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Nuclear symmetry energy components and their ratio:
A new approach within the coherent density fluctuation model

M. K. Gaidarov ,1 E. Moya de Guerra,2 A. N. Antonov ,1 I. C. Danchev ,3 P. Sarriguren ,4 and D. N. Kadrev 1

1Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
2Grupo de Física Nuclear, Departamento de Estructura de la Materia (EMFTEL), Facultad de Ciencias Físicas,

Universidad Complutense de Madrid, E-28040 Madrid, Spain
3Department of Physical and Mathematical Sciences, School of Arts and Sciences, University of Mount Olive,

652 R.B. Butler Dr., Mount Olive, North Carolina 28365, USA
4Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain

(Received 31 May 2021; revised 19 August 2021; accepted 30 September 2021; published 11 October 2021)

A different alternative approach to calculate the ratio of the surface to volume components of the nuclear
symmetry energy is proposed in the framework of the coherent density fluctuation model (CDFM). An alternate
expression (scheme II) for the ratio is derived consistently within the model. This expression appears in a form
more direct and physically motivated than the expression (scheme I) that was used in our previous works within
the CDFM and avoids preliminary assumptions and mathematical ambiguities in scheme I. The calculations are
based on the Skyrme and Brueckner energy-density functionals for nuclear matter and on the nonrelativistic
Brueckner-Hartree-Fock method with realistic Bonn B and Bonn CD nucleon-nucleon potentials. The approach
is applied to isotopic chains of Ni, Sn, and Pb nuclei using nuclear densities obtained in self-consistent Hartree-
Fock+BCS calculations with the SLy4 Skyrme effective interaction. The applicability of both schemes within
the CDFM is demonstrated by a comparison of the results with the available empirical data and with results of
other theoretical studies of the considered quantities. Although in some instances the results obtained for the
studied ratio and the symmetry energy components are rather close in both schemes, the proposed scheme II
leads to more realistic values that agree better with the empirical data and exhibits conceptual and operational
advantages.
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I. INTRODUCTION

The symmetry energy is a crucial quantity in nuclear
physics and its astrophysical applications (see, e.g., Ref. [1]).
Also, heavy-ion collisions at intermediate energies are consid-
ered as a unique tool to explore the nuclear equation of state
(EOS) under laboratory controlled conditions. For instance,
the combined experiment at GANIL, where the VAMOS spec-
trometer was coupled with the 4π INDRA detector to study
the isotopic distributions produced in 40,48Ca + 40,48Ca colli-
sions at 35 MeV/nucleon, allowed one to estimate the relative
contribution of surface and volume terms to the symmetry
energy in the nuclear EOS [2]. The knowledge of this con-
tribution and, especially, the relevance of the surface term
are important to explore to what extent one can learn about
the density dependence of the symmetry energy in infinite
nuclear matter (NM) from multifragmentation of finite nuclei
and from nuclear reaction dynamics.

The density dependence of the symmetry energy is fairly
unknown and there are very different predictions for the var-
ious models (see, for instance, Ref. [3]). It is revealed in the
relationship between the basic symmetry energy parameters
and the neutron-skin thickness in a heavy nucleus. The latter
has an explicit dependence on the slope parameter of the

symmetry energy via the density dependence of the surface
tension, which has been determined in Ref. [4] within a
compressible droplet model. Measurements of nuclear struc-
ture characteristics including masses, densities, and collective
excitations have resolved some of the basic features of the
EOS of nuclear matter. The EOS allows one to constrain
the bulk and surface properties of the nuclear energy-density
functionals (EDFs) quite effectively via the symmetry energy
and related properties. The latter are significant ingredients of
the EOS and their study in both asymmetric nuclear matter
and finite nuclei are of particular importance.

The symmetry energy of a finite nucleus is a collec-
tive feature with volume and surface terms, but it is also
related to the nucleon-nucleon (NN) interaction and the
energy-density functional. For example, there is an analytical
parametrization of the link between the Skyrme (see Ref. [5])
and Brueckner [6,7] EDFs and the symmetry energy (see,
e.g., Refs. [5,8]). Additionally, when exploring the symme-
try energy properties of neutron-rich nuclei by means of the
nonrelativistic Brueckner-Hartree-Fock (BHF) method with
modern realistic Bonn B and Bonn CD potentials [9], we
performed nuclear matter many-body calculations and then
results for finite nuclei were obtained within the coherent den-
sity fluctuation model (CDFM) (see, e.g., Refs. [10,11]). The
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use of the latter (which will be discussed below and applied
in the present work) is closely related to the general point
of the proper account for the NN correlations. It is known
that the short-range and tensor NN correlations induce a
population of high-momentum components in the many-body
nuclear wave function. In Ref. [12] the impact of such high-
momentum components on bulk observables associated with
isospin asymmetric matter has been studied. It was shown that
the kinetic part of the symmetry energy is strongly reduced by
correlations when compared with the noninteracting case. The
results for nuclear matter obtained in Ref. [13] have confirmed
the critical role of the tensor force in the determination of the
symmetry energy and its slope parameter even at densities not
too far above the saturation density.

