #,,(1)] is the dimensionless quan-
tity, Eq. (10), proportional to 1/8. The total Jacobian 7 ()) as
function of A can be presented as

TJ=2JA+8T/T) =g +8&), (18)

where £(B, ) is defined by [see also Eqgs. (16) and (12)]
a’(x) gpo()h)( Xpo _ ]) 19
= B " s \amhigg 1) 12

PO

This approximation was derived for the case when a
smooth (E)TF part can be neglected. Notice, that the ro-
tational excitations can be included into the ETF part
and shell corrections of the potential €2; see Sec. IIIE
and Appendix B. In this case, Eq. (18) will be simi-
lar but with more complicate expressions for the two-
dimensional Jacobian 7, especially for its shell compo-
nent §.7.

Substituting now A, found from Eq. (5), for a given particle
number A, one can obtain relatively small thermal and shell
corrections to the smooth chemical potential in A(A) of the
SCM [45]. For simplicity, neglecting these correction terms
for large particle numbers, A3 > 1, one can consider A as
a constant related to the particle number density of nuclear
matter; see Sec. 2.3 of Ref. [4]. Therefore, X is independent of
the particle number A for large values of A.

III. MMA ANALYTICAL EXPRESSIONS

In linear approximation in 1/82, one finds from Eq. (19)
for & and Eq. (10) for xp,

g n? 2 gpo()h)
= — " —— N 20
§ 82 62 B2 - P00 (20)
where
a0y m e, g 21t Sg(h)
E= T e ™y T g Y

see also Eq. (19). In Eq. (21), Dy, ~ A/A'/3 is the distance
between major shells; see Eq. (A15). For convenience, in-
troducing the dimensionless energy shell correction, &, in
units of the smooth ETF energy per particle, Egpr/A, one can
present Eq. (21) as

_  4nCAE, SE
N —, 5 = — A. 22
";: 302 sh Ege ( )

In the applications below we will use £ > 0 and &y, > 0
if 8E < 0. The smooth ETF energy Egrr in Eq. (22) [see
Eq. (A10)] can be approximated as Egrg ~ g(A)A%/2. The
energy shell correction, §E, was approximated, for a ma-
jor shell structure, with the semiclassical POT accuracy (see
Egs. (A14) and (11), and Refs. [36,50-52]) by

2
Dsh
SE ~ SEy ~ ( ) 8g.q(M). (23)
2 |

The correction o1/8* of the expansion of the Jacobian
(18) in 1/8 through the oscillating part 6.7, Eq. (17), is rela-
tively small for 8 which, at the saddle point values T = 1/8%,

is related to the chemical potential A as T < A. The high
order, o<1 /8%, term of this expansion can be neglected under
the following condition:

1_ 90 A'/3)?

g”U<< TR (24)
Using typical values for parameters 1 = 40 MeV, A = 200,
and K =~ 10 MeV, 1/g~ 0.1 — 0.2 MeV; see Ref. [20]; we
may approximately evaluate very right-hand-side of Eq. (24)
as 20 MeV. For simplicity, small shell and temperature correc-
tions to A(A) from the conservation equation (5) are neglected
by using linear shell effects of the leading order [45] and
constant particle number density of nuclear matter, p,,. Taking
Py = 2k} /372 = 0.16 fm~3, one finds about constant A =
R*k% /21 ~ 40 MeV, where w is the nucleon mass. In the
derivations of the condition (24), we used the POT distance
between major shells, Dy, Eq. (A15). Evaluation of the upper
limit for the excitation energy at the saddle point 8 = * =
1/T is justified because this upper limit is always so large that
this point does certainly exist. Therefore, for consistence, one
can neglect the quadratic, 1/8? (temperature T?), corrections
to the Fermi energy &, in the chemical potential, A ~ g, for
large particle numbers A.

Under the condition of Eq. (24), one can obtain simple
analytical expressions for the level density p(E,A) from
the integral representation (15), because the Jacobian factor
J "% in its integrand can be simplified by expanding in small
values of & or of 1/ [see Eq. (20)]. Notice that one has two
terms in the Jacobian 7, Eq. (18). One of them is independent
of the integration variable 8 and the other one is proportional
to 1/B8%. These two terms are connected to those of the po-
tential 2, Eq. (12), by the inverse Laplace transformation
(1) of the partition function (2) and the corresponding direct
operation transformation. Expanding the square root 7 ~'/? in
the integrand of the integral representation (15), for small and
large & at linear order in & and 1/£, respectively, one arrives
at two different approximations marked below as (i) and (ii)
cases, respectively. At each finite order of these expansions,
one can exactly take the inverse Laplace transformation. Con-
vergence of the corresponding corrections to the level density,
Eq. (15), after applying the inverse transformation, Eq. (B12),
will be considered in the next subsections.

A. (i) Small shell effects
Using Eq. (18), one can write for small &, Eq. (20),

1 1 1 E)
= ~ 1——=—). 25
W2@m¥5@ﬂ w) @

Substituting this expression for the Jacobian factor, J -1/2

into Eq. (15) one obtains two terms, which are related to
those of the last equation in (25). Due to the transformation
of the integration variable 8 to T = 1/8 in the first term and
using B directly as the integration variable in the second term,
they are reduced to the analytical inverse-Laplace form (B12)
for the transformation from 7 to a variables [55]. Thus, one
can approximately represent the level density p(E,A) as a
superposition of the two Bessel functions of the orders of 3/2
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and 1/2,
P(E,A) % p3y[ST2 1 0(S) — 1, S™V21 12(8)]

S 2
with ,03/2 =da T (26)

EUI2 gSK3RyI2
T 47 T T 302AT6

where £ is given in Eq. (21), K = A/a, a is the level density
parameter, Eq. (13), and

S =2vaU. (28)

This expression is associated with an entropy in the mean field
approximation because of its two clear asymptotic limits for
large and small excitation energies, U [both asymptotic limits
in terms of the level density, p(E, A), will be discussed be-
low]. The relative contribution of the second term in Eq. (26)
decreases with the shell effects, &,, inverse level density pa-
rameter, K, and excitation energy, U . In the case (i), referred to
below as the MMA1 approach, up to these corrections (small
r,), one arrives approximately at expression (11) of Ref. [32]:

P(E,A) ~ 03, ST L(S) (D). (29)

Here

Esns 27

r

B. (ii) Dominating shell effects

In this case, expanding the Jacobian factor J —1/2 [see
Eq. (25)] over small 1/, one finds

LY ;<1 — L) (30)
J'? g(M)E 26 )

where £ > 0, Eq. (20) (for E < 0). Substituting this approx-
imate expression for the Jacobian factor into Eq. (15) and
transforming the integration variable 8 to T = 1/8 in the
integral representation for the level density p(E, A), we obtain
by using the inverse Laplace transformation (B12) from t to
a variable

P(E,A) = D5 p[ST s 15(S) + 1,815 ($)] (31)
with D5, = 4a* (7 /6)'/2, (32)
where & is given by Eqs. (21) and (22), and

207 3)2A°8

F 2n%K2E, 33

ry =
In contrast to case (i), the relative contribution of the second
term in the rh.s. of Eq. (31) [case (ii)] has the opposite
behavior in the values of parameters &, and K, and is almost
independent of U. Up to small contribution of the second term
in Eq. (31), one arrives approximately at

p(E,A) = 05,8 Is5(S) (i), (34)

where s, is given by Eq. (32). This approximation is referred
to below as the MMA?2 approach.

Figure 1 shows good convergence of different approxi-
mations to their main term (n = 0) for p(E,A). Here we
accounted for the first (n = 1) analytical and second (n = 2)

T
[ K=10MeV

10°F K=20MeV 4F K=20MeV -
n=0

2
U[MeV]

FIG. 1. MMA level density p [Eq. (42) in units of MeV~!] as
function of the excitation energy U (in units of MeV) at the inverse
level density parameter K = 10 MeV (a), (b), and at 20 MeV (c),
(d) for the relative energy shell corrections &, = 1.7 (a), (c) and 0.6
(b), (d) values. The black solid (» = 0) and dotted (n = 1) lines are
of MMA2, without [Eqgs. (34)] and with [Eq. (31)] the second term,
respectively. The magenta dashed line (n = 2) [numerical, Eq. (15)]
with the next leading correction term presents good convergence to
the MMA? results owing to the expansion of the Jacobian factor,
J~'/2 [see Eq. (18) for the Jacobian 7], in the integrand of Eq. (15),
over 1/& (see text). The heavy dashed red line (n = 0) and blue
dotted line (n = 1), and the dashed cyan line (n = 2)[see Eqgs. (29)
(MMAL1) and (26), and (15), respectively], show the convergence to
the MMALI results due to the expansion of this Jacobian 7, over &.
The particle number A = 200 was used.

numerical corrections in the expansion of the Jacobian factor
J /2 [see Eq. (18) for the Jacobian 7], over 1/& (MMAZ2)
and over £ (MMAL1) as functions of the excitation energy U.
Calculations are carried out for typical values of the param-
eters: the inverse level density K, the relative energy shell
corrections &, and a large particle number A. The results
of the analytical MMAI1 approach, Eq. (26), and MMAZ2,
Eq. (31), with the first correction terms, are compared with
those of Egs. (34) and (29) without first correction terms,
respectively, using different values of these parameters. The
contributions of these corrections to the simplest analytical
expressions, Eq. (29) and (34), are smaller the smaller ex-
citation energies U for the MMAI1 and the larger U for the
MMAZ2 such that a transition between the approaches, Eq. (26)
and (31), takes place with increasing value of U; see Fig. 1.
We also demonstrate good convergence to the leading terms
(n = 0) by taking into account numerically the next order
(n = 2 in this figure) corrections in the direct calculations of
the integral representation (15). Such a convergence occurs
for the MMAL better for smaller U with increasing inverse
density parameter K and decreasing relative energy shell cor-
rection &,. An opposite behavior takes place for the MMA2
approach. Especially, a good convergence with increasing ex-
citation energy U is seen clearly with n =1 and 2 for the
MMAI in panels (a) and (c); see, e.g., panel (c) for larger
values of both K and &,.
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Notice that for the case (ii) when the shell effects are domi-
nating, the derivatives are relatively large, a” (A)A%/a > 1, but
at the same time the shell corrections, &,, can be small. In this
case, referred to below as the MMAZ2b approach, we have for
the coefficient o5,

D5~ 2y/2/mha’. (35)

Here, in the calculation of o5/, given by Eq. (32), we used the
TF evaluation of the level density, g oc A/A, and its derivatives
over A in the first equation of (21) for &.

