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Quantum many-body calculations using body-centered cubic lattices
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It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This
technique is particularly useful for computationally difficult problems such as quantum many-body systems. For
reasons of simplicity and familiarity, nearly all quantum many-body calculations have been performed on simple
cubic lattices. Since the removal of lattice artifacts is often an important concern, it would be useful to perform
calculations using more than one lattice geometry. In this paper we show how to perform quantum many-body
calculations using auxiliary-field Monte Carlo simulations on a three-dimensional body-centered cubic (BCC)
lattice. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down neutrons in the
unitary limit, which is an idealized limit where the interaction range is zero and scattering length is infinite. As a
fraction of the free Fermi gas energy EFG, we find that the ground state energy is E0/EFG = 0.369(2), 0.371(2),
using two different definitions of the finite-system energy ratio. This is in excellent agreement with recent results
obtained on a cubic lattice [He et al., Phys. Rev. A 101, 063615 (2020)]. We find that the computational effort
and performance on a BCC lattice is approximately the same as that for a cubic lattice with the same number of
lattice points. We discuss how the lattice simulations with different geometries can be used to constrain the size
of lattice artifacts in simulations of continuum quantum many-body systems.
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I. MOTIVATION

While real physical systems reside in continuous space, it
is often computationally advantageous to model space as a
discrete set of points forming a lattice grid. This is especially
useful for computationally heavy calculations such as the case
for quantum systems with many particles. Lattice simulations
have been used to study a wide range of different phenomena
in quantum many-body systems. For example, lattice sim-
ulations in low-energy nuclear physics have been used to
describe nuclear forces, structure, reactions, and thermody-
namics [1–14]. In such calculations, a question of paramount
concern is whether the systematic errors induced by the lattice
grid can be properly removed from the final results.

In order to verify independence upon the lattice geometry,
it would clearly be useful to perform calculations using more
than one lattice geometry. For reasons of simplicity and famil-
iarity, however, nearly all quantum many-body calculations
have been performed on simple cubic lattices. In this paper
we broaden the menu of computational lattice options and
show how to perform quantum many-body calculations on
a three-dimensional body-centered cubic (BCC) lattice. The
BCC lattice is convenient because it preserves the octahedral
symmetry of the simple cubic lattice. Having this large rota-
tional symmetry group is helpful when approximating the full
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rotational symmetry of continuous space. There are, however,
some differences with the simple cubic lattice. Instead of one
lattice site per unit cell, it has two lattice sites per unit cell.
And instead of six nearest-neighbor lattice sites, it has eight
nearest neighbors. We show one unit cell of the BCC lattice in
Fig. 1.

In the literature one can find several studies of various
spin models on BCC lattices [15–28]. To the best of our
knowledge, BCC lattices have not yet been used for calcu-
lations of quantum many-body systems involving fermions.
The main goal of this paper is to show how simulations of
quantum many-body systems with fermions can be realized on
a BCC lattice. We illustrate with a well-studied but nontrivial
quantum many-body system called the unitary Fermi gas.

II. UNITARY FERMI GAS

The unitary Fermi gas refers to an interacting system of
two-component fermions with zero range interactions and in-
finite scattering length. The ground state of the unitary Fermi
gas is a superfluid that sits in the crossover region between a
weakly-coupled Bardeen-Cooper-Schrieffer (BCS) superfluid
and strongly-coupled Bose-Einstein condensate (BEC). Much
of the nuclear physics interest comes from the fact that the uni-
tary Fermi gas approximately describes the physics of dilute
neutron matter found in the inner crust of a neutron star. It is
in that region that the interparticle spacing between neutrons
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FIG. 1. Drawing of one unit cell of the BCC lattice.

is larger than the range of the neutron-neutron interactions
(about 3 fm) but smaller than the neutron-neutron scattering
length (about 19 fm).

The unitary Fermi gas is a scale-invariant system with no
intrinsic length scale. We can therefore use simple dimen-
sional analysis to determine the scaling of observables with
respect to the Fermi momentum kF . In particular, the ground-
state energy of the unitary Fermi gas must have the form

E0 = ξEFG, (1)

where ξ is a universal dimensionless constant and EFG is
the ground-state energy of the noninteracting Fermi gas. The
constant ξ is called the Bertsch parameter in nuclear physics
community and has been measured in many experiments using
ultracold trapped atoms [29–40]. It has also been calculated by
analytical methods [41–53]. In addition, a substantial number
of numerical studies have been made using lattice and con-
tinuum quantum Monte Carlo simulations as well as other
techniques [54–74].