The coherent density fluctuation model is a natural exten-
sion of the Fermi gas model based on the δ-function limit of
the generator coordinate method [11,14] and includes long-
range correlations of collective type. The CDFM has been
applied to calculate various quantities of nuclear structure
and reactions. Here we mention some of them. In Ref. [15],
CDFM results for the energies, density distributions, and
rms radii of the ground and first monopole states in 4He,
16O, and 40Ca nuclei have been obtained. Also, results for
the incompressibility of finite nuclei have been reported in
Refs. [11,16]. The CDFM has been employed to calculate
the scaling function in nuclei using the relativistic Fermi gas
scaling function [17,18] and the result has been applied to
lepton scattering processes [17–23]. In particular, the CDFM
analyses became useful to obtain information about the role of
the nucleon momentum and density distributions for the ex-
planation of superscaling in lepton-nucleus scattering [18,19].
The CDFM scaling function has been used to predict cross
sections for several processes: inclusive electron scattering
in the quasielastic and � regions [20,21] and neutrino (an-
tineutrino) scattering both for charge-changing [21,23] and
neutral-current [22,23] processes. The model was applied to
study the scaling function and its connection with the spectral
function and the momentum distribution [24,25]. The CDFM
was used also to study the role of the NN correlations in
elastic magnetic electron scattering [26–28].

In our previous works [8,9,29–34] we demonstrated the
capability of the CDFM to be applied as an alternative way
to make a transition from the properties of nuclear matter to
the properties of finite nuclei investigating the nuclear sym-
metry energy (NSE), the neutron pressure, and the asymmetric
compressibility in finite nuclei. While there is enough infor-
mation collected for these key EOS parameters (although the
uncertainty of their determination is still large), the volume
and surface symmetry energies have been poorly investigated
until now. This concerns mostly the surface contribution to the
NSE and comes from the fact that many nucleons are present
around the nuclear surface. The volume and surface contri-
butions to the NSE and their ratio at zero temperature were
calculated in Ref. [31] within the CDFM using two EDFs,
namely, the Brueckner and Skyrme EDFs. The CDFM weight
function was obtained by means of the proton and neutron
densities obtained from the self-consistent deformed Hartree-
Fock (HF)+BCS method with density-dependent Skyrme
interactions. The results obtained in the cases of Ni, Sn, and

Pb isotopic chains were compared with results of other theo-
retical methods and with those from approaches which used
experimental data on binding energies, excitation energies to
isobaric analog states (IAS), and neutron-skin thicknesses. An
investigation of the thermal evolution of the NSE components
and their ratio for isotopes belonging to the same chains
around the double-magic nuclei performed in Ref. [32] has
extended our previous analysis of these nuclei for tempera-
tures different from zero.

In this paper, we revisit the expression for the ratio between
the volume and surface components to the NSE within the
CDFM proposed in Refs. [9,31] and suggest an alternative
approach in a more direct and physically motivated way to
calculate this ratio. The main aim of the work is to avoid
the preliminary assumptions and mathematical ambiguities in
our previous scheme I. To achieve this goal, in the proposed
scheme II, we apply the general relation based on the droplet
model between the symmetry energy and its components to
the building units (“fluctons”) of the CDFM model, and we
construct from them the ratio between the NSE components
for finite nuclei following the standard CDFM procedure.
This provides more solid physical grounds to the proposed
scheme, which is expected to lead to more reliable results. We
also search for the dependence of the results on several sets
of nuclear potentials. In the proposed approach we perform
calculations for the symmetry energy components SV (A) and
SS (A) and their ratio for the same isotopes in Ni (A = 74–84),
Sn (A = 124–156), and Pb (A = 202–214) chains considered
before and compare the obtained results with the previous
ones [including SV (A), SS (A), and their ratio κ] obtained by
the procedure in Refs. [9,31]. The applicability of our both
schemes within the CDFM is also demonstrated by a com-
parison of the results with the available empirical data and
with results of other theoretical studies for the considered
quantities.

In the next section, we give definitions of the EOS pa-
rameters governing its density dependence in nuclear matter
and finite nuclei using the CDFM, as well as expressions
of various quantities of interest in the previous and pro-
posed alternative approach within the CDFM. Section II A
briefly explains the derivation of the expression for the ratio
of the volume to the surface symmetry energy coefficients
on the basis of the local density approximation to the sym-
metry energy. Section II B contains the previous CDFM
formalism, which provides a way to calculate the mentioned
quantities. The proposed alternative approach aiming to cal-
culate the NSE components and their ratio is formulated in
Sec. II C. Our numerical results are presented and discussed
in Sec. III. The main conclusions of the study are summarized
in Sec. IV.