C. Disappearance of shell effects with temperature

As is well known (see for instance Refs. [30,36,40,50]),
with increasing temperatures 7', the shell component §€2,
Eq. (8), disappears exponentially as exp(—272T /Dy,) in the
potential 2 or free energy F; see also Egs. (9) and (10).
This occurs at temperatures T =~ Dg,/m = 2-3 MeV (Dg, =
AJAY3 =7-10 MeV in heavy nuclei, A &~ 100-200). For such
large temperatures with excitation energies U, near or larger
than neutron resonances energies, one can approximate the
Jacobian factor J~'/? in Eq. (15) as

TV TV -T2, (36)
where J ~ g, and
8T ~2 Z 8poXpo€XP(—Xpo), (37

PO

and xp = mtpo/hB, Eq. (10). With this approximation, using
the transformation of the integration variable B tor = 1/8 in
Eqg. (15), one can analytically take the inverse Laplace integral
[Eq. (B12)] for the level density. Finally, one obtains p = p +
8, where

[ fpo T U
(S,O(E A) = “"% ngo m@Xp(CﬁhT + ?)

- = 7 Z %o T2 (daag) S5 Ph S, (38)

Here, ay = @ — mtpy /i is the shifted level density parame-
ter due to the shell effects, and Sy, = 2,/a,,U is the shifted
entropy. For a major shell structure, one arrives at

T 2 _
Sp(E,A) ~ /2—g3D—(4aash)]/48g(A)Sshl/211/2(SSh)

~ /2g (2”> (4aay) *SESS 1 (Sw) (39)

[see Eq. (23)], and

_ 2’ 40)
ag, ~a— .
h D sh
Hence, the shifted inverse level-density parameter is K =
A/a = K(1 + AK/K), where the dimensionless shift is given
by

272K
AA2/3

(41)

This is approximately equal to AK &~ 1-2 MeV for K =
10 MeV (see Refs. [20,23,56,57]) at typical parameters A =
40 MeV and A = 100-200 (AK ~ 6-9 MeV for K =20
MeV). We note that an important shift in the inverse level
density parameter K for double magic nuclei near the neutron
resonances is due to a strong shell effect.

D. General MMA

All final results for the level density p(E, A) discussed in
the previous subsections of this section can be approximately
summarized as

=0, /H(S), HE=8TLS), 42

with corresponding expressions for the coefficient p, (see
above). For large entropy S, one finds

exp(S) 1 —4? ( 1 >]
1 o= )|. 43
va/zns[ Ty e @

At small entropy, S < 1, one obtains also from Eq. (42) the
finite combinatorics power expansion [2,7,37,38]

£~ pymal(S)

H(§) =

H(§) =

—v 2 .
F(v+1)|:1+4(v+1)+0(5 )i|’ “4)
where I'(x) is the gamma function. This expansion over pow-
ers of $? oc U is the same as that of the “constant temperature
model” (CTM) [3,21], used often for the level density cal-
culations at small excitation energies U, but here we have it
without free parameters.

In order to clarify Eq. (43) for the MMA level density at a
large entropy, one can directly obtain a more general full SPM
asymptote, including the shell effects, by taking the integral
over B in Eq. (15) using the SPM (see Appendix C). We have

exp(2m)
VAU JT+ &%

where £* is & of Eq. (19) at the saddle point 8 = 8%, which is,
in turn, determined by Eq. (C2):

27?2 th gPO()L) ~

61 40 g0

We took the factor J~!/2, obtained from the Jacobian J of
Eq. (18), off the integral (15) at 8 = B* = 1/T. The Jacobian
ratio £* of §.7/7 at the saddle point 8 = * (A = A* = «*T
is the standard chemical potential of the grand-canonical en-
semble), Eq. (46), is the critical quantity for these derivations.
The quantity £* is approximately proportional to the semi-
classical POT energy shell correction, 6E, Eq. (23), through
Em» Eq. (22), the excitation energy U = aT?, and to a small
semiclassical parameter A~'/3 squared for heavy nuclei (see
Ref. [32] and Appendix A). For typical values of parameters,
A =40MeV, A = 200, and & = |§E A/Egrr| ~ 2.0 [45,58],
one finds the approximate values of £&* ~ 0.1-10 for tem-
peratures T =~ 0.1-1 MeV. This corresponds approximately
to rather wide excitation energies U = 0.2-20 MeV for K =
10 MeV [20] (and U = 0.1-10 MeV for K = 20 MeV). These

values of U overlap the interval of energies of the low energy
states with that of the energies of states significantly above

p(E,A) = (45)

AU K Ey,

3124%73 (46)
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the neutron resonances. In line with the SCM [45] and ETF
approaches [36], these values are given by the realistic smooth
energy Egrg for which the binding energy approximately
equals Extr + 6E [58].

Accounting for the shell effects, Eq. (45) is a more general
large-excitation-energy asymptote with respect to the well-
known Bethe expression [1]

exp(S)
NZTI

where such effects were neglected; see also Refs. [2—4].
This expression can be alternatively obtained as the limit of
Eq. (45) at large excitation energy, U — oo, up to shell effects
[small £&* of the case (i)]. This asymptotic result is the same
as that of expression (29), proportional to the Bessel function
I, of the order v = 3/2 [the case (i)], at the main zero-order
expansion in 1/§; see Eq. (43). For large-entropy S asymptote,
we find also that the Bessel solution (34) with v = 5/2 in the
case (ii) (§* > 1) at zero-order expansion in 1/S coincides
with that of the general asymptote (45). The asymptotic ex-
pressions, Eqgs. (43), (45), and, in particular, (47), for the level
density are obviously divergent at U — 0, in contrast to the
finite MMA limit (44) for the level density; see Eq. (42) and,
e.g., Egs. (29) and (34).

Our MMA results will be compared also with the popular
Fermi gas (FG) approximation to the level density p(E, N, Z)
as a function of the neutron N and proton Z numbers near the
B stability line, (N — Z)?/A% « 1[2,3,14]:

p(E,A) = (47)

o(E,N,Z) = W% exp(2val). (48)

Notice that in all our calculations of the statistical level
density p(E,A) [also p(E, N, Z), Eq. (48)], we did not use
a popular assumption of small spins at large excitation energy
which is valid for the neutron resonances. For typical val-
ues of spin 7 > 10, moment of inertia ® ~ Orp ~ 2uR?A/5,
Eq. (A12), radius R = r0A1/3, with ro = 1.14 fm, and par-
ticle number A< 200, one finds that, for large entropy, the
applicability condition (B10) is not strictly speaking valid. In
these estimates, the corresponding excitation energies U of
LESs are essentially smaller than neutron resonance energies.
However, near neutron resonances the excitation energies U
are large, spins are small, and Eq. (48) is well justified.

We should also emphasize that the MMA1 approximation
for the level density p(E, A), Eq. (29), and the Fermi gas ap-
proximation, Eq. (47) can be also applied for large excitation
energies U, with respect to the collective rotational excita-
tions, if one can neglect shell effects, £* < 1. Thus, with
increasing temperature 72 1 MeV (if it exists), or excitation
energy U, where the shell effects are yet significant, one first
obtains the asymptotical expression (45) at £* > 1, i.e., the
asymptote of Eq. (34). Then, with further increasing tempera-
ture to about 2—-3 MeV with the disappearance of shell effects
(Sec. III C), one gets the transition to the Bethe formula, i.e.,
the large entropy asymptote (47) of Eq. (29).

In Fig. 2 we show the level density dependence p(S),
Eq. (42), forv = 3/2in (@) and v = 5/2 in (b), on the entropy
variable S with the corresponding asymptote. In this figure,
small [§ < 1, Eq. (44)] and large [S > 1, Eq. (43)] entropy S

FIG. 2. Level density p [Eq. (42)], in units of p,, with the ac-
curate result “1” (solid line), Eq. (29), (a) for v = 3/2 [MMAL1 (i)],
and (b), Eq. (34), for v = 5/2[(MMAZ2 (ii)], shown as functions of
the entropy S for different approximations: (1) § <« 1 (dashed lines),
Eq. (44) at the second order, and (2) S >> 1 (dotted and thin solid
lines), Eq. (43); “3” is the main term of the expansion in powers of
1/§, and “4” is the expansion over 1/S up to first [in (a)], and second
[in (b)] order terms in square brackets of Eq. (43), respectively.

behaviors are presented. For small § < 1 expansion we take
into account the quadratic approximation “2”, where §? o U,
that is the same as in the linear expansion within the CTM
[3,21]. For large S > 1 we neglected the corrections of the
inverse power entropy expansion of the preexponent factor in
square brackets of Eq. (43), lines “3”, and took into account
the corrections of the first [v = 3/2, (a)] and up to second
[v=15/2, (b)] order in 1/S (thin solid lines “4”) to show their
slow convergence to the accurate MMA result “1” (42). It is
interesting to find almost a constant shift of the results of the
simplest, p o exp(S)/S"+1/2, SPM asymptotic approximation
at large S (dotted lines “3”) with respect to the accurate MMA
results of Eq. (42) (solid lines “1”’). This may clarify one of the
phenomenological models, e.g., the back-shifted Fermi-gas
(BSFG) model for the level density [8,14,59].

