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Coulomb excitation of 80,82Kr and a change in structure approaching N = Z = 40
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Background: Nuclei approaching N = Z = 40 are known to exhibit strongly deformed structures and are
thought to be candidates for shape coexistence. In the krypton isotopes, 80,82Kr are poorly characterized,
preventing an understanding of evolving deformation approaching N = 40.
Purpose: The present work aims to determine electric quadrupole transition strengths and quadrupole moments
of 80,82Kr in order to better characterize their deformation.
Methods: Sub-barrier Coulomb excitation was employed, impinging the isotopes of krypton on 196Pt and 208Pb
targets. Utilizing a semiclassical description of the safe Coulomb-excitation process E2 matrix elements could
then be determined.
Results: Eleven new or improved matrix elements are determined in 80Kr and seven in 82Kr. The new
B(E2; 0+

1 → 2+
1 ) value in 82Kr disagrees with the evaluated value by 3σ , which can be explained in terms of

deficiencies in a previous Coulomb-excitation analysis.
Conclusions: Comparison of measured Qs(2+

1 ) and B(E2; 0+
1 → 2+

1 ) values indicates that neutron-deficient
(N � 42) isotopes of krypton are closer to axial deformation than other isotopic chains in the mass region. A
continuation of this trend to higher Z may result in Sr and Zr isotopes exhibiting near-axial prolate deformation.
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I. INTRODUCTION

Deformation is an ever-present feature of atomic nuclei,
arising even in doubly magic systems that might traditionally
be considered spherical [1]. Dramatic changes in deformation
across isotopic and isotonic chains is often symptomatic of
a change in the underlying microscopic configuration. The
region around N = Z = 40 lies in what might nominally be
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expected to be a near-spherical region, with the nucleon num-
ber 40 being a subshell closure. Experimental work, however,
has demonstrated that the region instead exhibits an excep-
tional degree of quadrupole deformation (see, e.g., Ref. [2]).
The picture is further complicated by the predicted existence
of multiple competing nuclear configurations, as highlighted
in a theoretical study of the N = Z = 40 nucleus, 80Zr [3], in
which multiple shape-coexistence was predicted.

Regions of the nuclear landscape in which markedly dif-
ferent configurations are near degenerate in energy provide
a challenging testing ground for nuclear theory, requiring
precise determinations of their relative energies. Typically,
such different configurations are associated with different
macroscopic shapes, giving rise to the phenomenon of shape
coexistence. It is convenient to consider the different configu-
rations in terms of their respective deformation, as these give
rise to experimentally observable quantities such as electric
quadrupole transition strengths and moments that can be di-
rectly compared to theoretical predictions.

Neutron-deficient isotopes of krypton have been experi-
mentally associated with both strongly deformed structures
and shape coexistence, evidenced by low-lying excited 0+
states and supported by Coulomb-excitation measurements.
For example, Coulomb-excitation measurements of radioac-
tive 74,76Kr, performed by Clement et al. [4], indicate a
near-axial prolate ground state coexisting with a largely triax-
ial configuration. Measurements of stable 78Kr [5,6] support
this picture of a near axially deformed prolate ground state
and a triaxial coexisting configuration.

In heavier isotopes of krypton, however, experimental data
are lacking. In particular, spectroscopic quadrupole moments
of 2+

1 states [Qs(2+
1 )] have not been experimentally deter-

mined in either of 80Kr or 82Kr. These observables provide
the clearest metric of a nuclear shape and are thus an essential
ingredient in a systematic study of the isotopic chain. In the
present work we present Coulomb-excitation measurements
of both of these isotopes on high-Z targets, providing the first
experimental determination of Qs(2+

1 ) in both cases. Through
comparison of the present results with measured values in
lighter isotopes of krypton and isotones of selenium and ger-
manium, we are able to demonstrate a shift towards centrally
axial deformation approaching N = Z = 40.

II. EXPERIMENT AND ANALYSIS

Beams of 80,82Kr were provided by the TRIUMF offline
ion source (OLIS) [7], injected into the ISAC accelerator
chain and accelerated to energies of 4.17 MeV/u, correspond-
ing to about 71% of the Coulomb-barrier height. The beams
were impinged upon a self-supporting 1.5 mg/cm2 196Pt
target and a 1 mg/cm2 208Pb target, where the 208Pb target
was backed with a 40 μg/cm2 carbon foil. Two micron S3-
type [8] double-sided silicon strip detectors were mounted
in the BAMBINO chamber and used to detect scattered
beam- and target-like nuclei, with one detector located down-
stream of the target and one upstream. The target chamber
was surrounded by fourteen detectors of the TRIUMF-ISAC
gamma-ray escape-suppressed spectrometer (TIGRESS) [9]
for the detection of γ rays emitted in the de-excitation of