II. THEORETICAL SCHEME

A. Main relationships for equation-of-state parameters
in nuclear matter and in finite nuclei

The Bethe-Weizsäcker semi-empirical mass formula de-
scribes both properties of symmetric (finite) nuclear matter
as well as the essential dependence of the finite nucleus
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ground-state energy on the isospin asymmetry (polariza-
tion) [35–38]:

E (A, Z ) = −B + ESA−1/3 + S(A)
(N − Z )2

A2
+ EC

Z2

A4/3

+Edif
Z2

A2
+ Eex

Z4/3

A4/3
+ a�A−3/2. (1)

In Eq. (1) B � 16 MeV is the binding energy per particle of
bulk symmetric matter at saturation. ES , EC , Edif , and Eex

correspond to the surface energy of symmetric matter, the
Coulomb energy of a uniformly charged sphere, the diffuse-
ness correction, and the exchange correction to the Coulomb
energy, respectively. The last term gives the pairing correc-
tion, � is a constant, and a = +1 for odd-odd nuclei, 0 for
odd-even, and −1 for even-even nuclei. S(A) is the symmetry
energy expressed by the volume SV (A) and modified surface
component SS (A) in the droplet model (see Ref. [38], where it
is defined as S∗

s ):

S(A) = SV (A)

1 + SS (A)
SV (A) A

−1/3
= SV (A)

1 + q(A)A−1/3 , (2)

where

q(A) ≡ SS (A)

SV (A)
. (3)

We note that, in the present work, we use Eq. (2) as a basic
relation between the symmetry energy S(A) and its volume
SV (A) and surface SS (A) components. The reason we use
Eq. (2) in contrast with the relation in another approach
used in, e.g., Refs. [39–42], and also in our work [31], was
discussed in detail in our previous work [9]. It is motivated
by the necessity to have a correct behavior of the denom-
inator in Eq. (2) in the infinite-nuclear-matter limit. More
precisely, in the limit A → ∞ the ratio in Eq. (2), SS/SV →0,
so that [SS/SV ]A−1/3 → 0 and the symmetry energy in Eq. (2)
has the correct limit S → SV . Contrary to this, in the ap-
proach of Refs. [39–42] in the limit A → ∞ the term
[SV (A)/SS (A)]A−1/3 is not well determined. The use of the
latter approach needs a condition to be imposed, namely, the
surface coefficient SS (A) to go to zero more slowly than A−1/3

as A → ∞. This is the reason why we use in our work Eq. (2)
instead of the relation in the approach in, e.g., Refs. [39–42].

At very large A we may write the symmetry energy in the
known form (see Ref. [36]):

S(A) � SV (A) − SS (A)

A1/3
, (4)

which follows from Eq. (2) for large A.
The relations of SV (A) and SS (A) with S(A) in terms of

q(A) can be found from Eqs. (2) and (3):

SV (A) = S(A)

[
1 + q(A)

A1/3

]
, (5)

SS (A) = q(A)S(A)

[
1 + q(A)

A1/3

]
. (6)

The following expression for the ratio of the volume
to the surface symmetry energy coefficients was given by

Danielewicz [39] (see also Ref. [43]):

κ (A) = SV (A)

SS (A)
= 3

r0

∫
dr

ρ(r)

ρ0

{
SNM (ρ0)

SNM[ρ(r)]
− 1

}
, (7)

where SNM[ρ(r)] is the nuclear matter symmetry energy, ρ(r)
is the half-infinite nuclear matter density, ρ0 is the nuclear
matter equilibrium density, and r0 is the radius of the nuclear
volume per nucleon. The latter two quantities are related by

4πr3
0

3
= 1

ρ0
. (8)

Here we give for completeness the following general ex-
pression for the nuclear matter symmetry energy used in
Eq. (7):

SNM (ρ) = 1

2

∂2E (ρ, δ)

∂δ2

∣∣∣∣
δ=0

= a4 + pNM
0

ρ2
0

(ρ − ρ0)

+ �KNM

18ρ2
0

(ρ − ρ0)2 + · · · , (9)

where E (ρ, δ) is the energy per particle for nuclear matter
that depends on the density and the isospin asymmetry δ =
(ρn − ρp)/ρ with the baryon density ρ = ρn + ρp, ρn and ρp

being the neutron and proton densities. The parameter a4 is the
symmetry energy at equilibrium [a4 = SNM (ρ0)], while the
pressure pNM

0 and the curvature �KNM have the corresponding
forms:

pNM
0 = ρ2

0
∂SNM

∂ρ

∣∣∣∣
ρ=ρ0

, (10)

�KNM = 9ρ2
0

∂2SNM

∂ρ2

∣∣∣∣
ρ=ρ0

. (11)

In the next two sections we present our relationships for the
ratio of SV (A) and SS (A) obtained in the approaches consid-
ered within the framework of the coherent density fluctuation
model [9–11,31]. Our results for the mentioned quantities are
given in Sec. III.