Figure 3 shows the shell effects in the main approximations
derived in this section, Eqgs. (29), (34), and (45), taking two es-
sentially different values of finite &, = 2.0 and much smaller
0.002, between which one can find basically those given by
Ref. [58]. For convenience, we show these results as functions
of the entropy S in panel (a) and the excitation energy U in
panel (b), taking the value of the averaged inverse density pa-
rameter K found in Ref. [20]; see also Ref. [23]. As expected,
the shell effect is very strong for the MMA2 approach, as can
be seen from the difference between solid and dotted black
lines' depending on the second derivatives of strong oscillat-
ing functions of A, a”’(A) ~ 8a” = 8¢’ (\) [see Appendix A
around Eq. (A17) and Sec. III below Eq. (23)]. This is not the
case for the full SPM asymptotic GFG, Eq. (45), for which

"The dotted black line is very close to the explicit analytical limit
(35) of P55, Eq. (32), for the MM A2 equation (34), see also Eq. (35).
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2 3
U[MeV]

FIG. 3. MMA level density p [Eq. (42)] in units of MeV~! as
function of the entropy S (a), and excitation energy U, in units of
MeV (b). The black solid and dotted lines are the MMA?2 approach
for &, = 2.0 and 0.002, Eq. (34), respectively. Green dashed and
blue dotted lines are the general Fermi gas (GFG) approach, Eq. (45),
for the same values of &, respectively. The red dashed line is the
MMAL, Eq. (29); in (b) K = 10 MeV, of the order of the ETF value
of Ref. [20].

this effect is very small. As seen from this figure, the MMAI,
Eq. (29), independently of &,, converges rapidly to the GFG
with increasing excitation energy U as well as to the Bethe
formula (47). They all coincide at small values of U, about
0.5 MeV, particularly for &, = 0.002. The Bethe approach
is very close everywhere to the GFG line at &, = 0.002 and
therefore it is not shown in this figure. Notice also that MMA2
at this small &, is also close to the MMA1 everywhere. Again,
one can see that the MMA1 and MMA?2 have no divergence
at zero excitation energy limit, U — 0, while the full SPM
asymptotic GFG, Eq. (45), and, in particular, the Bethe ap-
proach, Eq. (47), both diverge at U — O.

E. The spin-dependent level density

Assuming that there are no external forces acting on an axi-
ally symmetrical nuclear system, the total angular momentum
I and its projection M on a space-fixed axis are conserved, and
states with a given energy E and spin [ are 2/ + 1 degenerated.
As shown in Appendix B, for the “parallel” rotation around
the symmetry axis Oz, i.e., an alignment of the individual
angular momenta of the particle along Oz (see Ref. [30] for
the spherical case), in contrast to the “perpendicular-to-axis
0z7” collective rotation (see, e.g., Ref. [41]), one can derive
the level density p(E, A, M) within the MMA approach in the
same analytical form as for the p(E, A), Eq. (42):

puna(E. A, M) ~7,£,(S) with v=2,3,  (49)

where

172
Py = h(—) , v=2(), (50)

and

_ 8a5\"* )
03 :hk(n2®> , v=73(3i). (G20
In Eq. (49), the argument of the Bessel-like function,
fo(S) o« I,(S), Eq. (42), is the entropy S(E, A, M), Eq. (28),
with the M-dependent excitation energy U . Indeed, in the adi-
abatic mean-field approximation, the level density parameter
a in Eq. (28) is given by Eq. (14). For the intrinsic excitation
energy U in Eq. (28), one finds
M
=5
where Ey = E + 8E, is the same intrinsic (nonrotating)
shell-structure energy,as in Eq. (12). With the help of the
conservation equation (B3) for the saddle point, * = fiwp,
we eliminated the rotation frequency w, obtaining the second
equation in Eq. (52); see Appendix B. For the moment of
inertia (MI) ® one has a similar SCM decomposition:

®=0+350, (53)

where @ is the (E)TF MI component which can be approx-
imated largely by the TF expression, Eq. (A12), and §® is
the MI shell correction which can be presented finally for the
spherically symmetric mean field by Eq. (B5). As mentioned
above, Egs. (49)—(53) are valid for the “parallel” rotation
(an alignment of nucleons’ angular momenta along the sym-
metry axis Oz); see Appendix B for the specific derivations
by assuming a spherical symmetry of the potential. In these
derivations we used Eq. (52) for the excitation energy U,
Eq. (A1) for the partition function, and Eqgs. (B9) and (AS) for
the potential 2(8, A, w). In the evaluations of the Jacobian, 7,
one can neglect shell corrections, in contrast to the evaluations
of the entropy S in the function f,(S). In the derivations of
Eqgs. (50) for p, and (51) for p;, we obtained the Jacobian
components, J for the case (i) and 8.7 for the case (ii), both
under the assumption of an axially symmetric mean field (see
Appendix B). For the Jacobian calculations, one can finally
use the (E)TF approximation in the case (i), ® = ®. The
Jacobian J in the case (ii) can be approximated by Eq. (B14).
As a result, one may accurately use the (E)TF approximation
© ~ ® in Egs. (50) and (51) for the coefficients P, and 05.

Note that there is no divergence of the level density
p(E,A, M) [Eq. (49)] in the limit U — 0, Eq. (44), in con-
trast to the standard results of the full SPM within the Fermi
gas model. The latter is associated with the leading term in
expansion (43) of the Bessel-like function f;, (S).

Equation (49), with M = IC, if it exists, can be used for
the calculations of the level density p(E, A, K), where K is
the specific projection of the total angular momentum I on the
symmetry axis of the axially symmetric potential [31] (K in
notations of Ref. [60]). We note that it is common to use in
application [1,2,4] the level density dependence on the spin /,
p(E,A,I). We will consider here only the academic axially
symmetric potential case which can be realized practically for
the spherical or axial symmetry of a mean nuclear field for the
“parallel” rotation mentioned above. Using Eq. (49), under the
same assumption of a closed rotating system and, therefore,
with conservation of the integrals of motion, the spin / and

1
U=E—&—§@£ » (52)
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its projection M on the space-fixed axis, one can calculate the
corresponding spin-dependent level density p(E, A, ) for a
given energy E, particle number A, and total angular momen-
tum / by employing the Bethe formula [1,4,7,8],

o(E,A,T) = p(E,A,M =1)— p(E,A,M =1+1)

N _<8p<E,A,M)) 1)
oM M=I+1/2

For this level density, p(E, A, I), one obtains from Eqgs. (49)
and (52),

ap, i*Q2I + 1)
S}

where S is given by Eq. (28) with the excitation energy (52),
and v equals 2 and 3, in correspondence with Eq. (49). The
multiplier 27 4 1 in Eq. (55) appears because of the substitu-
tion M = I 4+ 1/2 into the derivative in Eq. (54). In order to
obtain the approximate MMA total level density p(E, A) from
the spin-dependent level density p(E, A, I) we can multiply
Eq. (55) by the spin degeneracy factor 2/ + 1 and integrate
(sum) over all spins /.

Using the expansion of the Bessel functions in Eq. (55)
over the argument S for § < 1 [Eq. (44)] one finds the finite
combinatorics expression. For large S [large excitation energy,
aU > 1, Eq. (43)], one obtains from Eq. (55) the asymptotic
Fermi gas expansion. Again, the main term in the expansion
for large S, Eq. (43), coincides with the full SPM limit to the
inverse Laplace integrations in Eq. (B2). For small angular
momentum / and large excitation energy Uy = E — E, so that

Ew _ IU+ DR

Uy 20 Uy
one finds the standard separation of the level density,
Ovma(E, A, I), into the product of the dimensionless spin-

dependent Gaussian multiplier, R(/), and another spin-
independent factor. Finally, for the case (i) (v = 2), one finds

IOMMA(ErAsI) ~ fv-‘r](S)’ (55)

<1, (56)

P> R(I)exp(2/aly) .
E.A D~ . 57
PymA € ) 16/ (al)’/3 ) (57)
The spin-dependent factor R(J) is given by
21 +1 I +1
R(1) = L Lexp( 1LY, (58)
e 24>

where > = ©./U,/a/H* is the dimensionless spin dispersion.
This dispersion g at the saddle point, 8* = 1/T = /a/U,, is
the standard spin dispersion T //%; see Refs. [1,2]. Similarly,
for the v = 3 (ii) case one obtains

03 R()exp(2y/aly)
32/7 (alUp)’/*

Note that the power dependence of the preexponent factor
of the level density p(E,A,I) on the excitation energy,
Uy =E — Ey, differs from that of p(E,A, M); see
Egs. (49) and (43). The exponential dependence,
p x exp[2+/a(E — Ey)], for large excitation energy E — Ej is
the same for v = 2 (i) and 3 (ii), but the preexponent factor is
different; cf. Egs. (5§7) and (59). A small angular momentum

Pa (B2 AT ~ (). (59

I means that the condition of Eq. (56) was applied. Equations
(57) and (59) with Eq. (58), are valid for excited states within
approximately the condition 1/ < U < A; see Eq. (24).
For relatively small spins [Eq. (56)] we have the so-called
small-spins Fermi-gas model (see, e.g., Refs. [1-4,7,8,23]).

