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The exotic nuclei have attracted extensive attention in nuclear physics recently. The resonant states are thought
to play a critical role at the formation of these exotic phenomena. Here, the complex momentum representation
(CMR) method for resonances is combined with the relativistic mean field (RMF) theory applicable to deformed
system. The RMF-CMR method for deformed exotic nuclei is established. The theoretical formalism and
numerical details are presented. 75Cr is chosen as an example, the energies and widths of single-particle
levels and their evolutions to deformation β2 are obtained for resonant states together with bound states. The
available potential energy curve shows that 75Cr is a deformed nucleus with β2 = 0.333. Wave function of the
orbit occupied by the last valence neutron consists mainly of d-wave components. The corresponding density
represents a considerably diffuse distribution, which suggests that 75Cr is a d-wave deformed halo nucleus. The
predication is helpful to explore the deformation halos in experiment for the nuclei in the medium mass region.
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I. INTRODUCTION

With the development of radioactive nuclear beam tech-
nologies, physicists have synthesized many nuclei far away
from the valley of stability. In these nuclei, there appear many
exotic phenomena, such as neutron (proton) halos (skins)
[1,2], energy-level inversion [3,4], change of magic numbers
[5–7], exotic radioactivity [8,9], and so on.

Among these exotic phenomena, halos embody the special
characteristics of finite quantum many bodies, and attract the
extensive attention of nuclear physicists. So far, many halo nu-
clei have been observed in experiments, such as neutron halo
nuclei: 11Li [10], 11,14Be [11], 17,19B [12], 19,22C [13,14], and
23O [15]; proton halo nuclei: 8B [16], 9C [17], 17Ne [18], 20Mg
[19], 23Al [20], 26,27,28P [21], and deformed halo nuclei: 31Ne
[22,23], 37Mg [24], and 29F [25]. These halo nuclei are located
at the vicinity of the neutron or proton drip line. The valence
nucleons are close to the continuous threshold and are easy to
be scattered into the continuum. The resonances in the con-
tinuum play important roles at the formation of these exotic
phenomena [26,27]. Therefore, the exploration of resonances
is the key to understanding the properties of exotic nuclei.

To explore resonances, physicists have developed many
methods which include the R-matrix method [28,29], the S-
matrix method [30,31], the Jost function approach [32,33],
the Green’s function method [34–37], the pseudostate method
[38], the complex scaling method [39], and so on. These
methods have achieved considerable success in handling un-
bound problems. For examples, the resonance and decay in the
weakly bound and unbound three-body nuclei 9Be, 26O, and
16Be are depicted excellently using the pseudostate method
within the hyperspherical formalism [40,41]. The many-body
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resonances in light nuclei are described well with the complex
scaling method in combination with the nuclear cluster model
[42]. The experimental data on multiparticle scatterings, such
as 6He scattering on carbon and lead targets with the Coulomb
breakup 6He → 5He +n → 4He +n + n, are reproduced suc-
cessfully with the complex scaled Green’s function method
[43]. Recently, the complex momentum representation (CMR)
method has attracted additional attention for its success in
dealing with unbound problems [44]. This method was first
formalized by Berggren for the solutions of resonant states
in Schrödinger equation [45]. Afterwards, the method was
applied to different fields including the study of resonances
in atomic and molecular systems [46] and atomic nuclei
[47,48] in the nonrelativistic case. In combination with the
shell model, the Gamow shell model was developed [49–51].
The Gamow shell model has achieved considerable success in
describing exotic nuclei.