FIG. 1. Doppler corrected TIGRESS-S3 coincidence spectra in
the beam (80Kr, black) and target (196Pt, red) frame for: (a) Beam-
like nuclei scattered and detected in the downstream S3 detector.
(b) Target-like nuclei scattered and detected in the downstream S3
detector. (c) Beam-like nuclei scattered and detected in the upstream
S3 detector. Transitions relevant to the present work are indicated.
Note that the resolution for beam-like γ rays identified in coinci-
dence with target-like scattered ions is worsened due to the slowing
of the beam-like recoil within the target.

the nuclei of interest. The TIGRESS clover detectors were
arranged in a Compton-suppressed configuration, with the
fronts of the detectors 145 mm from the target position. Beam
intensities of approximately 1 × 106 pps were maintained for
approximately 7 and 4 h for 80Kr and 82Kr, respectively.

Data were analyzed using the GRSISort analysis package
[10], written in a ROOT framework [11]. Silicon pixels were
constructed using energy- and time-coincident conditions,
with coincident γ rays in TIGRESS selected on the basis
of a ±100 ns time-coincidence. γ -ray events were added-
back to enhance detection efficiency. γ -ray energies were
then Doppler-corrected on the basis of the reaction kinematics
as determined from the measured particle scattering angle
determined in the silicon detectors and the γ -ray emission
angle determined from the subcrystal electronic-segmentation
of the TIGRESS clover detectors. Example Doppler-corrected
γ -ray spectra are shown in Figs. 1 and 2 for 80Kr and 82Kr,
respectively. Reduced level schemes showing the levels and
transitions observed in the present work are shown in Fig. 3.

Scattered beam- and target-like particle detections were
subdivided into angular bins corresponding to a near-
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FIG. 2. Doppler corrected TIGRESS-S3 coincidence spectra in
the beam (82Kr, black) and target (196Pt, red) frame for: (a) Beam-
like nuclei scattered and detected in the downstream S3 detector.
(b) Target-like nuclei scattered and detected in the downstream S3
detector. (c) Beam-like nuclei scattered and detected in the up-
stream S3 detector. Transitions relevant to the present work are
indicated.

continuous coverage of center-of-mass angles between 27◦
and 167◦ with respect to the beam axis. γ -ray detection effi-
ciencies were determined with 60Co, 152Eu, and 133Ba sources.
γ -ray yields were then efficiency corrected, allowing for com-
parison with those calculated using the GOSIA [12] coupled-
channels semiclassical Coulomb-excitation code. Upstream
detections correspond to a minimum separation smaller than
the empirical 5 fm required for safe Coulomb excitation
and were therefore excluded from the Coulomb-excitation
analysis. However these data still provided useful useful in-
formation on the state population due to the typically superior
γ -ray energy resolution as shown in the bottom panels of
Figs. 1 and 2.

Coulomb-excitation yields were calculated with GOSIA and
were fitted to the experimental data with the MINUIT [13]
package of minimization tools, using the MIGRAD algorithm.
Data from 196Pt were used to provide a target normaliza-
tion, providing sensitivity to absolute matrix elements in the
krypton isotopes. Matrix elements of 196Pt used in the nor-
malization procedure are shown in Table I. Literature E2/M1
mixing ratios (δ) and branching ratios for 80,82Kr were used
to further constrain the fits, where available, and are given in
Table II. Full covariances could be extracted from the mini-

FIG. 3. Levels and transitions relevant to the present work for
(a) 80Kr and (b) 82Kr.

mization, which allowed for comparison with the χ2 surface
scan method described in Ref. [14], in which an iterative pro-
cess is used. Central values and uncertainties were found to be
consistent with the present method and the iterative technique
of Ref. [14]. Covariances and correlations extracted from the
minimization are reported in the Appendix of the present

TABLE I. Matrix elements for 196Pt used to constrain the present
analysis. The stated krypton isotope indicates whether the matrix
element was allowed to vary in the minimization and contribute to the
χ 2. For example, the 〈2+

1 | E2 |2+
2 〉 matrix element was permitted to

vary during the 80Kr analysis and its discrepancy from literature con-
tributed to the χ 2 value. In the 82Kr analysis, on the other hand, the
matrix element was fixed and its influence on the determined matrix
elements was investigated by repeating the minimization procedure
at the ±σ limits.

i f
〈
Jπ

i

∣∣E2
∣∣Jπ

f

〉
(e2b2) Notes Ref.