General derivations of equations applicable for axially
symmetric systems (a “parallel” rotation) in this section are
specified in Appendix B by using the spherical potential
to present explicitly the expressions for the shell correction
components of several POT quantities. However, the results
for the spin-dependent level density,p(E, A, I) in this section,
Egs. (55)—(59), cannot be immediately applied for comparison
with the available experimental data on rotational bands in the
collective rotation of a deformed nucleus. They are presented
within the unified rotation model [60] in terms of the spin /
and its projection K to the internal symmetry axis for the de-
formed nuclei. We are going to use the ideas of Refs. [60-64]
(see also Refs. [7,8]) concerning another definition of the spin-
dependent level density p(E, A, I) in terms of the intrinsic
level density and collective rotation (and vibration) enhance-
ment in a forthcoming work. The level density p(E, A, K),
e.g., Eq. (49) at M = K, depending on the spin projection
KC on the symmetry axis of an axially symmetric deformed
nucleus, can be helpful in this work.

IV. DISCUSSION OF THE RESULTS

In Fig. 4 and Table I we present results of theoretical calcu-
lations of the statistical level density p(E, A) (in logarithms)
within the MMA, Eq. (42), and Bethe, Eq. (47), approaches
as functions of the excitation energy U and compared with
experimental data. The results of the popular FG approach,
Eq. (48), and our GFG, Eq. (45), are very close to those of the
Bethe approximation and, therefore, they are presented only
in Table I. All of the presented results are calculated by using
the values of the inverse level density parameter K obtained
from their least mean-square fits (LMSF) to experimental data
for several nuclei. The data shown by dots with error bars
in Fig. 4 are obtained for the statistical level density p(E, A)
from the experimental data for the excitation energies U and
spins / of the states spectra [65] by using the sample method:
p;"? = N;/Us, where N; is the number of states in the ith
sample, i = 1,2, ..., Ny see, e.g., Refs. [6,8]. The dots are
plotted at mean positions U; of the excitation energies for each
ith sample. Convergence of the sample method over the equiv-
alent sample-length parameter U; of the statistical averaging
was studied under statistical plateau conditions, for all plots
in Fig. 4. The sample lengths U; play a role which is similar
to that of averaging parameters in the Strutinsky smoothing
procedure for the SCM calculations of the averaged s.p. level
density [44,45]. This plateau means almost constant value of
the physical parameter K within large enough energy intervals
Us. A sufficiently good plateau was obtained in a wide range
around the values near U; for nuclei presented in Fig. 4 and
Table I [19,65]. Some values of U; are given in the caption
of Fig. 4. Therefore, the results of Table I, calculated at the
same values of the found plateau, do not depend, with the
statistical accuracy, on the averaging parameter U, within the
plateau. This is similar to the results that the energy and

044319-9



A. G. MAGNER et al.

PHYSICAL REVIEW C 104, 044319 (2021)

MMAI 1
4T3.'1 LT MMA
= = = Bethe3 |

208 [ i
Pb of
Q_4 - ‘gb’ eexp | 5 eexp
o 2 MMAL1] 4f MMA1
a— -
—, b _MMA2] = b _MMA2
1 * = * Bethe3 | 2k 1 » = » Bethe3 |
— — MMAY

0 L Il L Il L Il L Il L L Il L Il L Il L Il L
ZT 3 4 5 0 0.2 0.4 0.6 0.8 1
UlMeV] U[MeV]

FIG. 4. Level density, In p(E,A), is obtained for low energy
states in '**Sm (a), '**Ho (b), ***Pb (c), and >’ Th (d) within different
approximations: The MMA dashed green line “1”, Eq. (29); the
MMA solid black line “2a”, Eq. (34), at the relative realistic shell
correction &, [58]; the MMA dash-dotted red line “2b”, Eq. (34) at
an extremely small &,, Eq. (34) with (35); and the Fermi gas Bethe3,
blue dotted line, Eq. (47). The realistic values of &, = 0.37 (a), 0.50
(b), 1.77 (¢), and 0.55 (d) for MMA2 are taken from Ref. [58] (the
chemical potential A = 40 MeV, independent of particle numbers).
Heavy dashed red lines test shifts of the excitation energies U for
MMAI1 and MMA2a by +1.1 and +2.2 MeV in '**Sm and 2%Pb,
respectively, which are due, presumably, to the pairing condensation
energy shown by arrows in the panels (a) and (c), as explained in
the text and Table I. Experimental dots (with error bars, Ap;/p; =
1/4/N;) are obtained directly from the excitation states (with spins
and their degeneracies) spectrum [65] in shown nuclei (Table I)
by using the sample method where the sample lengths U; = 0.45
(a), 0.15 (b), 0.34 (c), and 0.17 (d) MeV are found on the plateau
condition over the inverse level density parameter K.

density shell corrections are independent of the smoothing
parameters in the SCM. The statistical condition, N; > 1 at
Nt > 1, determines the accuracy of our calculations. Mi-
croscopic details are neglected under these conditions, but
one obtains more simple, general, and analytical results, in
contrast to a micro-canonical approach. As in the SCM, in
our calculations by the sample method with good plateau
values for the sample lengths U; (see the caption of Fig, 4),
one obtains a sufficiently smooth statistical level density as a
function of the excitation energy U. We require such a smooth
function because the statistical fluctuations are neglected in
our theoretical derivations.

The relative quantity o of the standard LMSF (see Table I),
which determines the applicability of the theoretical approxi-
mations p(U;) (Sec. III) for the description of the experimental
data [65] p; ", is given by

By

o0 = —"7, B 5
Nt — 1 (Ay:)

(60)
i=1
where y =1Inp and Ay; ~ 1/4/N;. For the theoretical ap-

proaches one has the conditions of the applicability assumed
in their derivations. We consider the commonly accepted

Fermi gas asymptote [1,2,4,6-8] for large excitation energies
U; see the Bethe [Eq. (47)] and FG [Eq. (48)] approaches,
cf. with Eq. (43) and our GFG (with shell effects) expression
(45). In a forthcoming work we will use the asymptote of
Egs. (43) and (45), and the sample method for evaluations of
the statistical accuracy of the experimental data at relatively
large excitation energies (near and higher than neutron reso-
nances). It is especially helpful in the case of low-resolution
dense states at sufficiently large excitation energies. The ex-
amination using the value of ¢ obtained by the LMSF is an
additional procedure for examining these theoretical condi-
tions, using the available experimental data. Notice also that
application of the sample method in determining the exper-
imental statistically averaged level density from the nuclear
spectra in terms of o differs essentially from the methods
employed in previous works (see, e.g., Ref. [14]) by using
the statistical averaging of the nuclear level density and ac-
counting for the spin degeneracies of the excited states. We do
not use empiric free parameters in all of our calculations, in
particular, for the FG results shown in Table I. The commonly
accepted nonlinear FG asymptote (43) could be a critical (nec-
essary but, of course, not sufficient) theoretical guide which,
with a given statistical accuracy, is helpful for understanding
spectrum completeness of the experimental data at large exci-
tation energies where the spectrum is very dense.

Figure 4 shows the two opposite situations concerning
the state distributions as functions of the excitation energy
U. We show results for the spherical magic '**Sm (a) and
double magic 2®Pb (c) nuclei with maximal (in absolute
value but negative) shell correction energies, in terms of the
positive,&q; see Table I and Ref. [58]. In these nuclei, there
are almost no states with extremely low excitation energies in
the range of U < 1-2 MeV [65]. In Table I, we present also re-
sults for the deformed nucleus '*Sm where only a few levels
exist in such a range associated with entropies S < 1. For the
significantly deformed nucleus '°*Ho, with intermediate val-
ues of &, between minimum and maximum [Fig. 4(b)], one
finds the opposite situation when there are many such LESs.
An intermediate number of LESs is observed, e.g., in another
deformed nucleus, 2°Th [Fig. 4(d)], which has a complicated
strong shell structure including subshell effects [58]. Thus, we
also present the results for two deformed nuclei, '**Ho and
230Th, from both sides of the desired heavy particle-number
interval A &~ 140-240.

In Fig. 4, the results of the MMA approaches (1 and 2)
are compared with those of the well-known “Bethe3” [1]
[Eq. (47)] asymptote; see also Table I for these and a few other
asymptotical approaches, the FG [Eq. (48)], and, with a focus
on shell effects, GFG [Eq. (45)]. Results for the MMAZ2a,
the MMA2 [Eq. (34)] at the dominating shell effect case (ii)
[£* > 1, Eq. (46), in the saddle point 8 = B* for large exci-
tation energies U], and for those with realistic relative shell
correction &, [58], are shown versus the results of a small
shell effects approach MMAI1 (i), Eq. (29) (§* < 1 at B =
B*). For a very small value of &, but still within the values
of the case (ii), Eq. (34) with (35) (in particular, large £*), we
have the approach named MMAZ2b. Results for the MMAZ2b
approach are also shown in Fig. 4. Results of calculations
within the full SPM GFG asymptotical approach, Eq. (45),

044319-10



SEMICLASSICAL SHELL-STRUCTURE ... PHYSICAL REVIEW C 104, 044319 (2021)

TABLE 1. The maximal mean errors (second column) in the statistical distribution of the states over the samples, (Ap;/0;) = (1/+/N;),
in nuclei (first column) from Ref. [65]; the relative energy shell corrections £y, Eq. (22) (third column, from Ref. [58]); the inverse level
density parameter K (fifth and eighth columns), found by the LMSF with the precision of the standard expression for o, Eq. (60) (sixth and
ninth columns) by using the sample method and experimental data from Ref. [65], are shown for the version of the approximation in the
fourth and seventh columns at the relative shell corrections &, of the third column. The MMA1 and MMAZ2b (with the same notations for
different MMA as in Fig. 4) are MMA approaches (29) (v = 3/2) and (34) (v = 5/2 at extremely small £,); GFG is the general full Fermi gas
asymptote (45). The MMAZ2a is a more general MMA, Eq. (34), at different relative shell corrections &, [58]. The asterisks denote the MMA1
and MMAZ2a approaches which are shifted along the excitation energy U axis by the assumed pairing condensation energy E.onq =~ 1.1 and
22 MeV, U — U — E.opq, for "**Sm and 2%Pb as shown in parentheses, respectively (see Sec. IV). Bethe [Eq. (47)] and FG [Eq. (48)]

approaches are the same as in Refs. [1-3].