B. Equation-of-state parameters of finite nuclei in the coherent
density fluctuation model

In the present work we calculate the EOS parameters in
finite nuclei, such as the nuclear symmetry energy and its
surface and volume components, by using the CDFM. As
mentioned in the introduction, the model is based on the
δ-function limit of the generator coordinate method [11,14];
it is a natural extension of the Fermi-gas model and includes
NN correlations of collective type. An important feature of
the CDFM is that it allows us to make the transition from
nuclear matter quantities to the corresponding quantities in fi-
nite nuclei. In the CDFM, the one-body density matrix ρ(r, r′)
is a coherent superposition of the one-body density matrices
ρNM

x (r, r′) for spherical “pieces” of nuclear matter (“fluc-
tons”) with radius x and density ρx(r) = ρ0(x)�(x − |r|),
where

ρ0(x) = 3A

4πx3
, (12)
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in which all A nucleons are homogeneously distributed:

ρNM
x (r, r′) = 3ρ0(x)

j1(kF (x)|r − r′|)
(kF (x)|r − r′|)

�

(
x − |r + r′|

2

)
. (13)

It has the form

ρ(r, r′) =
∫ ∞

0
dx|F (x)|2ρNM

x (r, r′). (14)

In Eq. (13), j1 is the first-order spherical Bessel function and

kF (x) =
(

3π2

2
ρ0(x)

)1/3

≡ β

x
, (15)

with

β =
(

9πA

8

)1/3

� 1.52A1/3 (16)

being the Fermi momentum of the nucleons in the flucton. The
nucleon density distribution in the CDFM has the form:

ρ(r) =
∫ ∞

0
dx|F (x)|2ρ0(x)�(x − |r|). (17)

It can be seen from Eq. (17) that, in the case of monotonically
decreasing local density (dρ/dr � 0), the weight function
|F (x)|2 can be obtained from a known density (obtained theo-
retically or experimentally):

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

. (18)

It has been shown in our previous works [8,29,31] that the
following expression for the nuclear symmetry energy in finite
nuclei S(A) can be obtained within the CDFM on the base of
the infinite matter one SNM (ρ) (at temperature T = 0 MeV)
by weighting it with |F (x)|2:

S(A) =
∫ ∞

0
dx|F (x)|2SNM[ρ(x)]. (19)

Here we would like to note that, when our procedure is applied
to quantities of (infinite) nuclear matter, the self-consistency
requires the weight function to reduce to the Dirac δ function.
For instance, when the self-consistency is applied to the den-
sity ρ(|r|) and the symmetry energy SNM[ρ(|r|)] in nuclear
matter it leads from Eqs. (17) and (19) to the identities

ρNM (|r|, x) =
∫ ∞

0
dx′δ(x′ − x)ρ0(x′)�(x′ − |r|)

= ρ0(x)�(x − |r|), (20)

SNM[ρNM (|r|, x)] =
∫ ∞

0
dx′δ(x′ − x)SNM[ρNM (|r|, x′)]

= SNM[ρ0(x)�(x − |r|)]. (21)

In our already mentioned works (including Ref. [9]) we
applied the CDFM in the framework of the self-consistent
Skyrme-Hartree-Fock plus BCS method to calculate the vol-
ume and surface components of the symmetry energy and
their ratio in the Ni, Sn, and Pb isotopic chains. In our first

scheme to calculate the ratio κ (A) we started from the ex-
pression of Eq. (7) (see, e.g., Refs. [39,43]) making in it
a preliminary assumption replacing the density ρ(r) for the
half-infinite nuclear matter in the integrand by the density
distribution of a finite nucleus, namely, by the expression in
the CDFM [Eq. (17)]. Following the procedure whose details
are given in our work [9] and using Eqs. (20) and (21), we
obtain the formula for κ (A) in the form

κ (A) = 3

r0ρ0

∫ ∞

0
dx|F (x)|2ρ0(x)

×
∫ x

0
dr

{
SNM (ρ0)

SNM[ρ0(x)]
− 1

}
, (22)

which leads finally to

κ (A) = 3

r0ρ0

∫ ∞

0
dx|F (x)|2xρ0(x)

{
SNM (ρ0)

SNM[ρ0(x)]
− 1

}
. (23)

The right-hand side of Eq. (23) is an one-dimensional integral
over x, the latter being the radius of the “flucton” that is per-
pendicular to the nuclear surface. We refer to the expression
in Eq. (23) as scheme I, because this was the first equation
that we used for the numerical calculations of the results
presented in Refs. [9,31]. We note that a careful analysis of
the integration interval in Eq. (23) required in order to avoid
possible singularities in the integrand in some x ranges was
carried out in our previous works.

C. An alternative approach in the coherent density fluctuation
model to calculate the ratio of surface-to-volume components