Due to the advantages of CMR, which describe the bound
states and resonant states on an equal footing and is applicable
to not only narrow resonances, but also broad resonances, we
develop the CMR method to the relativistic framework for
resonances in the spherical case [44] and obtain a better un-
derstanding of the pseudospin and spin symmetries in nuclear
resonant states [52]. In combination with the relativistic mean
field (RMF) theory, we have established the RMF-CMR in
the relativistic meson exchange model [53] and the relativistic
point-coupling model [54] and presented satisfactory descrip-
tions for spherical exotic nuclei [55]. Considering that most
of nuclei are deformed, to develop the theoretical formalism
for deformed nuclei is interesting. In Ref. [56], we have devel-
oped the CMR method for deformed nuclei by solving Dirac
equation in a phenomenological Woods-Saxon potential. To
describe self-consistently the deformed exotic nuclei, it is
necessary to develop the RMF-CMR applicable to deformed
system.
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At present, experimental and theoretical studies of halo
nuclei are mainly focused on light nuclei, and some theories
predict that halo or giant halo may exist in heavy nuclei.
There are relatively few studies on the existence of halo in
medium-mass nuclei. In Refs. [57,58], the exotic structure in
medium-mass nuclei were investigated systemically by using
the nuclear energy density functional theory, and the halo
phenomena were predicted in the Cr and Sn isotopes near
neutron drip line. In Ref. [59], the coupled-channel calcu-
lations are used to predict the halo heavier than 37Mg, and
several possible candidates of the neutron halo are suggested
to be 71Cr, 73Cr, 75Cr, 77Fe, and 53Ar. Similar to Ref. [59],
the halos heavier than 37Mg are explored by the complex
momentum representation based on a simple Woods-Saxon
potential, and 75Cr, 77Fe, and 53Ar are suggested to be the
possible candidates of neutron-halo nuclei [60].

In the paper, we first develop the RMF-CMR theory ap-
plicable to deformed nuclei. Then we apply the theory to
investigate the exotic structure for the nuclei in the medium-
mass region. 75Cr is chosen as an example, we perform
the RMF-CMR calculations self-consistently with quadruple
deformation constraints to obtain the single-particle bound
and resonant levels, configuration probabilities of the orbit
occupied by the last valence nucleon and radial density dis-
tributions. Based on these results, we obtain the knowledge
on the exotic structure in 75Cr. The theoretical formalism
is sketched in Sec. II. The numerical details and results are
presented in Sec. III. A summary is given in Sec. IV.

II. FORMALISM

For the description of deformed exotic nuclei, we first
introduce the theoretical formalism of the present model. The
relativistic mean field theory describing the nuclei is based on
an effective Lagrangian density constructed with the degrees
of freedom that is associated with the nucleon field ψ , the
meson fields σ, ω, ρ, and the photon field A. The effective
Lagrangian density of the model [61–65] is written as

L = ψ̄

[
iγ μ∂μ − M − gσ σ − gωωμγ μ − gρ �ρμ�τγ μ
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2
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σ σ 2
)

−1

4
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3 − 1
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4

−1

4
�ρμν �ρμν + 1

2
m2

ρ �ρμ�ρμ + 1

4
c3(ωμωμ)2

+1

4
d3(�ρμ · �ρμ)2 − 1

4
AμνAμν, (1)

here the tensors of the meson and photon fields are defined as

ωμν = ∂μων − ∂νωμ,

�ρμν = ∂μ�ρν − ∂ν �ρμ,

Aμν = ∂μAν − ∂νAμ.

M is the nucleon mass. gσ , gω, and gρ are the coupling
constants of σ, ω, and ρ mesons, respectively, with nucleons.
g2, g3, c3, and d3 are the nonlinear self-coupling coefficients
of mesons. Starting from the Lagrangian density, by using the
classical variation principle, the Dirac equation describing the
motion of nucleons is obtained as

[�α · �p + β(M + S) + V ]ψ = εψ, (2)

where �α and β are the Dirac matrices and S and V are the
scalar and vector potentials. This set of Dirac equations can
be solved self-consistently with the conventional methods,
such as the basis expansion with the HO functions, or the
finite element method in a finite box, the results describing
the bound states can be obtained. The details can be seen in
Refs. [61–65].

For these nuclei far from the valley of stability, the in-
fluence of resonant states is not negligible. To consider the
contribution of resonant states, the physicists have devel-
oped many methods. Comparably, the complex momentum
representation method holds many advantages indicated in
Refs. [44,47]. For this reason, we transform the Dirac equation
Eq. (2) into the momentum representation,∫

d �k′〈�k|H | �k′〉ψ ( �k′) = εψ (�k), (3)

where H = �α · �p + β(M + S) + V is the Dirac Hamilto-
nian and �k = �p/h̄ is the wave vector in the momentum
representation.