Nuclei (Api/pi) Ean Version K (MeV) o Version K (MeV) o
Sm-144 0.18 0.37 MMA2b 40.3 5.1 MMAT1* 22.7 (16.7%) 3.6 (3.3

GFG 21.8 3.8 MMA2a 22.1 3.9

Bethe 23.2 3.7 FG 19.7 3.6
Sm-148 0.17 0.12 MMA2b 32.5 5.2 MMAI1 16.8 1.5

GFG 16.9 1.7 MMA?2a 19.3 3.0

Bethe 17.2 1.7 FG 14.6 1.6
Ho-166 0.09 0.50 MMA2b 17.5 1.6 MMAI1 5.4 12.3

GFG 5.5 11.1 MMA?2a 7.1 7.0

Bethe 5.6 11.2 FG 4.7 11.5
Pb-208 0.20 1.77 MMA2b 70.1 3.8 MMAI1 439 3.1

GFG 36.5 3.1 MMA?2a* 34.9 (21.9%) 3.0 (2.4%)

Bethe 45.1 32 FG 38.2 3.1
Th-230 0.24 0.55 MMA2b 36.8 2.6 MMAI1 12.3 2.1

GFG 12.7 1.3 MMA?2a 14.9 0.9

Bethe 12.9 1.3 FG 10.8 1.3

and within the popular FG approximation, Eq. (48), which are
in good agreement with the standard Bethe3 approximation,
are only presented in Table I. For finite realistic values of
Esn, the results of the MMA?2a approach are closer to those of
the MMA approach. Therefore, since the MMA2b approach,
Egs. (34) with (35), is the limit of the MMA?2 one at a very
small &, within the case (ii), we conclude that the MMA2
approach is a more general shell-structure MMA formulation
of the statistical level-density problem.

In all panels of Fig. 4, one can see the divergence of the
level densities of the Bethe formula [also, the FG, Eq. (48),
and the GFG, Egs. (45) and (43)], near the zero excitation
energy, U — 0. This is, obviously, in contrast to any MMAs,
combinatorics expression (44) in the limit of zero excitation
energy; see Eqgs. (42), (29), and (34). The MMALI results are
close to the Bethe, FG, and GFG approaches everywhere, for
all presented nuclei. The reason is that their differences are
essential only for extremely small excitation energies U where
MMAI is finite while other (Bethe, FG, and GFG) approaches
are divergent. However, there are almost no excited states in
the range of their differences in the nuclei under consideration.

The results of the MMAZ2b approach [the same as MMA?2
approach, Eq. (34) but with Eq. (35) for the coefficient ps ,,
at relatively very small shell correction &y,] within the case
(i), for 'Ho [see Fig. 4(b)] with o of the order of one
are in significantly better agreement with experimental data
as compared to the results of all other approaches (for the
same nucleus). The MMAI1[Eq. (29)], Bethe [Eq. (47)], FG
[Eq. (48)], and full SPM GFG [Eq. (45)] approaches are char-

acterized by values of o >> 1, which are largely of the order
of 10 (see Table I). In contrast to the '°*Ho excitation energy
spectrum with many very LESs below about 1 MeV, for '**Sm
(a) and 2°®Pb (c) one finds no such states. For the MMA2b
[MMAZ? for very small &, but within the (ii)] approach we
have larger values of o, o > 1 for *+!*8Sm and little larger
for 2°8Pb, versus those of other approximations. In particular,
for MMAL (i), and the other asymptotic approaches of Bethe,
FG, and GFG, one finds almost the same o of the order of
one, that is in better agreement with data [19,65]. We obtain
basically the same for MMAZ2a (ii) with realistic values of
Ean. Notice that for *+'*3Sm and 2°®Pb nuclei the MMA2a
[Eq. (34)] at realistic &, is close to the MMAL (i), Bethe, FG,
and GFG approaches. The MMA1 and MMA?2a (at realistic
values of &) as well as Bethe, FG, and GFG approaches are
obviously in much better agreement with experimental data
[65] for **Sm (or '*¥Sm) and 2**Pb [Figs. 4(a) and 4(c)], for
which one has the opposite situation: very small states number
in the LES range.

We note that the results of the MMA1 and MMA?2a
with shifted excitation energies U — Uer = U — Econg > 0
by constant condensation energies Eqong &~ 1.1 and 2.2 MeV,
shown by arrows in Fig. 4 for 1**Sm and 2%8Pb, respectively,
may indicate the pairing phase transition effect because of
disappearance of the pairing correlations [7,8,66]. With in-
creasing U, one can see a sharp jump in the level density
for the double magic 2**Pb nucleus within the shown spec-
trum range. In '**Sm, one finds such a phase transition a
little above the presented range of the excitation energies.
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This effect could be related to the pairing phase transition’
near the critical temperature 7, = 0.47 MeV in 208py, (0.57
MeV in '**Sm), i.e., at the critical effective excitation energy,
Uit = U — Econg ~ 3.3 MeV (4.1 MeV in '**Sm),, resulting
in a level density jump. These simple estimates show a qualita-
tive agreement, by order of magnitude, with the condensation
energy, Ec.ona & 1 MeV. This procedure is a self-consistent
calculation. Starting from a value of the condensation energy,
E.ond, One can obtain the inverse level density parameter K.
Then, one evaluates a new E,q and reiterates till convergence
in the values of K and E,,,q is achieved, at least in order of
the magnitudes. This can be realized for the MMA1 for '**Sm
and MMA2a for 2®Pb; see Table I and Figs. 4(a) and 4(c).
The phase transition jump is well seen in the plot (c) but is
not seen in plot (a), being above the excitation energy range,
at both the effective excitation energies U,y mentioned above.

One of the reasons for the exclusive properties of '“*Ho
[Fig. 4(b)] as compared to both '**Sm (a) and 2*®Pb (c) might
be assumed to be the nature of the excitation energy in these
nuclei. Our MMA (i) or (ii) approaches could clarify the
excitation nature [see Sec. IIIE and Appendix B for the ro-
tational contribution, which can be included in Ey of Eq. (12),
as done in Eq. (B6)]. Since the results of the MMA2b (ii)
approach are in much better agreement with experimental
data than those of the MMALI (i) approach for '®Ho, one
could presumably conclude that for '**Ho one finds more clear
thermal excitations U > Eyo, Eq. (24), for LESs. For '*Sm
and 2%8Pb one observes more regular (large spins owing to the
alignment) excitation contributions for dominating rotational
energy E.o, Eq. (B10); see Ref. [30]. The latter effect is much
less pronounced in 208ph than in '**Sm, but all the inverse
level density parameters K are significant for states below
neutron resonances; see Table I. However, taking into account
the pairing effects, even qualitatively, the thermal contribution
(ii) is also important for 2*®Pb while the regular nonthermal
motions might be dominating in '**Sm. In any case, the shell
effects are important, especially for the (ii) case which does
not even exist without taking them into account.

For 2*Th [Fig. 4(d)], one has the experimental LES data in
the middle of two limiting cases MMAI1 (i) and MMAZ2b (ii).
This agrees also with an intermediate number of very LESs in
this nucleus. As shown in Fig. 4(d) and Table I, the MMA2a
approach at realistic values of &, is in good agreement with
the data. The shell structure is, of course, not so strong in
230Th as compared to that of the double magic nucleus, 2**Pb,
but it is of the same order as in other presented nuclei. Also
notice that, in contrast to the spherical nuclei in Figs. 4(a)
and 4(c), the nuclei '%*Ho (b) and *°Th (d) are significantly
deformed, which is also important, in particular, because of

’For temperature dependence of the pairing gap in the
simplest BCS theory, one can evaluate A(T)— Aq=
—/2r AgTexp(—Ay/T), where Ay~ 12/A"? MeV at T =0;
see Refs. [7,8,66—69]. Therefore, for disappearance of pairing
gap, the critical temperature 7., = y Ao/m, where y is defined by
the Euler constant, Iny = 0.577.... Evaluating the condensation
energy, Econt = gA3/4 = 3AA}/(27%K), one arrives at the effective
excitation energy, Uy = U — Econg.

their large angular momenta of the LES excitation spectrum
states.

We do not use free empiric parameters of the BSFG, spin
cutoff FG, and empiric CTM approaches [14]. As an advan-
tage, one has only the parameter K with the physical meaning
of the inverse level density parameter. The variations in K are
related, e.g., to those of the mean field parameters through
Eq. (28). All the densities p(E, A) compared in Fig. 4 and
Table I do not depend on the cutoff spin factor and moment
of inertia because of summation (integrations) over all spins
(however, with accounting for the degeneracy 2/ + 1 factor).