0+
1 2+

1 1.172(5) 80,82Kr [15]

2+
1 2+

1 0.82(10) 80,82Kr [16]

2+
1 2+

2 1.36(1) 80,82Kr [16]

2+
1 4+

1 1.91(2) 80,82Kr [16]

2+
1 0+

2 0.167(15) 80Kr [16]

2+
2 2+

2 −0.52(20) 80Kr [16]

2+
2 0+

2 −0.35(70) 80Kr [16]

4+
1 4+

1 1.36(16) 80Kr [16]

i f
〈
Jπ

i

∣∣ M1
∣∣Jπ

f

〉
(μN ) Notes

2+
1 2+

2 0.0723(64) 80,82Kr [15]
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TABLE II. Literature branching ratios (BR) and mixing ratios
(δ) used to constrain the GOSIA minimization. Data were taken from
ENSDF [15] with the exception of the 80Kr BR, which was taken
from Ref. [17].

80Kr

i f1 f2 BR
[ i→ f1

i→ f2

]
2+

2 0+
1 2+

1 0.331(4)
i → f δ

2+
2 → 2+

1 6(1)
82Kr

i f1 f2 BR
[ i→ f1

i→ f2

]
2+

2 0+
1 2+

1 0.577(6)
i → f δ

2+
2 → 2+

1 2.1(4)

work. The method used here allowed for the simultaneous
fitting of the 208Pb and 196Pt data, improving uncertainties due
to enhanced sensitivity to strongly correlated matrix elements.
The matrix elements of 196Pt (indicated in Table I by the
corresponding krypton isotope) were permitted to vary and
contribute to the χ2 during the minimization procedure.

Figure 4 shows the consistent confidence intervals ex-
tracted from the method used here compared with the χ2

surface scan method described in Ref. [14] for 80Kr, varying

FIG. 4. Confidence intervals for the 〈0+
1 | E2 |2+

1 〉 and
〈2+

1 | E2 |2+
1 〉 matrix elements in 80Kr, calculated using the

fitting technique described in the text. Filled points correspond to
the χ 2 + 1 distribution calculated from a two-dimensional scan
[14]. The dashed red ellipse (“limited”) is the corresponding 1σ

confidence interval using the MINUIT method described here, where
only the 〈0+

1 | E2 |2+
1 〉 and 〈2+

1 | E2 |2+
1 〉 matrix elements were

permitted to vary. The solid ellipses correspond to confidence
intervals from a minimization in which all relevant matrix elements
were allowed to vary. The two solid ellipses correspond to
minimisations using only the 196Pt data (red) and the complete data
set, incorporating both 196Pt and 208Pb data (black). The points
correspond to the central values obtained from the MINUIT method.

FIG. 5. Confidence intervals for the 〈0+
1 | E2 |2+

1 〉 and
〈2+

1 | E2 |2+
1 〉 matrix elements in 82Kr, calculated using the

fitting techniques described in the text. As near-identical confidence
intervals are obtained from the limited and full analysis when
compared to Fig. 4 only the confidence limit from the full
minimization is shown. This results from the fact that other matrix
elements included in the full minimization are not strongly correlated
with 〈2+

1 | E2 |2+
1 〉. The point corresponds to the central value from

the MINUIT minimization.

only the 〈0+
1 | E2 |2+

1 〉 and 〈2+
1 | E2 |2+

1 〉 matrix elements. Also
shown are the intervals for full minimisations (i.e., all relevant
matrix elements allowed to vary) using the 196Pt data, and
the combined 196Pt and 208Pb data. Figure 5 shows the same
for 82Kr. In the 82Kr case only a single confidence interval is
shown, as the intervals for the limited and full minimization
are near-identical. This because, in the 82Kr analysis, those
matrix elements that are strongly correlated with the diagonal
matrix element, 〈2+

1 | E2 |2+
1 〉, and are included in the minimi-

sation are well constrained in the fit. Other strongly correlated
matrix elements are kept fixed due to there being no experi-
mental data with which they can be constrained and the fact
that their inclusion in the minimization prevents convergence.
In 80Kr, on the other hand, a much broader fit is performed due
to the more extensive data, resulting in a number of less well-
constrained matrix elements contributing to the uncertainty in
〈2+

1 | E2 |2+
1 〉. To account for this, matrix elements that pre-

vented convergence and so could not be included during the
minimization were varied and used to estimate a systematic
uncertainty. For example, the poorly constrained 〈2+

1 | E2 |0+
2 〉

matrix element is a significant source of systematic uncer-
tainty for the 〈2+

1 | E2 |2+
1 〉 matrix element in 82Kr.