For the axially deformed nuclei, the third component mj of
total angular momentum j and the parity π are good quantum
numbers. The wave-function ψ (�k) can be expanded as

ψ (�k) = ψmj (�k) =
∑

l j

(
f l j (k)φl jm j (�k )
gl j (k)φl̃ jm j

(�k )

)
, (4)

where l̃ = 2 j − 1, f l j (k), and gl j (k) are the radial wave
functions, φl jm j (�k ) is the angular wave function in the mo-
mentum representation,

φl jm j (�k ) =
∑
ms

〈
lm

1

2
ms| jm j

〉
Ylm(�k )χms ,

with the spherical harmonics Ylm(�k ) and the spin-wave
function χms . ms is the third component of spin angular
momentum s.

Putting Eq. (4) into Eq. (3), the Dirac equation becomes

M f l j (k) − kgl j (k) +
∑
l ′ j′

∫
k′2dk′V +(l ′, j′, p, q, l, j, mj, k, k′) f l ′ j′ (k′) = ε f l j (k),

−k f l j (k) − Mgl j (k) +
∑
l ′ j′

∫
k′2dk′V −(ł̃′, j′, p, q, l̃, j, mj, k, k′)gl ′ j′ (k′) = εgl j (k), (5)
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where V + and V − are as follows:
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= (−)l il+l ′ 2

π
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′r)

×
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〈lm|Ypq(�r )|l ′m′〉
〈
lm

1

2
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〉〈
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2
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〉
,
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= (−)l̃ il̃+l̃ ′ 2

π

∫
r2dr[V (r) − S(r)] jl̃ (kr) jl̃ ′ (k
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×
∑
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l̃ m̃

1
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2
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〉
. (6)

For simplicity in computation, the Gauss-Legendre quadrature approximation is adopted. The integration in Eq. (5) is
transformed into a sum f (ka) to ka with the weight wa, where ka is the grid point of Gauss-Legendre quadrature. Furthermore,
by the transformation f (ka) = √

waka f (ka) and g(ka) = √
wakag(ka), the Dirac equation becomes a symmetric matrix equation

as

∑
b

⎡
⎣Mδabf l j (kb) +

∑
l ′ j′

√
wawbkakbV

+(l ′, j′, p, q, l, j, mj, ka, kb)f l ′ j′ (kb) − kaδabgl j (kb)

⎤
⎦

= εf l j (ka),

∑
b

⎡
⎣−kaδabf l j (kb) − Mδabgl j (kb) +

∑
l ′ j′

√
wawbkakbV

−(l̃ ′, j′, p, q, l̃, j, mj, ka, kb)gl ′ j′ (kb)

⎤
⎦

= εgl j (ka). (7)

So far, the solution of Dirac equation Eq. (2) has become
an eigenvalue problem of a symmetric matrix in Eq. (7).
Different from Ref. [56], the present RMF-CMR is solved
self-consistently with the scalar and vector potentials from the
relativistic mean field. To obtain the potential-energy curve
and the single-particle levels and their evolutions to deforma-
tion, the constrained RMF calculations are performed. The
binding energy at a certain deformation is obtained by con-
straining the quadruple moment 〈Q2〉 to a given value μ2 in
the expectation value of the Hamiltonian,

〈H ′〉 = 〈H〉 + 1

2
Cμ(〈Q2〉 − μ2)2,

where Cμ is the constraint multiplier. The deformation pa-
rameter β2 is obtained from the calculated quadruple moment
〈Q2〉 [66].