In line with the results of Ref. [18], the obtained values
of K for the MMAZ2 approach can be essentially different
from the MMA1 ones and those (e.g., FG) found, mainly, for
the neutron resonances (NRs). However, the level densities
with the excitation energy shifted by constant condensation
energies, due to pairing, for 2°Pb (c) and '**Sm (a) in Fig. 4,
notably improve the comparison with data [65]. These densi-
ties correspond to inverse level-density parameters K, smaller
even than those obtained in the FG approach which agreed
with NR data. We note that for the MMA1 approach one
finds values of K which are of the same order as those
of the Bethe, FG, and GFG approaches. These values of
K are mostly close to the NR values in order of magni-
tude. For the FG approach, Eq. (48), in accordance with its
nondirect derivation through the spin-dependent level den-
sity p(E, A, I), Eq. (57) (Sec. IITIE), it is obviously because
the neutron resonances occur at large excitation energies U
and small spins; see Egs. (24) and (56). Large deformations,
neutron-proton asymmetry, spin dependence for deformed nu-
clei, and pairing correlations [2,7,8,12,13,21,22] in rare earth
and actinide nuclei should be also taken into account to im-
prove the comparison with experimental data.

V. CONCLUSIONS

We derived the statistical level density p(S) as function of
the entropy S within the micro-macroscopic approximation
(MMA) using the mixed micro- and grand-canonical ensem-
bles beyond the standard saddle point method of the Fermi
gas model. The obtained level density can be applied for small
and relatively large entropies S or excitation energies U of a
nucleus. For a large entropy (excitation energy), one obtains
the exponential asymptote of the standard SPM Fermi gas
model, but with significant powers of 1/S corrections. For
small S one finds the usual finite combinatorics expansion in
powers of S2. Functionally, the MMA at linear approximation
inS? xU expansion, at small excitation energies U, coincides
with the empiric constant “temperature” model except it is
obtained without using free fitting parameters. Thus, MMA
unifies the commonly accepted Fermi gas approximation with
the empiric CTM for large and small entropies S, respectively,
in line with the suggestions in Refs. [3,21,22]. The MMA
clearly manifests an advantage over the standard full SPM
approaches at low excitation energies, because it does not
diverge in the limit of small excitation energies, in contrast
to every full SPM approaches, e.g., Bethe asymptote and FG
asymptote. Another advantage applies when nuclei have many
more states in the very low energy state range. The values
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of the inverse level density parameter K were compared with
those of experimental data for LESs below neutron resonances
(NRs) in spectra of several nuclei. The MMA results with
only one physical parameter in the least mean-square fit, the
inverse level density parameter K, were usually better with
larger number of the extremely low energy states, certainly
much better than for the results with the FG model in this case.
The MMA values of the inverse level density parameter K for
LESs can be significantly different from those of the neutron
resonances within the FG model.

We found significant shell effects in the MMA level density
for the nuclear LES range within the semiclassical periodic
orbit theory. In particular, we generalized the known SPM
results for the level density in terms of the full SPM GFG
approximation accounting for the shell effects using the POT.
Exponential disappearance of shell effects with increasing
temperature was analytically studied within the POT for the
level density. Shifts in the entropy S and in the inverse level
density parameter K due to the shell effects were also obtained
and given in the explicit analytical forms. The shifts occur at
temperatures much lower than the chemical potential, near the
NR excitation energies.

Simple estimates of pairing effects in spherical magic nu-
clei, by pairing condensation energy to the excitation energies
shift, significantly improve the comparison with experimen-
tal data. Pairing correlations essentially influence the level
density parameters at low excitation energies. We found an
attractive description of the well-known jump in the level
density within our MMA approach using the pairing phase
transition. Other analytical reasons for the excitation energy
shifts in the BSFG model are found by also using a more
accurate expansion of the modified Bessel expression for the
MMA level density at large entropies S, taking into account
high order terms in 1/S. This is important in both the LES
and NR regions, especially for LESs. We presented a rea-
sonable description of the LES experimental data for the
statistical averaged level density obtained by the sampling
method within the MMA with the help of the semiclassical
POT. We have emphasized the importance of the shell and
pairing effects in these calculations. We obtained values of
the inverse level density parameter K for the LES range which
are essentially different from those of NRs. These results are
basically extended to the level density dependence on the spin
variables for nuclear rotations around the symmetry axis of the
mean field due to alignment of the individual nucleon angular
momenta along the symmetry axis.

Our approach can be applied to statistical analysis of exper-
imental data on collective nuclear states. As the semiclassical
POT MMA is better with larger particle number in a Fermi
system, one can also apply this method to study metallic clus-
ters and quantum dots in terms of the statistical level density,
and to problems in nuclear astrophysics. The neutron-proton
asymmetry, large nuclear angular momenta and deformation
for collective rotations, additional consequences of pairing
correlations, as well as other perspectives, will be taken into
account in a future work in order to improve the comparison
of the theoretical results with experimental data on the level
density parameter significantly, in particular below the neu-
tron resonances.
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APPENDIX A: THE SEMICLASSICAL POT

So far we did not specify the model for the mean field. For
nuclear rotation, it can be associated with alignment of the
individual angular momenta of nucleons called a “classical
rotation” in Ref. [30]: rotation parallel to the symmetry axis
Oz, in contrast to the collective rotation perpendicular to the
Oz axis [41].

In particular, in the case of the “parallel” rotation, one has
for a spherically and axially symmetric potential the explicit
partition function expression

InZ = Zln{l + exp[B(X — &; + hom;)]}

o oo
~ / ds/ dmg(e, m)In{l
0 0

~+exp[B(A — & + howm)]}. (A1)

Here, &; and m; are the s.p. energies and projections of the
angular momentum on the symmetry axis Oz of the quantum
states in the mean field. In the transformation from the sum to
an integral, we introduced the s.p. level density g(e, m) as a
sum of the smooth and oscillating shell components,

ge, m) = g(e, m) + 88c(e, m). (A2)

The Strutinsky smoothed s.p. level density g can be well
approximated by the ETF level density gpg, & & gprg- For the
spherical case, the s.p. level density in the TF approximation
is given by [70]

Mds L’U Tmax 212, 21-1
B~ gr=1 / de/ dr2ute — V() — /P,
m| Timin
(A3)

where p is the nucleon mass, d; is the spin (spin-isospin)
degeneracy, £y is the maximum of a possible angular mo-
mentum of nucleon with energy ¢ in a spherical potential
well V(r), and rpyin and ry,x are the turning points. For the
oscillating component §gs(e, m) of the s.p. level density
g(e, m), Eq. (A2), we use, in the spherical case, the following
semiclassical expression [30] derived in Ref. [39]:

1
Sgser(e,m) =Y ——0(lpo — Im|)gpo (e).

(A4)
05 2tro

The sum is taken here over the classical periodic orbits (PO)
with angular momenta £po > |m/|. In this sum, gp(€) is the
partial contribution of the PO to the oscillating part g (¢) of
the semiclassical level density g(¢) (without limitations on the
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projection m of the particle angular momentum), see Eq. (3),
with

Sgser(6) =) _ gpo(e), (A5)
PO

where
1
gpo(&) = Apo(e)COS[gSpo(e) - %upo - ¢o}. (A6)

Here, Spo(e) is the classical action along the PO, upg is
the so called Maslov index determined by the catastrophe
points (turning and caustic points) along the PO, and ¢, is an
additional shift of the phase coming from the dimension of the
problem and degeneracy of the POs. The amplitude App(¢) in
Eq. (A6) is a smooth function of the energy ¢, depending on
the PO stability factors [36,50,52]. For the spherical cavity
one has the famous explicitly analytical formula [36,45,50].
The Gaussian local averaging of the level density shell cor-
rection 6g.,(¢) [Eq. (A5)] over the s.p. energy spectrum ¢;
near the Fermi surface ¢, can be done analytically by using
the linear expansion of relatively smooth PO action integral
Spo(e) near g, as function of ¢ with the Gaussian width
parameter I" [36,50,52]:

r 2
NOEDD gpo(g)exp[— (%) } (A7)
PO

where 1,y = 0Spo/d¢ is the period of particle motion along
the PO. All the expressions presented above, except for
Egs. (A3) and (A4), can be applied for the axially symmet-
ric potentials, e.g., for the spheroidal cavity [51,52,71] and
deformed harmonic oscillator [36,72].

Let us use now the decomposition of Q2 = —1In Z/8 with
the corresponding variables within the SCM POT in terms of
its smooth part,  ~ Qprp, and shell correction §Q:

QB A, @) = QB A )+ 8QB, A, ). (A8)

Using the TF approximation for g(e, m), Eq. (A3), for a
smooth TF component Qg of the potential €2, Eq. (A8), one
has [30]

Q~ Qup(B, A, 0)=—p7" /oodg /OO dm (e, m)
0 —00
x In{l + exp[B(A — & + hwm)]}

. 1. 2 7% )
=FE —)A— §®(k)w - Fg(k)ﬂ . (A9)

The smooth (in the sense of the SCM [44,45]) ground-state
energy of the nucleus is given by

x x
E%EETF:/O dssg(s)%/o de gg(e), (A10)

where 2(¢) is a smooth level density approximately equal to
the ETF level density, § ~ ggrr. The smooth chemical po-
tential A in the SCM is the root of equation A = fOA de g(e),

and A &~ X in the POT. The chemical potential A (or ) is
approximately the solution of the corresponding conservation

particle number equation:

A

A :/ de g(e). (A11)
0

The quantity Opr in Eq. (A9) is the ETF (rigid-body) mo-

ment of inertia for the statistical equilibrium rotation,

O ~ Oprr = ,u/dr[)(r)(xz +y2)

~ B2 () (M), (A12)

where p & PETF,(L') is the ETF particle density. For the “par-
allel” rotation, (m?) is the smooth component of the square of
the angular momentum projection of nucleon (m?). Here and
below we neglect a small change in the chemical potential A,
due to the internal nuclear thermal and rotational excitations,
which can be approximated by the Fermi energy &, A & .