III. DISCUSSION

All matrix elements determined in the present work are
summarized in Tables III and IV for 80Kr and 82Kr, re-
spectively. Also shown are literature data where available.
Systematic uncertainties correspond to contributions from
matrix elements not varied in the minimization routine as
discussed previously, which are quoted when significant.

We note that the 〈0+
1 | E2 |2+

1 〉 matrix element in 82Kr in
this work [and hence the B(E2; 0+

1 → 2+
1 ) value] disagrees
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TABLE III. Matrix elements for 80Kr as determined in the present work, compared to literature data, where available. Systematic
uncertainties, where significant, are quoted as a second uncertainty.

This work Literature

80Kr
Jπ

i → Jπ
f

〈
Jπ

i

∣∣ E2
∣∣Jπ

f

〉
[eb] B

(
E2; Jπ

i → Jπ
f

)
[e2fm4]

〈
Jπ

i

∣∣ E2
∣∣Jπ

f

〉
[eb] B

(
E2; Jπ

i → Jπ
f

)
[e2fm4] Reference

0+
1 → 2+

1 0.645(7) 4159(84) 0.618(20
18 ) 3825(250

225 ) [15]
0.618(28

25 ) 3825(350
300 ) [18]

0.608(16
17 ) 3700(200) [19]

0.638(22
19 ) 4070(280

245 ) [20]
0+

1 → 2+
2 0.078(15) 61(23) 0.055(6

7 ) 30(7) [15]
2+

1 → 2+
2 0.73(14) 1074(406) 0.51(4) 512(73) [15]

2+
1 → 0+

2 0.33(12) 223(155)
2+

1 → 4+
1 1.069(30) 2287(130) 1.135(44

46 ) 2575(204) [15]
0.927(144

124 ) 1720(575
340 ) [18]

0.900(57
51 ) 1620(210

180 ) [19]
1.135(44

46 ) 2575(204) [20]
2+

2 → 0+
2 −0.08(63) 14(180) a

4+
1 → 6+

1 1.68(12) 3140(430)
Jπ

i → Jπ
f

〈
Jπ

i

∣∣ M1
∣∣Jπ

f

〉
[μN ] B

(
M1; Jπ

i → Jπ
f

)
[μ2

N ]
〈
Jπ

i

∣∣ M1
∣∣Jπ

f

〉
[μN ] B

(
M1; Jπ

i → Jπ
f

)
[μ2

N ] Reference

2+
1 → 2+

2 0.065(16) 0.00085(39) 0.045(8) 0.00041(16) [15]〈
Jπ

i

∣∣ E2
∣∣Jπ

i

〉
[eb] Qs(Jπ ) [efm2] 〈Jπ

i | E2 |Jπ
i 〉 [eb] Qs(Jπ ) [efm2] Reference

2+
1 −0.43(7) −33(6)

2+
2 0.4(17) 34(126)

4+
1 −0.77(22) −58(16)

aTransition not observed.

with that in the literature [15], at the level of about 3σ . The
evaluated value for this matrix element is taken from an ear-
lier Coulomb-excitation study [21]. In that work a value of
Qs(2+

1 ) = 0 was assumed, based on interacting boson approx-
imation calculations. The discrepancy in B(E2; 0+

1 → 2+
1 ) can

thus be explained by the significant correlation between the
〈2+

1 | E2 |2+
1 〉 and 〈0+

1 | E2 |2+
1 〉 matrix elements and the ob-

served Qs(2+
1 ) value, found to be large and negative. Indeed,

by enforcing the same constraint on Qs(2+
1 ), we extract a

B(E2) consistent with that from Ref. [21]. This highlights the
risks in using Coulomb-excitation data to determine B(E2)

values without appropriate constraints on strongly correlated
matrix elements.

B(E2; 0+
1 → 2+

1 ) and Qs(2+
1 ) values in krypton isotopes

are shown in Fig. 6, including the presently determined re-
sults. Also shown are the spectroscopic quadrupole moments
expected from an axially symmetric prolate rotor, which can
be calculated based on the measured B(E2; 0+

1 → 2+
1 ) to be

Qs(2
+
1 ) = −2

7

√
16π

5
B(E2; 0+

1 → 2+
1 ). (1)

TABLE IV. Matrix elements for 82Kr as determined in the present work, compared to literature data, where available. Systematic
uncertainties, where significant, are quoted as a second uncertainty.

This work Literature

82Kr
Jπ

i → Jπ
f

〈
Jπ

i

∣∣ E2
∣∣Jπ

f

〉
[eb] B

(
E2; Jπ

i → Jπ
f

)
[e2fm4]

〈
Jπ

i

∣∣ E2
∣∣Jπ

f

〉
[eb] B

(
E2; Jπ

i → Jπ
f

)
[e2fm4] Ref.