In this paper, we compute ξ for 33 spin-up and 33 spin-
down fermions using a BCC lattice. We will compare the
performance and results with recent lattice calculations for the
same system of 33 spin-up and 33 spin-down fermions using a
simple cubic lattice [75]. To facilitate a direct comparison, we
follow as closely as possible the same lattice formalism and
methods used in Ref. [75].

III. LATTICE ACTION

As we can see in Fig. 1, there are two lattice sites per unit
cell of the BCC lattice, and the length of the unit cell is what
we call our lattice spacing alatt . In our lattice calculations, we
use cubic periodic boundary conditions with L × L × L unit
cells with alatt = 1.97 fm. Unless otherwise indicated, we use
units where factors of alatt and h̄ are not explicitly written. The
BCC lattice can be viewed as two simple cubic sublattices,
both with lattice spacing alatt , such that the sites of one sub-
lattice are positioned at the centers of the lattice cubes of the
other sublattice and vice versa. The points of the first sublat-
tice are located at integer triples (nx, ny, nz ), while the points

of the second sublattice are shifting by ( 1
2 , 1

2 , 1
2 ) from the first

sublattice points. The total number of lattice points is 2L3.
We denote the full set of lattice sites as n, while the first

sublattice is written as n1 and the second sublattice is written
as n2. The mass of all our fermions is m and our lattice time
step at is taken to be 0.0107 ma2

latt h̄
−1. The lattice Hamiltonian

consists of free and interaction parts,

H = Hfree + V. (2)

The free Hamiltonian takes the form

Hfree = h̄2

2m

∑
n

[
w0a†(n)a(n) + w1

∑
�∈S�

a†(n + �)a(n)

+w2

∑
�∈S�

a†(n + 2�)a(n)

+w3

∑
�∈S�

a†(n + 3�)a(n) + · · ·
]
, (3)

where the eight displacement vectors in S� are

S� = (± 1
2 ,± 1

2 ,± 1
2

)
. (4)

The eigenstates of our free Hamiltonian are momentum
eigenstates |p〉 with momenta p = (px, py, pz ) such that

Hfree|p〉 = h̄2

2m
f (p)|p〉, (5)

where

f (p) = w0 + 8w1 cos
( px

2

)
cos

( py

2

)
cos

( pz

2

)
+ 8w2 cos (px ) cos (py) cos (pz )

+ 8w3 cos

(
3px

2

)
cos

(
3py

2

)
cos

(
3pz

2

)
+ · · · .

(6)

The values of the coefficients wi are fixed such that f (p) gives
the desired p2 behavior up to some prescribed order in powers
of the momentum. At O(p2), we have

w0 = 8, w1 = −1, w2 = 0, w3 = 0. (7)

At O(p4),

w0 = 10, w1 = − 4
3 , w2 = 1

12 , w3 = 0. (8)

At O(p6),

w0 = 98
9 , w1 = − 3

2 , w2 = 3
20 , w3 = − 1

90 . (9)

In this paper, we use the free Hamiltonian valid up to O(p6).
For the lattice interaction we use the nonlocal smearing

method described in Ref. [75]. It has the advantage of allow-
ing the tuning of the S-wave scattering phase shifts as desired
without introducing interactions in other partial wave chan-
nels. We note that the cautions described in Ref. [8] regarding
the importance of local interactions and the proximity of a
quantum phase transition between a Bose gas of alpha parti-
cles and nuclear liquid do not apply here. This because here
we are considering a two-component fermionic system that
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FIG. 2. S-wave phase shifts computed on the BCC lattice versus
relative momentum. The dashed line marks the unitary limit, which
corresponds to a constant phase shift equal to 90 degrees.

forms a gas with no bound states. The quantum phase transi-
tion described in Ref. [8] is a feature of the four-component
fermionic system. While there is nothing inconsistent with
using interactions with local smearing, it is not needed and
would produce larger systematic errors due to interactions in
other partial waves. The interactions we use have the form

V = C0

2

∑
n

: ρNL(n)ρNL(n) :, (10)

where :: denotes normal ordering, where the annihilation op-
erators are on the right and the creation operators are on the
left. The nonlocal density operator is defined by