of the nuclear symmetry energy

As mentioned in the introduction, the main aim in the
present work is to provide an alternate scheme to calcu-
late the ratio q(A) as defined in Eq. (3). Here we would
like to underline the main differences in the construction of
scheme II in comparison with the previous scheme I: (i) we
do not use the method in Refs. [39,43], and (ii) we avoid
the above-mentioned assumption in Sec. II B, namely, the
replacement of the density ρ(r) for the half-infinite nuclear
matter by the density distribution of a finite nucleus. A third
and important reason to choose a different scheme is that
the integrand in Eq. (23) for κ in scheme I presents singu-
larities for some of the potentials (e.g., for the Brueckner
potential). Thus, the results for κ become extremely sensi-
tive to the choice of the integration interval, mainly to the
value of the lower limit of integration in Eq. (23). In the
proposed scheme II we start from the general relationship
[Eq. (2)] between the NSE S and its components SV and SS .
The procedure of the derivation of q(A) for finite nuclei is
as follows: (i) we determine the ratio q(x) = SS (x)/SV (x) for
the “fluctons” of the CDFM from the basic Eqs. (2) and (4),
and (ii) we construct q(A) within the CDFM rules weighting
q(x) by the weight function |F (x)|2. First, to construct q(x) =
SS (x)/SV (x) in the x-flucton we recall that the x-flucton is
a sphere of nuclear matter of radius x with density ρ0(x).
This implies that inside each flucton we may apply Eq. (4) in
the form SS/SV � (1 − S/SV )A1/3, with A being the number
of nucleons in the flucton and given by (x/r0)3[ρ0(x)/ρ0]
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[see Eqs. (8) and (12)], and S being the nuclear matter
symmetry energy in the flucton [SNM (ρ0(x))] with volume
component SV � SNM (ρ0). This results in the following ex-
pression for q(x):

q(x) = SS (x)

SV (x)
= x

r0

[
ρ0(x)

ρ0

]1/3[
1 − SNM[ρ0(x)]

SNM (ρ0)

]
. (24)

Weighting q(x) by the function |F (x)|2 leads to the following
relationship for the ratio (3):

q(A) =
∫ ∞

0
dx|F (x)|2q(x) =

∫ ∞

0
dx|F (x)|2

× x

r0

[
ρ0(x)

ρ0

]1/3[
1 − SNM[ρ0(x)]

SNM (ρ0)

]
. (25)

We refer to the expression in Eq. (25) as scheme II. Here
we would like to note the following: (i) the expression (24)
for a flucton is obtained in a direct and natural way starting
from the known formula (4) that follows from the general
relationship (2) at large A. (ii) Equation (25) is obtained
without preliminary assumptions that were imposed to obtain
Eq. (23) in scheme I and is free from singularities. (iii) As a
result of (i) and (ii) the calculated quantity 1/q = SV /SS that
follows from Eq. (25) is not equal to the previously calculated
quantity κ following Eq. (23). We note that both quantities are
obtained within different schemes, although both are within
the framework of the CDFM. Of course, the values of the
results for 1/q(A) coming from Eq. (25) and κ (A) [Eq. (23)]
can be compared and this is done in the next section, analyzing
in this way the role of the assumptions made in approach I and
the proposed direct CDFM scheme II (the latter being without
extra assumptions and free from singularities) on the studied
quantities.

In the next Sec. III we present our results for the proposed
ratio q(A) as well as the new CDFM results for the symmetry
energy components SV (A) [Eq. (5)] and SS (A) [Eq. (6)] in
terms of S(A) [Eq. (19)] and q(A) [Eq. (25)], in comparison
with our previous results for the corresponding quantities in
the case of the three isotopic chains of Ni, Sn, and Pb using
Skyrme, Bruckner, Bonn B, and Bonn CD potentials. The
self-consistent Skyrme-HF plus BCS method is used in the
calculations of the nuclear densities of these nuclei and the
CDFM weight function |F (x)|2. The results for the ratio 1/q
are presented and discussed in relation to the values of κ and
compared with the available empirical data and with results of
other theoretical considerations.

III. RESULTS AND DISCUSSION

As the main emphasis of the present study is to propose a
different approach to study the nuclear symmetry energy com-
ponents and their ratio, we start our analysis with the two basic
quantities entering the integrands in Eq. (25) for the ratio q(A),
namely, the symmetry energy of nuclear matter SNM[ρ0(x)] in
a flucton with density ρ0(x) and the weight function |F (x)|2.
Then, obtaining the symmetry energy in finite nuclei within
the CDFM from Eq. (19) its volume and surface components
in the proposed approach can be calculated from Eqs. (5)
and (6), respectively.

FIG. 1. The symmetry energy S(x) of the double-magic nucleus
78Ni as a function of the flucton radius x [related to its density
ρ0(x) = 3A/(4πx3)] calculated with the Brueckner EDF (black solid
line), Skyrme EDF (black dashed line), and the BHF method with
the Bonn B (red solid line) and Bonn CD (red dashed line) potentials
from Refs. [44,45].

As an example, we show first in Fig. 1 the results for the
symmetry energy S(x) of the double-magic nucleus 78Ni cor-
responding to nonrelativistic BHF results with realistic Bonn
B and Bonn CD potentials as well as to the Brueckner and
Skyrme EDFs, for which analytical expressions for SNM (x)
can be found in Refs. [8,29–31]. As can be seen in Fig. 1, the
symmetry energy derived from the energy density functional
of Brueckner et al. [6,7] goes extremely low below x = 4 fm
in comparison with the other three cases. The latter exhibit
a smooth behavior and their corresponding curves are close
to each other. The Brueckner symmetry energy curve behaves
similarly to them in the range x > 4 fm. The reason for the
particular behavior of S(x) in the case of Brueckner EDF lies
in its parametrization as a function of the density performed
in nuclear matter calculations. The symmetry energy versus
x plotted in Fig. 1 corresponds to the Brueckner curve dis-
played in Fig. 5 of Ref. [9], where the symmetry energy is
given versus the density ρ, as follows: the region x � 4 fm
corresponds to the right “wing” after the maximum of SNM (ρ)
at around ρ = 0.24 fm−3 (see Fig. 5 of Ref. [9]), while the
region x > 4 fm refers to the left “wing” before the maximum.
The behavior of S(x) in the case of the Brueckner EDF shows
its isospin instability. Due to this fact, a lower cutoff is needed
to compute Eqs. (19) and (25), but this is naturally supplied
by the function |F (x)|2 as explained in the discussions that
follow. Here we should note that the observed differences of
the symmetry energy at x < 4 fm in the particular case of 78Ni
(see Fig. 1) provide us with a hint about the range of the lower
limit of integration in Eq. (25) in order to get correct physical
values for the ratio of the surface-to-volume components of
the nuclear symmetry energy.