0+
1 → 2+

1 0.504(8)(3) 2537(80)(31) 0.474(10) 2245(95) [15]
0+

1 → 2+
2 0.0330(12)(1) 10.9(8)(1)

2+
1 → 2+

2 0.252(9)(1) 127(9)(1) ≈0.27 ≈146 [15]
2+

1 → 4+
1 0.74(7)(1) 1092(211)(31) 0.78(22

31 ) 1219(770) [15]
Jπ

i → Jπ
f

〈
Jπ

i

∣∣ M1
∣∣Jπ

f

〉
[μN ] B

(
M1; Jπ

i → Jπ
f

)
[μ2

N ]
〈
Jπ

i

∣∣ M1
∣∣Jπ

f

〉
[μN ] B

(
M1; Jπ

i → Jπ
f

)
[μ2

N ] Reference

2+
1 → 2+

2 0.073(9)(1) 0.0011(2)(3) ≈0.075 ≈0.0011 [15]〈
Jπ

i

∣∣ E2
∣∣Jπ

i

〉
[eb] Qs(Jπ ) [efm2]

〈
Jπ

i

∣∣ E2
∣∣Jπ

i

〉
[eb] Qs(Jπ ) [efm2] Reference

2+
1 −0.33(8)(6) −25(6)(4)

4+
1 0.04(75) 3(57)
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FIG. 6. B(E2; 0+
1 → 2+

1 ) and Qs(2+
1 ) values in isotopes of kryp-

ton, with the present results indicated. Also shown are the Qs(2+
1 )

values expected for an axially symmetric rotor, as described in
Eq. (1). Literature data taken from Ref. [15].

Sum rules, as defined in Refs. [22,23] can be used to pro-
vide a model-independent determination of the nuclear shape
through rotationally invariant quantities. Recent examples of
such analyses can be found in Refs. [24–26]. Within the in-
variant scheme, one can define charge analogs of the β and
γ parameters of the Bohr Hamiltonian. Here, β defines the
magnitude of the deformation, while γ relates to the form
of the deformation with γ = 0◦ corresponding to an axial
prolate shape, γ = 60◦ an axial oblate shape and γ = 30◦
to a maximally triaxial shape. The charge analogs of these
parameters are denoted Q and δ for β and γ , respectively.
One approximate relation [27] that can be derived from the
invariant sum rules is

cos(3δ) ≈ cos(3δ)2+
1

= − Qs(2+
1 )

2
7

√
16π

5 × B(E2; 0+
1 → 2+

1 )
, (2)

corresponding to the ratio of observed and predicted Qs(2+
1 )

values, as given in Eq. (1). This approximation amounts to the
solution for cos(3δ) when only contributions from the first 2+
state are included in the invariant sum rules of Refs. [22,23].
Under the assumption that matter and charge distributions are
equivalent (i.e., δ = γ ), this relation yields the expectation
value for the Bohr γ parameter, providing an indication of the
central nuclear shape. Importantly, it provides no indication
of the so-called “softness” of the nuclear shape, and should

FIG. 7. (a) cos(3δ)2+
1

as defined in Eq. (2) for isotopes of Zn, Ge,
Se, and Kr. A value of 1 corresponds to an axially symmetric prolate
central deformation, −1 to an axially symmetric oblate central defor-
mation and 0 to a central maximally triaxial configuration. It can be
seen that isotopes of krypton are approaching the axially symmetric
prolate limit. (b) β values, as calculated using Eq. (3) for the same
isotopes, as well as for isotopes of strontium. The β values are seen
to systematically increase towards a maximum in the strontium and
krypton isotopes. 72Zn values taken from Ref. [28] and 76,78Sr values
from the weighted average presented in Ref. [2], all other literature
values from Ref. [15].

therefore be treated with care when attempting to provide
a complete description of deformation. Additionally, as de-
scribed in Ref. [27], the approximate nature of the relation
in Eq. (2) could be associated with an uncertainty (due to an
incomplete subset of matrix elements) of σ (cos(3δ)) ≈ 0.26.
Nonetheless, a systematic analysis of cos(3δ)2+

1
values allows

for the understanding of how the form of the nuclear shape
evolves from, e.g., centrally triaxial deformations towards
centrally axial deformations.

The top panel of Fig. 7 shows cos(3δ)2+
1

for isotopes of
zinc, germanium, selenium, and krypton. It can be seen that,
with the exception of 72Se which has large uncertainty [29],
74,76,78Kr provide the closest description to (prolate) axial
symmetry at their respective neutron numbers, while 80,82Kr
behave similarly to their selenium isotones. Plotted in the
bottom panel of Fig. 7 is the Bohr β parameter, calculated
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as

β = 4π

3ZR2
0

√
B(E2; 0+

1 → 2+
1 )

e2
, (3)

where e is the elementary charge, Z is the atomic number,
and R0 = 1.2A1/3 fm, with A as the mass number. This shows
the behavior of the absolute degree of quadrupole deformation
within each isotopic chain.