The oscillating semiclassical component §Q2(8, A, w) of
the sum (AS8) corresponds to the oscillating part §g. (e, m) of
the s.p. level density (3) [see, e.g., Eq. (A4) for the spherical
case] [30,39,50]. In expanding the action Spp(e) as function
of the s.p. energy & near the chemical potential A in powers
of ¢ — A up to linear term one can use Eqgs. (AS) and (A6);
see also Egs. (9), (10), and (11). Then, integrating by parts,
one obtains from Egs. (A1), (A8), and (A9) at the adiabatic
approximation /il%.w < A, where /i€ is the maximal s.p. spin
at the Fermi surface, the result

Q= (SQSC](ﬁ’ )"7 (,()) = ‘SF;cl(ﬂy )"a (,())

2
w
= 8Fa(B,2) — — D_ Feofjolio:
PO

(A13)

where §F (B, 1) is the semiclassical free-energy shell cor-
rection of a nonrotating nucleus (@ = 0); see Eqgs. (9) and
(10). In deriving the expressions for the free energy shell
correction §Fy and the potential §€2, the action Spp(e) in
their integral representations over ¢ with the semiclassical
level-density shell correction §g(¢), Eqgs. (A5) and (A6), was
expanded as function of ¢ near the chemical potential A. Then,
we integrated by parts over ¢, as in the semiclassical calcu-
lations of the energy shell correction §Eg; [36,50]. We used
the expansion of §Q2(8, A, @) over a relatively small rotation
frequency , il2w/A < 1, up to quadratic terms. Nonadi-
abatic effects for large w, considered in Ref. [30] for the
spherical case, are out of the scope of this work. In Eq. (A13),
the period of motion along a PO, #,,(¢) = 0Spo(¢)/de, and
the PO angular momentum of particle, £, (¢), are taken at
& = A. For large excitation energies, § = 8* = 1/T (T is the
temperature), one arrives from Egs. (9), (10), and (A13) at
the well-known expression for the semiclassical free-energy
shell correction of the POT [30,36], §F = §S2 (in their specific
variables); see also Ref. [10] for the magnetic-susceptibility
shell corrections. These shell corrections decrease exponen-
tially with increasing temperature 7. For the opposite limit to
the yrast line (zero excitation energy U, ~' ~ T — 0), one
obtains from 82, Eq. (A13), the well-known POT approxi-
mation [36,50] to the energy shell correction §E, modified
however by the frequency w dependence.
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The POT shell effect component of the free energy, §F,
Egs. (9) and (10), is related in the nonthermal and nonrota-
tional limit to the energy shell correction of a cold nucleus,
8E [36,40,50,52]:

hZ
0Ew =) Ero =)+ o), (Al4)
PO

po ‘PO

where Epo is the partial PO component [Eq. (11)] of the en-
ergy shell correction §E. Within the POT, §E is determined,
in turn, by the oscillating level density 5gs(1); see Egs. (AS5)
and (A6).

The chemical potential A can be approximated by the
Fermi energy &, up to small excitation-energy and rotational-
frequency corrections (7" < A for the saddle point value T =
1/p8* if it exists, and Al w/A < 1). It is determined by the
particle-number conservation condition, Eq. (B4), which can
be written in the simple form (A11) with the total POT level
density g(¢) = g.,; = &pr + 08,- One now needs to solve
equation (Al1) for a given particle number A to determine
the chemical potential A as function of A, since A is needed in
Eq. (A14) to obtain the semiclassical energy shell correction
SE. If one were to use in Eq. (A11) the exact (SCM) level
density g(¢) =~ ggopm = & + g (e), where g is the Strutinsky
smooth s.p. level density, g~ gprp, and dg- is the aver-
aged level-density shell correction with Gaussian width T,
one would obtain a steplike function of the needed chemical
potential A (Fermi energy &) as a function of the parti-
cle number A. Using the semiclassical level density gs.(¢),
Eq. (3), with § g« (¢) given by Egs. (AS) and (A6), similar dis-
continuities would appear. To avoid such a behavior, one can
apply the Gauss averaging, e.g., Eq. (A7), on the level density
gr(e)in Eq. (A11) or, what amounts to the same, on the quan-
tum SCM states density with, however, a width I" = I' ;. This
Gauss width should be much smaller than that obtained in a
shell-correction calculation, I' = I'yy, with ') < 'y, < Dgp,
where Dy, is the distance between major shells. Because of a
slow convergence of the PO sum in Eq. (AS), it is, however,
more practical to use in Eq. (A11) the SCM quantum density,
g(e) ~ gycm(€), averaged with T, to determine the function
AA).

For a major shell structure near the Fermi energy sur-
face, ¢ ~ A, the POT shell correction 6E [Eq. (A14)] is in
fact approximately proportional to that of §gs (1) [Egs. (AS5)
and (A6)]. Indeed, the rapid convergence of the PO sum in
Egs. (A14) and (11) is guaranteed by the factor in front of
the density component gp, Eq. (A6), a factor which is in-
versely proportional to the period time #p,(A) squared along
the PO. Therefore, only POs with short periods which oc-
cupy a significant phase-space volume near the Fermi surface
will contribute. These orbits are responsible for the major
shell structure, that is related to a Gaussian averaging width,
I' & T'yy, which is much larger than the distance between
neighboring s.p. states but much smaller than the distance Dy
between major shells near the Fermi surface. According to
the POT [36,50,52], the distance between major shells, Dy,
is determined by a mean period of the shortest and most

degenerate POs, (fp,) [36,50]:
(A15)

Taking the factor in front of g,y in the energy shell cor-
rection 8Eg, Eq. (Al4), off the sum over the POs, one
arrives at Eq. (23) for the semiclassical energy-shell correction
[40,50-52]. Differentiating Eq. (A14) using (A6) with respect
to A and keeping only the dominating terms coming from
differentiation of the sine of the action phase argument, S/i ~
A'73, one finds the useful relationship

328Epo
92

By the same semiclassical arguments, the dominating contri-
bution to g’(1) for major shell structure is given by

9%g 3%8gpo 27 \?
— = —_— ) — Sg()h).
922 ;): 922 <Dsh) )

Again, as in the derivation of Eqgs. (23) and (A16), for the
major shell structure, we take the averaged smooth charac-
teristics for the main shortest POs which occupy the largest
phase-space volume off the PO sum.

~ —8gpo- (A16)

(A17)

APPENDIX B: MMA SPIN-DEPENDENT LEVEL DENSITY

For statistical description of the level density of a nucleus
in terms of the conservation variables, the total energy E, nu-
cleon number A, and the angular momentum projection M to
a space-fixed axis Oz, one can begin with the micro-canonical
expression for the level density,

p(E,A,M)="8(E — E)S(A — ADS(M — M;),  (BI)

where E;, A;, and M;, respectively, represent the system quan-
tum energy spectrum. This level density can be identically
rewritten in terms of the inverse Laplace transformation of
the partition function Z(8, o, k) over the corresponding La-
grange multipliers B, «, and «; see, e.g., Refs. [4,7,8]:

o(E,A,M) = 2mi)~? f// dBdadk Z(B,a, k)

x explBE — Aa — Mx]. (B2)

We will calculate by the SPM the integrals in this equation
over the restricted set of Lagrange multipliers « and «, related
to A and M, respectively. However, as in Sec. II, the last inte-
gral in Eq. (B2) over the variable g, related to the energy E,
will be calculated more accurately beyond the SPM approach.
The saddle points over other variables (marked by asterisks;
see below) are determined by saddle point equations:

dln Z\" dln Z\*
A= , M= .

do oK
The asterisk mean that « = «* and ¥ = «*. These equations
can be considered also as conservation laws for a given set
of M and A. Equations (B3) for the saddle point values o* =

AB and «* = liwf in terms of the chemical potential A and
rotation frequency w in the case of axially symmetric (or

(B3)
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spherical) mean fields for the “parallel” rotation (Sec. III E)
can be written in more explicit way:

o0 oo
M =/ de/ dmmg(e, m)n(e, m),
0 —00

A= / de/ dmg(e, m)n(e, m). (B4)
0 —00

Here, g(e, m) and n(e, m) are the s.p. level density [Eq. (3)]
and occupation number, n = {1 + exp[B(e — A — fimw)]} !,
respectively. The relations shown in Eq. (B4) are equations
for the frequency w and chemical potential A as functions of
the integrals of motion, projection of the angular momentum
M, and particle number A, respectively.