In Fig. 2 are given the CDFM weight functions |F (x)|2 of
double-magic 78Ni, 132Sn, and 208Pb nuclei as a function of the
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FIG. 2. The weight functions |F (x)|2 [Eq. (18)] of double-magic
78Ni, 132Sn, and 208Pb nuclei calculated in the Skyrme HF+BCS
method with the SLy4 force.

flucton radius x. Their densities are obtained in self-consistent
HF+BCS calculations with SLy4 interaction [46]. The func-
tion |F (x)|2 which is used in Eqs. (19), (23), and (25) has the
form of a bell with a maximum around x = R1/2 at which the
value of the density ρ(x = R1/2) is around half of the value of
the central density equal to ρc[ρ(R1/2)/ρc = 0.5]. Namely, in
this region around ρ = ρc/2 the values of different SNM (ρ)
play the main role in the calculations. Therefore, to fully
specify the role of both quantities SNM[ρ0(x)] and |F (x)|2
in the expression (25) for the ratio q(A) and to determine
the relevant region of densities in finite nucleus calculations,
we apply a physical criterion related to the weight function
|F (x)|2. The latter contains the nuclear structure information
through the total nuclear density. In this respect, the width 


of the weight function |F (x)|2 at its half maximum (which is
illustrated in Fig. 2 on the example of 78Ni nucleus) is a good
and acceptable choice.

As known, the central density of the nucleus has val-
ues around ρc ≈ 0.10–0.16 fm−3. Consequently, the max-
imum of the weight function |F (x)|2 is around ρ(R1/2) ≈
0.05–0.08 fm−3. In the case of 78Ni (see Fig. 6 in Ref. [9]) the
maximum of |F (x)|2 is at ρ = 0.05 fm−3 and, within its width
range, the density ρ is between 0.12 and 0.01 fm−3. Thus,
from the combined analysis of SNM (ρ) and |F (x)|2 it turns
out that the relevant values of the NM symmetry energy are
typically those in the region around ρ ≈ 0.01–0.12 fm−3 (see
also the discussion in Ref. [9]). More specifically, within the
proposed approach we define the lower limit of integration as
the lower value of the radius x, corresponding to the left point
of the half-width 
. To test the sensitivity of this criterion, we
perform additional calculations taking 
 ± 10%. In this case,
the results for the ratio 1/q of a given nucleus displayed a very
small sensitivity in the case of Bonn B and Bonn CD poten-
tials, while in the case of Brueckner and Skyrme EDFs the
results when applying criteria related to 
 and 
 ± 10% are
almost identical. We also note that, in the proposed scheme,

there are no singularities in the integrand of Eq. (25) as those
mentioned for the integrand of Eq. (23).

Next, we show in Fig. 3 the results of the calculations
following from Eq. (25) of the ratio 1/q = SV /SS as a function
of the mass number A for the isotopic chains of Ni, Sn, and Pb
with SLy4 force. In Table I the values of this ratio obtained
within the new scheme are compared with the values of κ

[Eq. (23)] calculated from our previous scheme within the
CDFM [9,31]. We would like to emphasize that this compar-
ison is between quantities obtained in two different CDFM
schemes and it can serve basically to show the influence and
the importance of the preliminary assumptions and shortcom-
ings made of scheme I and the advantage of the new scheme
that is free from them.

In general, the values of 1/q within the new CDFM scheme
calculated using the Skyrme EDF for the isotopic chains of Ni,
Sn, and Pb are between 1.70 and 2.40. This range of values is
similar to the estimations for κ (A) [Eq. (23)] of Danielewicz
et al. obtained from a wide range of available data on the
binding energies [41], of Steiner et al. [38], and from a fit to
other nuclear properties, such as the excitation energies to IAS
and skins [40] 2.6 � κ � 3.0 and from masses and skins [40]
2.0 � κ � 2.8.

The values of 1/q obtained using the Brueckner EDF for
the Ni isotopic chain with SLy4 force are in agreement partly
with that obtained in Ref. [43] by Dieperink and Van Isacker
from the analyses of masses and skins 1.6 � κ � 2.0. The
obtained values of 1/q for Sn and Pb isotopes using the
Brueckner EDF together with those when using both Bonn
potentials are close to the value of 1.14 given by Bethe in
Ref. [36] and to the estimated value of 1.1838 by Myers
and Swiatecki [37]. Generally, we can note that the results
of the new scheme for 1/q, in particular using Skyrme and
Brueckner EDFs, cover reasonably the estimated values of κ

(between 1.14 and 2.80) in a better way than in the previous
scheme.