III. NUMERICAL DETAILS AND RESULTS

With the preceding formalism, we explore the exotic struc-
ture for the nuclei near the drip line. In the relativistic mean
field calculations, the parameter set NL3∗ [67] is adopted. The
neutron-rich nucleus 75Cr is taken as an example. We first
perform the RMF calculations with the quadruple deformation
constraints to obtain the potential-energy curve and the defor-
mation of ground state. The Dirac equation is solved in real
space with the truncated momentum k = 4.0 fm−1. The other

is the same as those in Fig. 2. Binding energy per nucleon E/A
as a function of the quadruple deformation β2 is displayed
in Fig. 1. There appear two minima in the potential-energy
curve. One locates at the prolate side with deformation β2 =
0.333. Another one is on the oblate side with deformation
β2 = −0.215. Compared with the minimum on the oblate
side, the minimum on the prolate side is lower, which means

FIG. 1. The binding energy per nucleon E/A in 75Cr and its
evolution to the quadruple deformation β2.
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FIG. 2. The single-particle spectra in the deformed nucleus 75Cr
for states �π = 1/2+, 3/2+, . . . , 9/2+ on the complex momentum
plane. The bound states and the continuous spectrum are marked with
blue open boxes and black open circles, respectively. The resonant
states with different quantum numbers are marked with different
colored labels.

the nuclei in the prolate minimum is the most stable. Hence,
it can be convinced that 75Cr is a prolate deformation nucleus
with β2 = 0.333 in its ground state.

With the knowledge on the deformation of the ground
state, we explore the exotic structure in 75Cr. First, we de-
termine an appropriate integration contour in the RMF-CMR
calculations to obtain all the resonant states concerned over
the range of deformation considered. Similar to Ref. [56],
the select contour is surrounded by the four points k1 =
0, k2 = 0.4 − i0.4, k3 = 0.8, and k4 = 4.0 fm−1. The inte-
gration along the contour is performed by the Gauss-Legendre
quadrature with 120 grid points. For every state with �π , its
wave function is expanded into eight spherical configurations.
In the model space, the available single-particle spectra in
the deformed nucleus 75Cr with β2 = 0.333 for states �π =
1/2+, 3/2+, . . . , 9/2+ are shown in Fig. 2.

From Fig. 2, it can be seen that all the bound and resonant
states are clearly separated from the continuous spectrum. The
bound states populate on the imaginary axis of momentum
k, the resonant states are distributed in the fourth quadrant,
and the continuous spectrum follows the integral contour on
the complex momentum plane. For 75Cr, there appear seven
single-particle resonant states. Two of them are the resonant
states with the quantum numbers �π = 3/2+. Another two
are the resonant states with �π = 5/2+. The quantum num-
bers of the other three resonant states correspond to �π =
1/2+, 7/2+, and 9/2+, respectively. All the resonant states
are located near the real momentum axis, i.e., these resonant
states are narrow resonances with long lifetimes.

In order to explore the exotic structure in the nucleus,
we perform the RMF-CMR calculations with quadruple de-
formation constraints to obtain all the resonant states over

FIG. 3. The single-particle levels and their evolutions to the
quadruple deformation β2 in 75Cr. These levels for axially deformed
nuclei are labeled with the asymptotic quantum numbers �[Nnz�].
The corresponding spherical labels are placed in the position β2 =
0. A shorter vertical line marks the location of the ground-state
deformation with β2 = 0.333. The numerical data are supplied as
Supplemental Material [68].

the range of deformation considered. For 75Cr, the available
single-particle levels including the bound states and resonant
states, and their evolutions to the deformation β2 are plotted in
Fig. 3. Because the valence nucleons are more likely to occupy
the single-particle orbits near the Fermi surface, we only draw
the resonant levels with the energy below 4.0 MeV, which is
enough to discuss the physical issues concerned here. It can
be seen from the figure that a clear shell structure appears in
the bound levels as well as the resonant levels especially in the
spherical case. Large gaps between the levels 1g9/2 and 2p1/2,
and the levels 3s1/2 and 1g9/2 correspond to the traditional
magic numbers 40 and 50. Moreover, there appears a large
gap between the resonant levels 1g7/2 and 2d3/2, which looks
forward to experimental verification. When the nucleus be-
comes deformed, the degenerate single-particle energy levels
are undegenerate. Some levels fall with the increase indefor-
mation, and the others rise. Several new gaps appear in these
resonant levels, which is similar to that of the bound levels.