The frequency w can be eliminated with the help of the re-
lations (B3) and (A1) [or Eq. (B4); see Eq. (52)]. The moment
of inertia (MI), ®, given by Eq. (53), is decomposed in terms
of the smooth [Eq. (A12)] and oscillating components. For a
spherical potential, one can specify the MI shell correction as

50 = 50 = % > t3olsoFro. (B5)
PO

where Fpg is given by Egs. (10) and (11). In deriving Eq. (BS)
we used explicitly the spherical symmetry of the mean field
as in Eq. (A4) for the oscillating level density §g. (g, m) and
Eq. (A13) for the potential shell correction §<2. These com-
ponents for small excitation energies and major shell-structure
averaging, 3~' « I'" « Dg;, of 8g are much smaller than the
average rigid body value ® [Eq. (A12)], §0/0 ~ §g/3% ~
2m2Eq/3AY3 « 1; see Egs. (22) and (23). In the derivations
of Eq. (A13) we used the conservation conditions for the
particle number and angular momentum projection, Eq. (B3)
[or Eq. (B4)]. In the adiabatic approximation, one can simplify
the decomposition of the potential 2 [Eq. (A8)] in terms of
smooth and oscillating POT components, Egs. (A9) and (A13)
with (B5):
a 1 5
Q~E)y—— — A — -Quw". (B6)
B? 2
This equation, which is valid for arbitrary axially symmetric
potential, contains shell effects through the ground-state en-
ergy E,, the level density parameter a, Eq. (B11), and MI,
Eq. (53).

Similarly as in Eq. (4), expanding now In Z(8, o, k) in
Eq. (B2) over the variables « and « for arbitrary B near
the saddle points @ = a* and k = «*, one can use Eq. (B3)
for the saddle points. Performing, then, the SPM Gaussian
integrations over « and «, one finds

€A = @i [ pap| g (G S i ) o
pRE, A M) =12 . ahw

xexp[B(E —Q—AA—hwM)]. (B7)

Here, L =0a*/B, w=«*/hB, and J 1is the two-

dimensional Jacobian for the transformation between the
two shown sets of variables. Finally, at the saddle point of
Eq. (B3), one can recognize the entropy in the exponent argu-
ment:

S =BlE — QB, L, ) — AA — hoM]; (B8)

see Sec. II for more explicit similar derivations. It was conve-
nient also to introduce, instead of the partition function Z, the
potential

QB A, w) =—InZ(B, AB, hwp)/p (B9)

for any value of the integration variable 8 (¢ = A8 and k =
hwp). It is the well-known potential of the grand canoni-
cal ensemble when taken at all the saddle points as Q* =
Q(B*, A*, w*), where 8* = 1/T with T being the system tem-
perature, which, if it exists, can be defined using A* = «*T,
o* =«*T/h. We have also E = Q* + (80Q2/98)" + A*A.
Note that within the grand canonical ensemble the quantities
A* and w* are the standard chemical potential and rotational
frequency, respectively. Below we consider A = «*/8 and
w = k*/Bh (for any value of B) as the generalized chemical
potential and rotational frequency.

The potential Q(8, A, w), Eq. (52), contains two contribu-
tions: the thermal intrinsic excitation energy, U (8*) = aT?,
related to the entropy production, and the rotational exci-
tation energy, Eo(w) = Ow?/2. Assuming a small thermal
excitation energy, U o< 1/8? (i.e., aT? in the asymptotically
large excitation energy limit), with respect to rotational ones,
E.o (i.e., ®w?/2 in the adiabatic approximation) but large as
compared to a mean distance between neighbor level energies
for validness of the statistical and semiclassical arguments,
one writes, at 8 ~ 8%,

(B10)

The level density parameter a is given by Eq. (13) modified,
however, by the rotational ? corrections:

2

T (1)2
ax ;[gm + & ngou)réol%o]- (B11)
PO

The second term in the square brackets is explicitly presented
for the spherical potential. Note that the condition (B10) is
satisfied for smaller nuclear excitation energies U < 3 MeV
for typical rotational excitation energies fiw< 1 MeV; cf.
Eq. (24). The same limit U X 1/g(%) in Egs. (42), (24), and
the left-hand side of Eq. (B10) is due to the fact that, in the
calculation of the quantity (8, A, ), Egs. (B9) and (Al),
the sum over the s.p. states was approximately replaced by the
integral, and the continuous s.p. level-density approximation
for g(e, m), Eqs. (A2)-(A6), was used. In Eq. (B10), for a typ-
ical rotation energy iw< 0.1 MeV, one has 0.2< U< 3 MeV
(A =~ 40 MeV).

Under the (i) condition (B10) (see also Sec. III A), one
takes the two-dimensional Jacobian 7, Eq. (16), J =~ J,asa
smooth quantity, off the integral over 8 in Eq. (B7). Then, in
the calculations of this integral, we used the transformation of
the variables, § = 1/7, to arrive at the integral representation
for the modified Bessel functions I, of the order of v (e.g.,
v = 2). This representation is the well-known inverse Laplace

044319-16



SEMICLASSICAL SHELL-STRUCTURE ...

PHYSICAL REVIEW C 104, 044319 (2021)

transformation [55],
1 c+ioco

— dr v lexp(xt + y/1)
2mi c—ioo

v/2
= <)—C) I,2/xy), v>—I,
y

where I,(z) is the same modified Bessel function of the order
of v as used in Eqs. (42) and (49). In these transformations
we assumed that the integrand in Eq. (B7) is an analytical
function of the integration variable T = 1/8 on the right of
the imaginary axis (¢ > 0). This means that there are no equi-
librium states (poles) for the excitation energy U > 0. Notice
that the Jacobian 7 can be also taken off the integral over § at
B = B* within the full SPM if the saddle point 8* exists; see
Ref. [4] where the assumption of constant s.p. level density
near the Fermi surface was used. In the following derivations,
we will neglect small thermal and rotational corrections to
the chemical potential A as compared to the Fermi energy .
Excitation energies consistent with the conditions of Eq. (24)
should also be smaller than a distance between major shells,
Dgh, Eq. (A15), in the adiabatic approximation for rotational
excitations. At the same time, we neglect the oscillating g
dependence of the Jacobian, §.7 (Jacobian subscript is oo in
Ref. [30]), under the condition of case (i) [see Eq. (B10) and
Sec. IIIE for the typical rotational energy /o< 0.1 MeV].
Thus, one finally arrives at Eq. (49) for v = 2 in the case (i).
For the coefficient p, in the case (i) but for arbitrary v, one
finds

(B12)

2a"

nv—llj(Zv—2)|l/2' (BI3)

P, =
The superscript 2v — 2 of the smooth part of the Jacobian,
J® =2, Eq. (16), provides the number of the integrals of
motion beyond 1 (energy E). In the considered case of n = 3
integrals of motion, one has v = (n + 1)/2 = 2, and the cor-
responding smooth Jacobian is given by J® ~ gprp(A)O/h%.

Note that the expressions (49) and (B13), for the case
(i), are presented in a general form for axially symmetric
potentials and arbitrary number of integrals of motion n. They
are valid under the condition (B10), e.g., n =3 and v =
(n+ 1)/2 = 2 in this Appendix and the same as in Ref. [30].
For the specific case n = 2, the case (i) (v = 3/2) in Sec. Il A,
one obtains Eq. (29), with Eq. (26) for the constant p; /25 and
its Bethe asymptote (47).

In the opposite case (ii) (Sec. III B) for a small rotational
energy E;, with respect to the thermal excitations U, Ey <
U [opposite to the condition (B10)], for the Jacobian 7 in
the integrand of Eq. (B7), up to shell corrections, one ob-
tains approximately from Eqgs. (A8), (A13), and taking finally
Eq. (A9) for Q &~ , the expression

2 IR )N 2a0

— = NS Bl14
3r dho 22 B2 B19

J=J<

This Jacobian was simplified by expanding the 8 depending
factor in Eq. (10) over the variable xpy o< 1/8 under the
condition of smallness of the xj, o 1/8* term; see Eq. (24).
The shell corrections in the Jacobian calculations in the case
(i) were neglected finally, in Eq. (B14), as compared to
the smooth (E)TF part J [see similar derivations around
Eq. (35)]. As a result of the integration over 8 in Eq. (B7)
with Eq. (B14) for the Jacobian 7 and the help of Eq. (B12)
(after transformation of the integration variables, 8 = 1/1),
one obtains finally the same Eq. (49) but with v = 3. The
coefficient p; is given by Eq. (51) at © ~ @.

For large and small entropy S, one obtains from Eq. (49),
with the help of Egs. (43) and (44), the asymptotic Fermi
gas (at zero order in 1/S) and combinatorics expressions (in
powers of S? o U), respectively. At small entropy, S < 1,
one obtains from Eq. (49) [with Eq. (44)] the combinatorics
power expansion starting from a constant, that is finite in the
limit § < 1. This expansion in powers of §? o U is the same
as that of the empiric CTM used often for the level density
calculations at small excitation energies U [3,18], but here it
is obtained without free parameters.

APPENDIX C: FULL SPM FOR A GENERAL FERMI GAS
(GFG) ASYMPTOTE

Taking the integral (15) over § by the standard SPM, one
can expand, up to second-order terms, the exponent argument
S(B) = BU + a/B near the saddle point 8 = B*,

2a

1 *
S(B) = B*U +a/B* + E(E) B — B (C1)

The first derivative disappears because of the SPM condition,

as\* a
— =U-——=0, C2
(w) B €

from which one finds the standard expression for the ex-
citation energy U through the saddle point 8* = 1/T, i.e.,
U = aT?. Taking the preexponential Jacobian multiplier off
the integral over B8 in Eq. (15) we substitute Eq. (C1) for
S(B) into Eq. (15). Changing the integration variable § to the
new variable z, z> = (—93%5/38%)*(8 — B*)*/2, and then cal-
culating the error integral over z by extending the integration
range to infinity, one obtains Eq. (45). Here we used a general
expression (16) for the Jacobian at the saddle point condition
(C1) for B*. The critical quantity for these derivations is the
ratio £*; see Eq. (20) for & taken at 8 = B*, & = £*, which is
approximately proportional to the semiclassical POT energy
shell correction, Eq. (23) (see Appendix A).
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