Viewed in combination, the top and bottom panels of Fig. 7
begin to paint a picture of evolving shapes approaching N =
Z = 40. In germanium isotopes the influence of the N = 40
subshell closure remains strong, resulting in a minimum for
β. Moving into the selenium isotopic chain, the influence of
the N = 40 closure appears to be weakening and the trend
in β moves towards a more traditional midshell pattern. This
is reflected in the cos (3δ)2+

1
values, which tend away from

triaxial values, especially for N � 42. Reaching krypton, the
results from the present work show a similar structure in
the N = 44, 46 isotopes as for their selenium isotones. For
N � 42 however a dramatic change occurs, with β values in-
creasing significantly and cos (3δ)2+

1
values (albeit with large

uncertainties for 74,76Kr) now approaching values consistent
with axial prolate deformation. Clearly, any sphericity-driving
influence on the ground-state deformation from the N = 40
subshell closure has dramatically diminished. One might ex-
pect that neutron-deficient strontium isotopes approach axial
prolate deformation around N = 40, completing the collapse
in influence of the N = 40 subshell closure.

The advantage of the above analysis is its simplicity, re-
quiring only B(E2; 0+

1 → 2+
1 ) and Qs(2+

1 ) values and can
therefore being applicable for multiple nuclei in the region.
In the case of 80Kr, the present data allow for a more detailed
calculation of rotational invariants, incorporating E2 matrix
elements coupled to the 2+

2 state. For completeness, we here
define the first two rotational invariants, reminding the reader
that Q can be considered a charge analog of β and δ a charge
analog of the γ parameter. For a state of interest, s,

〈s|Q̂2|s〉 =
√

5〈s|[Ê2 × Ê2]0|s〉 (4)

and

〈s| ̂Q3 cos (3δ)|s〉 = −
√

35√
2

〈s|{[Ê2 × Ê2]2 × Ê2}0|s〉. (5)

Through an intermediate state expansion, and using the
shorthand Mi f = 〈i|Ê2| f 〉,

〈s|[Ê2 × Ê2]0|s〉 = (−1)2Is

√
(2Is + 1)

∑
t

Mst Mts

{
2 2 0
Is Is It

}
(6)

and

〈s|{[Ê2 × Ê2]2 × Ê2}0|s〉

= (−1)2Is

2Is + 1

∑
tu

MsuMut Mts

{
2 2 2
Is It Iu

}
, (7)

where {...} correspond to Wigner-6 j symbols.
The invariants were calculated by drawing 1 × 106 sam-

ples from the multivariate normal distribution defined by the

FIG. 8. (a) 〈0+
1 |Q̂2|0+

1 〉 plotted against cos(3δ) in 80Kr, calculated
with samples drawn from the multivariate normal distribution defined
by the mean values from the fitted matrix elements in Table III and
the covariance matrix extracted from the fit (Table VI). See text for
details of the calculation of the Q2 and cos(3δ) values. (b) Contribu-
tions to cos(3δ) from matrix element products.

mean parameter values and the covariance matrix in order to
account for correlations between measured matrix elements.
Figure 8 shows the resultant distribution for the Q2 invariant
(the charge analog of β2) and cos(3δ), which is calculated

TABLE V. Contributions to the values of 〈Q̂2〉, 〈 ̂Q3 cos(3δ)〉, and
cos(3δ) determined in the present work, separated by matrix element
product. The sum values correspond to the sum of all contributions.
In the case of cos(3δ), the summed value of 〈Q̂2〉 was used in the
denominator of Eq. (8) for all contributions.

〈s|Ê2|t〉〈t |Ê2|s〉 〈0+
1 |Q̂2|0+

1 〉 (e2b2)

〈0+
1 |Ê2|2+

1 〉〈2+
1 |Ê2|0+

1 〉 0.419(13)
〈0+

1 |Ê2|2+
2 〉〈2+

2 |Ê2|0+
1 〉 0.006(23)

Sum 0.425(13)

〈s|Ê2|u〉〈u|Ê2|t〉〈t |Ê2|s〉 〈 ̂Q3 cos(3δ)〉 (e3b3)
〈0+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|0+
1 〉 0.171(50)

〈0+
1 |Ê2|2+

2 〉〈2+
2 |Ê2|2+

2 〉〈2+
2 |Ê2|0+

1 〉 −0.0002(81)
〈0+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|2+
2 〉〈2+