Based on the single-particle levels, we analyze the pos-
sibility of exotic structure in 75Cr. It is known that there
may appear exotic phenomena, such as halos if the valence
nucleons occupy the weakly bound or resonant levels with
lower angular momentum. From Fig. 3, it can be seen that the
last (51st) valence neutron in 75Cr occupies the level 5/2[402]
in the range of β2 < 0.0. This energy level is not only quite
bound, but also has a large angular momentum, which results
in a high eccentric barrier. Therefore, it is difficult to form a

044315-4



RESEARCH ON DEFORMED EXOTIC NUCLEI BY … PHYSICAL REVIEW C 104, 044315 (2021)

halo for valence nucleon populating on the orbit. In the range
of deformation 0.0 � β2 � 0.175, the last valence neutron
occupies the level 1/2[420], which is developed from state
2d5/2 with the increasing deformation. The corresponding
wave function consists mainly of the d-wave component and
is not against the formation of a halo. Unfortunately, this is not
the most stable state of 75Cr, which can be figured out in the
potential-energy curve in Fig. 1. In the range of deformation
0.175 � β2 � 0.28, the last valence neutron occupies the level
9/2[404] developed from the spherical wave 1g9/2, the wave
function of this orbit is mostly composed of the g9/2 compo-
nent, which does not support the formation of a halo for the
high centrifugal barrier. The same case appears in the range
of deformation 0.395 � β2 � 0.56, the last valence neutron
occupies the level 7/2[413] and does not favor the formation
of a halo. In the range of deformation 0.28 � β2 � 0.395, the
last valence neutron occupies the level 1/2[411]. From the
potential-energy curve in Fig. 1, we know that 75Cr is a pro-
late nucleus with deformation β2 = 0.333. The last valence
neutron occupies the weakly bound level 1/2[411] with the
single-neutron separation energy Sn that is less than 1.0 MeV
in the position, which satisfies the favorable condition of halo
formation. Nevertheless, whether there is a halo phenomenon
still needs further analysis.

To clarify the possibility of a halo, we examine the compo-
nents of wave function for the single-particle orbit occupied
by the last valence nucleon. The occupation probabilities of
every configuration are defined as

Pi
mj

= Pl j
mj

=
∫

[ f l j (k) f l j (k) + gl j (k)gl j (k)]k2dk, (8)

where Pi
mj

represents the occupation probabilities of the con-
figuration (l j). For the level 1/2[411], the eight configurations
s1/2, d3/2, d5/2, g7/2, g9/2, i11/2, i13/2, and k15/2 are adopted
in the RMF-CMR calculations. Occupation probabilities of
these configurations are shown in Fig. 4. Since their imag-
inary parts are smaller than 10−12, we only show the real
parts of occupation probabilities there. In the range of defor-
mation considered, the wave function of the single-particle
state 1/2[411] consists mainly of these three configurations
d3/2, d5/2, and g7/2. The contributions of the other config-
urations are small. Comparably, the occupation probabilities
of the configurations d3/2 are dominant. At the position β2 =
0.333, the occupation probabilities of the two configurations
d3/2 and d5/2 are over 65%. Hence, the wave function of the
ground state in 75Cr is mostly composed of d components
although the g7/2 component has an important contribution.

Considering that the diffuse density distributions are a
characteristic of a halo [26], we calculate the radial density
distributions for these orbits occupied by valence nucleons
with the following formula:

ρmj (r) =
∑

l j

[ f l j (r) f l j (r) + gl j (r)gl j (r)], (9)

where f l j (r) and gl j (r) are the radial wave functions in
coordinate representation obtained by transformation from
momentum representation. The calculated radial density dis-
tributions for the single-particle level 1/2[411] are plotted

FIG. 4. Real part of the configuration occupation probabili-
ties and their evolutions to the quadruple deformation parameter
β2. For the single-particle state 1/2[411], these configurations are
s1/2, d3/2, d5/2, g7/2, g9/2, i11/2, i13/2, and k15/2 in the present cal-
culations. The corresponding imaginary parts are too small on the
order of 10−12 and not displayed here. The same as Fig. 3, a shorter
vertical line marks the location of the ground-state deformation.