Here we note the observed peaks in the ratio 1/q at A = 78
and A = 132 for Ni and Sn isotopes, respectively. They are
more pronounced for the choice of the Skyrme EDF, less
pronounced for Brueckner EDF, and are somewhat smoothed
out for Bonn B and Bonn CD potentials. We attribute these
peaks to the sharp nuclear density transition when passing
double-magic nuclei, such as 78Ni and 132Sn, in an isotopic
chain. The peculiarities of ρ(r) (and consequently the deriva-
tive of ρ(r) which determines the weight function |F (x)|2) for
the closed shells lead to the existence of “kinks” that had been
found and discussed in our previous works [8,9,29,31,32].
In the case of Pb isotopic chain (see Fig. 3) such kink does
not exist at A = 208 and this reflects the smooth behavior
without kinks of S(A) [Eq. (19)] and related quantities for
the Pb isotopic chain [8,29]. Similar peaks in the ratio κ as
a function of the mass number have been observed in our
previous studies [9,31].

The values of the symmetry energy S [Eq. (19)] and its
volume SV [Eq. (5)] and surface SS [Eq. (6)] components as
functions of A deduced within the proposed scheme for the
same isotopic chains are presented in Fig. 4. The calculated
symmetry energy for the three isotopic chains and all con-
sidered potentials turns out to be between 24 and 31 MeV
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FIG. 3. The quantity 1/q = SV /SS [following from Eq. (25)] as a function of A for the isotopic chains of Ni, Sn, and Pb obtained using
Brueckner EDF (dashed line), Skyrme EDF (solid line), and BHF method with Bonn B (dotted line) and Bonn CD (dash-dotted line) potentials
from Refs. [44,45]. The weight function |F (x)|2 [Eq. (18)] used in the calculations is obtained by means of the densities derived within a
self-consistent Skyrme-Hartree-Fock plus BCS method with the SLy4 force.

(see Fig. 4). In practice, predictions for the symmetry energy
vary substantially (28–38 MeV), e.g., an empirical value of
the symmetry energy 30 ± 4 MeV is given in Refs. [47,48].
The values of the volume contribution SV to the NSE obtained
within the new scheme in the case of Brueckner and Skyrme
EDFs are smaller than those derived from the previous CDFM
scheme I (presented in Tables I and III of Ref. [31]). We
would like to emphasize that the results for SV in the scheme
II (between 29 and 34 MeV) are more realistic than those
previously obtained within our scheme I, for instance, using
Brueckner EDF (between 41.5 and 43 MeV). The new results
with scheme II are in good agreement with the available
phenomenological estimations, as follows: Ref. [40]: 30.0 �
SV � 32.5 MeV, Ref. [42]: 31.5 � SV � 33.5 MeV. In the
case of Ni isotopic chain our previous calculations [9] with
SLy4 force provided values of the volume symmetry energy
within 27.6 and 28.1 MeV for the Bonn B potential and within
28.4–29.1 MeV for the Bonn CD potential. In the proposed
approach for the same potentials the corresponding values
of SV are larger by 2 MeV and are better compared with
the results presented in Refs. [40,42]. Concerning the surface
component of the NSE, SS , it is known that this component
is poorly constrained by empirical data. Therefore, it is useful
to test different EDFs and nuclear potentials within different
approaches to collect more information about it. Figure 4

shows that the range of the values obtained for SS and for
Ni, Sn, and Pb isotopes in the case of Skyrme EDF is 14–
18 MeV. These results come closer to the limits on the surface
symmetry parameter 11 MeV � β � 14 MeV established in
Ref. [41]. The proposed CDFM scheme gives larger values for
the surface component in the case of the three other potentials
(Brueckner, Bonn B, and Bonn CD).

We would like to note that the same peculiarities (as for
the ratio 1/q = SV /SS presented in Fig. 3), namely, “kinks,”
appear in the cases of S, SV , and SS as functions of the
mass number A at the double-magic 78Ni and 132Sn iso-
topes. They are stronger or weaker and depending on the
use of a given nuclear potential. In Fig. 4 a kink appears
for S(A) and SV (A) not only for the double-magic 132Sn but
also for the semimagic 140Sn nucleus. As was discussed in
Ref. [31], the latter is related to the closed 2 f7/2 subshell
for neutrons. Kinks of the A dependence of the symmetry
energy and its components in the Pb isotopic chain are not
observed.

To summarize this section, we would like to stress that
the comparison of the results of the proposed scheme II with
those of scheme I is mainly informative to test the role of the
approximations in scheme I versus the proposed procedure in
scheme II that is free from them. This comparison together
with the comparison with phenomenological estimates of the

TABLE I. The ranges of changes of 1/q (scheme II) and κ (scheme I) [9,31] with Skyrme and Brueckner EDFs and the BHF method with
Bonn B and Bonn CD potentials for Ni, Sn, and Pb isotopic chains.