2 |Ê2|0+
1 〉 −0.065(23)

Sum 0.106(45)
〈s|Ê2|u〉〈u|Ê2|t〉〈t |Ê2|s〉 cos(3δ)
〈0+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|0+
1 〉 0.630(169)

〈0+
1 |Ê2|2+

2 〉〈2+
2 |Ê2|2+

2 〉〈2+
2 |Ê2|0+

1 〉 −0.001(30)
〈0+

1 |Ê2|2+
1 〉〈2+

1 |Ê2|2+
2 〉〈2+

2 |Ê2|0+
1 〉 −0.242(85)

Sum 0.378(153)
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from the first and second rotational invariants under the as-
sumption that

cos(3δ) = 〈0+
1 | ̂Q3 cos(3δ) |0+

1 〉
〈0+

1 | Q̂2 |0+
1 〉3/2 . (8)

Also shown in Fig. 8 are the contributions to the cos(3δ)
value from the individual matrix element products, which are
summarized in Table V. Note that the sum Q2 value was used
to calculate cos(3δ) for the individual contributions given in
Table V and Fig. 8. The result of this analysis is a reduced
value of cos(3δ) as compared to that determined from Eq. (2),
though the central value remains predominantly prolate.

We briefly now compare the present results with some
recent theoretical calculations. In Ref. [30] symmetry-
conserving configuration-mixing methods were used with the
Gogny D1S interaction to study the krypton isotopic chain. In
these calculations, the ground-state collective wave functions
for 74,76,78Kr were found to be predominantly prolate—
approaching an axial configuration in 74Kr. 80,82Kr, on the
other hand, were found to have ground-state collective wave
functions with a slightly oblate configuration, albeit one that is
rather closer to maximal triaxiality than in the 74,76,78Kr cases.
This is born out in the calculated Qs(2+

1 ) values, which are
negative for 74,76,78Kr and positive in 80,82Kr. This discrep-
ancy for 80,82Kr should not be overstated: the potential energy
surfaces for both isotopes in the calculations of Ref. [30] are
not rigid in the γ degree of freedom. Significant components
of the collective wave functions span the line of γ = 30◦, cor-
responding to maximal triaxiality and distinguishing prolate
and oblate deformations.

IV. CONCLUSIONS

We presented the first determination of the spectroscopic
quadrupole moments for the first 2+ states, Q(2+

1 ), in 80,82Kr
following Coulomb excitation on high-Z targets. Target nor-
malization allowed for E2 matrix elements to be extracted
independent of the literature values. Nine matrix elements are

newly determined in the present work, while six are extracted
with improved precision.

An analysis of rotational invariants in 80Kr incorporating
matrix elements coupled to the 2+

2 state results in a reduced
cos(3δ) value, albeit still consistent with a dominantly prolate
central deformation. A systematic comparison of invariants
incorporating higher lying states is hindered by the varying
quality and availability of the experimental data: genuine
physical effects and missing experimental data might easily
by confused.

Instead, a simpler parametrization of the triaxial degree of
freedom was employed, using only the B(E2; 0+

1 → 2+
1 ) and

Qs(2+
1 ) values. This allowed for a comparison of experimental

data in Zn, Ge, Se, and Kr isotopes, indicating a trend towards
axial symmetry in the Kr isotopes with N � 42. Improved
measurements of 74,76Kr will be essential to confirming this
evolution. Looking beyond the krypton isotopes, if this evo-
lution continues for higher-Z nuclei, one might expect that
neutron-deficient Sr and Zr isotopes approach axial prolate
deformation in their ground states.
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APPENDIX

For completeness, we report covariances and correlations
on matrix elements for 80Kr and 82Kr in Tables VI and VII,
respectively.

TABLE VI. Variances (bold, diagonal), covariances (above diagonal) and correlations (below diagonal) arising from the fit of 80Kr. Mean
values, μ are given in units of eb for E2 matrix elements and μN for M1 matrix elements.