in Fig. 5. For comparison, the radial density distributions of
the three adjacent levels 3/2[411], 7/2[413], and 9/2[404]
are also displayed there. For the bound level 7/2[413], the
radial density distribution of the single-particle state is conver-
gent. For the weakly bound level 3/2[411], the single-particle
state has a diffuse density distribution. Similar to the level
3/2[411], the radial density distribution of the bound level

FIG. 5. Real part of radial density distributions for the single-
particle states 1/2[411], 3/2[411], 7/2[413], and 9/2[404] in 75Cr
with deformation β2 = 0.333. The insertion is the imaginary part of
radial density distributions for the resonant state 9/2[404] multiplied
by 108. The imaginary part of the three weakly bound states is at the
power of 10−12 and not shown here.
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FIG. 6. The same as Fig. 5 but for the RMF-CMR calculations
with the interactions PK1.

1/2[411], which is occupied by the last valence neutron, is
considerably diffuse. As a consequence, we can conclude that
a d-wave halo is likely to be formed in the deformed nucleus
75Cr with the valence nucleon occupying the weakly bound
level 1/2[411] at β2 = 0.333. Compared with the bound levels
1/2[411] and 3/2[411], the radial density distributions of the
level 9/2[404] are not very diffuse although it is a resonance
state. These support that the valence nucleons occupying the
weakly bound or resonant orbits with lower angular momen-
tum is the condition of halo formation. In addition to these real
parts, Fig. 5 also shows the imaginary part of radial density
distribution multiplied by 108 for the resonant state 9/2[404]
in insertion. The imaginary parts of the three bound states are
not shown there because they are smaller than 10−12. Com-
pared with the real parts, the imaginary parts of radial density
distributions are negligible for the four states shown in Fig. 5.

The same conclusion is obtained in the RMF-CMR
calculations with the interactions PK1 [69], which can be
seen in Fig. 6. Compared with the bound level 7/2[413],
the radial density distributions of the weakly bound level
1/2[411] is more diffuse. The valence neutron populating on
the orbit satisfies the favorable conditions for the formation
of the halo. Moreover, the wave functions of the orbit is
mostly composed of the d component. These indicate that
the RMF-CMR calculations with the PK1 support a d-wave
deformed halo nucleus for 75Cr.

IV. SUMMARY

To summarize, the complex momentum representation
method is combined with the relativistic mean field theory
applicable to the axially symmetric system. The RMF-CMR
model describing deformed nuclei is established. The model
is applied to explore the exotic nuclei in the medium-mass
region. 75Cr is chosen as an example, the calculated potential
energy curve shows that 75Cr is a prolate deformed nucleus in
its ground state.

In an appropriate integration contour of the complex mo-
mentum plane, the bound states, the resonant states concerned,
and the continuous spectrum in the deformed nucleus 75Cr
are obtained in the self-consistent RMF-CMR calculations.
All the bound and resonant states are clearly separated from
the continuous spectrum. The bound states populate on the
imaginary axis of momentum k, the resonant states are dis-
tributed in the fourth quadrant, and the continuous spectrum
follows the integral contour on the complex momentum
plane.

The RMF-CMR calculations with quadruple deformation
constraints are performed, and the single-particle levels in-
cluding the bound and resonant states and their evolutions
to deformation are obtained. It is seen that there are clear
shell structures in the single-particle bound levels as well as
resonant levels in 75Cr. Similar to the bound levels, there
appear large gaps in the resonant levels in the spherical and
deformed cases.

Combining knowledge of the potential-energy curve, the
last valence neutron in 75Cr should occupy the weakly bound
orbit 1/2[411]. The calculated occupation probabilities show
that the wave function of this orbit 1/2[411] consists mainly
of the d-wave component. The radial density distribution
of the single-particle orbit 1/2[411] is considerably diffuse.
These show that 75Cr is a d-wave-deformed halo nucleus
with the valence nucleon occupying the weakly bound orbit
1/2[411]. The predication is helpful to explore exotic nuclei
from experiment in the medium-mass region.
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