Ni Sn Pb

1/q κ 1/q κ 1/q κ

Skyrme 2.07–2.36 1.53–1.70 1.63–2.37 1.58–2.02 1.97–2.09 1.67–1.71
Brueckner 1.14–1.24 2.22–2.44 0.94–1.16 2.40–2.90 1.01–1.04 2.62–2.64
Bonn B 1.03–1.08 1.80–1.90 0.83–0.97 2.00–2.48 0.84–0.88 2.54–2.80
Bonn CD 1.01–1.06 1.80–2.00 0.82–0.95 2.00–2.48 0.81–0.83 2.54–2.80
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FIG. 4. The symmetry energy S [Eq. (19)] and its volume SV [Eq. (5)] and surface SS [Eq. (6)] components for the isotopic chains of Ni,
Sn, and Pb obtained using Brueckner EDF (dashed line), Skyrme EDF (solid line), and BHF method with Bonn B (dotted line) and Bonn CD
(dash-dotted line) potentials from Refs. [44,45]. The weight function |F (x)|2 [Eq. (18)] used in the calculations is obtained by means of the
densities derived within a self-consistent Skyrme-Hartree-Fock plus BCS method with SLy4 force.

NSE components, mainly the volume component, allows us to
conclude that the results of scheme II are more realistic.

IV. SUMMARY AND CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) We provide an alternative approach (scheme II) to cal-
culate the ratio q(A) = SS (A)/SV (A) of the surface-to-volume
components of the NSE within the framework of the CDFM
in a more direct and simple way and having stronger physical
grounds than the former one (scheme I) that had been used in
our previous works [9,31]. In the proposed approach we first
determine the ratio q(x) for a flucton in the CDFM model from
the basic droplet model mass formula and then we use the
convolution of q(x) with |F (x)|2 to construct q(A) for finite
nuclei following the standard CDFM procedure. In this way
the proposed scheme avoids some conceptual and mathemati-
cal shortcomings that were met in the previous scheme.

(ii) The results for q(A) and the components SS (A) and
SV (A) are obtained from calculations based on Skyrme and
Brueckner energy-density functionals for nuclear matter and
nonrelativistic Brueckner-Hartree-Fock method with realistic
Bonn B and Bonn CD NN potentials. As in our previous
scheme, by applying the CDFM the finite nuclei densities
from the isotopic chains of Ni, Sn, and Pb are obtained

in self-consistent Hartree-Fock+BCS calculations with SLy4
Skyrme effective interaction.

(iii) We would like to note the dependence of the results
for the ratio of SS to SV on the effective nuclear potentials
used in the calculations. In this respect, the results of our
calculations using Skyrme EDF turn out to be close to the
different estimations obtained from a fit to nuclear proper-
ties, such as the excitation energies to IAS and neutron-skin
thickness [40], masses, and others. The values of 1/q obtained
using the Brueckner EDF for the Ni isotopic chain are in
agreement with those obtained in Ref. [43] from the analyses
of masses and skins. In the case of Bonn B and Bonn CD
two-body potentials the results for the ratio 1/q approach the
estimated values from the works of Bethe [36] and Myers and
Swiatecki [37]. Overall, the results of the proposed scheme for
1/q cover reasonably the whole region of estimated values for
κ (between 1.14 and 2.80) and in some cases are somewhat
better than the values obtained in the previous scheme.

(iv) The values of the symmetry energy S for the three
isotopic chains and all considered potentials are between
24 and 31 MeV, which is in accordance with the region
of its empirical values 30 ± 4 MeV given in Refs. [47,48].
The results for the volume component SV (A) of NSE
in scheme II (between 29 and 34 MeV) are in good
agreement with those of Refs. [40,42] (between 30 and
33.5 MeV). The values of the surface contribution SS (A)
in scheme II in the case of Skyrme EDF (14–18 MeV)
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come closer to the region of 11–14 MeV established in
Ref. [41].

(v) Analyzing the isotopic sensitivity of SV (A), SS (A), and
their ratio 1/q(A) we observe peculiarities (“kinks”) of these
quantities as functions of the mass number A in the cases of
the double-magic 78Ni and 132Sn isotopes, as well as a “kink”
of SV (A) for 140Sn. No pronounced peak at the double-magic
nucleus with A = 208 in the Pb chain is found. The mentioned
peculiarities in the behavior of the corresponding curves for
the same quantities have been observed also in our previous
CDFM scheme.

Finally, we point out that the results for the NSE compo-
nents and their ratio obtained within the two CDFM schemes
are comparable in many considered cases and cover a range of
values that is compatible with the range of available empirical
data and with other theoretical results, showing the power of
the CDFM method, which includes effects of nucleon-nucleon

correlations of collective type. However, we would like to
emphasize that the presented comparison of the results of
both schemes is informative mainly for the role of the ap-
proximations made in scheme I, while scheme II is free from
those approximations and is considered to be more reliable
and realistic leading to results that are in better agreement
with data.
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