〈
Jπ

i

∣∣∣ Eλ

∣∣∣Jπ
f

〉
μ 〈0+

1 | E2 |2+
1 〉 〈0+

1 | E2 |2+
2 〉 〈2+

1 | E2 |2+
1 〉 〈2+

1 | E2 |2+
2 〉 〈2+

1 | E2 |0+
2 〉 〈2+

1 | E2 |4+
1 〉 〈2+

2 | E2 |2+
2 〉 〈2+

2 | E2 |0+
2 〉 〈4+

1 | E2 |4+
1 〉 〈4+

1 | E2 |6+
1 〉 〈2+

1 | M1 |2+
2 〉

〈0+
1 | E2 |2+

1 〉 0.6449 4.3×10−5 −1.0×10−5 −9.0×10−5 −8.9×10−5 1.5×10−4 −8.1×10−6 1.7×10−3 −7.4×10−4 6.8×10−5 −6.2×10−7 −7.8×10−6

〈0+
1 | E2 |2+

2 〉 0.0782 −0.106 2.2× 10−4 −3.1×10−4 2.0×10−3 −1.4×10−3 5.6×10−5 −2.3×10−2 8.1×10−3 −1.5×10−3 −7.8×10−5 1.7×10−4

〈2+
1 | E2 |2+

1 〉 −0.4339 −0.189 −0.287 5.3× 10−3 −3.0×10−3 −2.8×10−4 −2.3×10−4 1.8×10−2 −1.5×10−4 2.5×10−3 3.5×10−4 −2.5×10−4

〈2+
1 | E2 |2+

2 〉 0.7327 −0.098 0.984 −0.299 1.9× 10−2 −1.3×10−2 5.3×10−4 −0.22 7.7×10−2 −1.4×10−2 −7.4×10−4 1.6×10−3

〈2+
1 | E2 |0+

2 〉 0.3346 0.193 −0.811 −0.033 −0.821 1.3× 10−2 −4.5×10−4 0.19 −7.2×10−2 1.3×10−2 1.7×10−3 −1.1×10−3

〈2+
1 | E2 |4+

1 〉 1.0693 −0.041 0.125 −0.104 0.127 −0.130 9.2× 10−4 −7.1×10−3 2.6×10−3 −4.6×10−3 −4.5×10−4 4.5×10−5

〈2+
2 | E2 |2+

2 〉 0.4467 0.148 −0.929 0.148 −0.944 0.952 −0.138 2.9 −1.1 0.19 1.9×10−2 −1.9×10−2

〈2+
2 | E2 |0+

2 〉 −0.0796 −0.178 0.861 −0.033 0.872 −0.98 0.133 −0.981 0.40 −6.8×10−2 −8.3×10−3 6.5×10−3

〈4+
1 | E2 |4+

1 〉 −0.7661 0.048 −0.475 0.160 −0.481 0.505 −0.698 0.518 −0.492 4.7× 10−2 −3.7×10−3 −1.2×10−3

〈4+
1 | E2 |6+

1 〉 1.6809 −0.0008 −0.045 0.042 −0.046 0.131 −0.130 0.098 −0.113 −0.148 1.3× 10−2 −6.5×10−5

〈2+
1 | M1 |2+

2 〉 0.0654 −0.075 0.732 −0.217 0.726 −0.602 0.093 −0.689 0.638 −0.353 −0.035 2.5 ×10−4
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TABLE VII. Variances (bold, diagonal), covariances (above diagonal) and correlations (below diagonal) arising from the fit of 82Kr. Mean
values, μ are given in units of eb for E2 matrix elements and μN for M1 matrix elements.

〈
Jπ

i

∣∣ Eλ
∣∣Jπ

f

〉
μ 〈0+

1 | E2 |2+
1 〉 〈0+

1 | E2 |2+
2 〉 〈2+

1 | E2 |2+
1 〉 〈2+

1 | E2 |2+
2 〉 〈2+

1 | E2 |4+
1 〉 〈4+

1 | E2 |4+
1 〉 〈2+

1 | M1 |2+
2 〉

〈0+
1 | E2 |2+

1 〉 0.5037 6.2× 10−5 −3.4×10−7 −3.7×10−4 2.6×10−6 6.6×10−5 −9.2×10−4 −7.2×10−6

〈0+
1 | E2 |2+

2 〉 0.0330 −0.369 1.4× 10−6 5.1×10−7 8.9×10−6 −1.4×10−5 1.8×10−4 5.4×10−6

〈2+
1 | E2 |2+

1 〉 −0.3295 −0.601 −0.006 6.0× 10−3 −5.6×10−5 −1.5×10−3 1.5×10−2 7.4×10−5

〈2+
1 | E2 |2+

2 〉 0.2522 0.039 0.862 −0.083 7.5× 10−5 4.7×10−5 −1.6×10−4 1.4×10−5

〈2+
1 | E2 |4+

1 〉 0.7391 0.119 −0.164 −0.276 −0.076 5.1× 10−3 −3.9×10−2 −2.2×10−4

〈4+
1 | E2 |4+

1 〉 0.0398 −0.186 0.243 0.299 −0.029 −0.860 0.393 2.3×10−3

〈2+
1 | M1 |2+

2 〉 0.0728 −0.133 0.666 0.138 0.228 −0.444 0.528 4.7× 10−5
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