ρNL(n) =
∑

σ=↑,↓
a†

σ,NL(n)aσ,NL(n), (11)

where

aσ,NL(n) = aσ (n) + sNL

∑
�∈S�

aσ (n + �),

a†
σ,NL(n) = a†

σ (n) + sNL

∑
�∈S�

a†
σ (n + �). (12)

For the unitary Fermi gas, we set C0 = −0.744917 in
lattice units and sNL = −9.5337 × 10−4, which corresponds
to infinite scattering length and an effective range of about
0.06 lattice units. In Fig. 2, we show the S-wave phase shifts
computed on the BCC lattice versus relative momentum. At
low momenta, the phase shifts are in excellent agreement with
the unitary limit, which corresponds to a constant phase shift
equal to 90 degrees. The lattice phase shifts are determined
using the spherical wall method [76,77].

IV. AUXILIARY-FIELD MONTE CARLO SIMULATIONS

The transfer matrix M is defined as the normal-ordered
time evolution operator

M =: exp[−Hat ] : . (13)

Let |�I〉 and |�F 〉 be the initial and final state wave func-
tions, respectively. So long as the initial and final states have
nonzero overlap with the ground state, we can project out
the ground state by multiplying powers of M. The projection

amplitude is given by

Z (Lt ) = 〈�F |M̃L′
t MLt M̃L′

t |�I〉 . (14)

In order to reduce the number of time steps needed to converge
to the ground state, we have multiplied the initial and final
states by L′

t powers of the modified transfer matrix,

M̃ =: exp[−H̃ ãt ] : . (15)

In this modified transfer matrix, the interaction coefficient is
stronger, with interaction coefficient C̃0 = 1.6C0, and the time
step ãt is taken to be larger, ãt = 5at . We compute the ground-
state energy E0 by taking the limit

E0 = lim
Lt →∞

a−1
t log

Z (Lt − 1)

Z (Lt )
. (16)

For the calculations performed here, we take |�I〉 and |�F 〉
to be the same and equal to the Slater determinant state cor-
responding to the ground state of the free Fermi gas, |�free

0 〉.
For the system we are considering with 33 spin-up and 33
spin-down fermions in a periodic cube, the free Fermi ground
state is unique. This corresponds to momentum states with |p|
less than or equal to 4π h̄/(Lalatt ).

We can write the interaction at time step nt and position n
using an auxiliary field s(n, nt ). We define V (nt )

s to be

V (nt )
s = √−C0

∑
n

s(n, nt )ρNL(n), (17)

and the quadratic part of the auxiliary-field action is defined
as

V (nt )
ss = 1

2

∑
n

s2(n, nt ). (18)

Then the transfer matrix at time step nt can be expressed as

M (nt ) =
∏

n

[ ∫ ∞

−∞

√
1

2π
ds(n, nt )

]

× exp
[−Hfreeat − V (nt )

s

√
at − V (nt )

ss

]
: . (19)

Instead of the particles interacting with each other, the parti-
cles now only interact with the auxiliary field.

V. RESULTS

We perform BCC lattice simulations of N↑ = 33 spin-up
fermions and N↓ = 33 spin-down fermions in the unitary
limit with lattice lengths L = 4, · · · , 10. This covers a range
from 2L3 = 128 lattice points for L = 4 and 2L3 = 2000
lattice points for L = 10. The range is comparable to the
L = 5, · · · , 11 simple cubic lattices used in Ref. [75], with
L3 = 125 points for L = 5 and L3 = 1331 points for L = 11.
For the auxiliary field updates, we use the shuttle algorithm
described in Ref. [13]. More details about how the lattice
calculations are performed can be found in Ref. [4,12].

As discussed in Ref. [78], there are two different ways to
define the ground state ratio ξ = E0/EFG for a system with
a finite number of particles. One can either define EFG as the
ground-state energy of the free fermion gas computed with the
same lattice parameters or from the asymptotic formula valid
in the thermodynamic and continuum limits. We define ξ few
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FIG. 3. Lattice results for ξ few(Lt ) vs Lt for the L = 4 and L = 5 BCC lattices. In each case we present data for L′
t = 0 and L′

t = 5 and
show the results of the asymptotic fits.

to be the ratio computed using the free fermion gas energy on
the lattice with the same lattice parameters, E few

FG . We define
ξ thermo to be the ratio computed using E thermo

FG , where

E thermo
FG = 3

5

k2
F

2m
(N↑ + N↓), (20)

where

kF = (6π2N↑)1/3h̄

L
= (6π2N↓)1/3h̄

L
. (21)

For N↑ = 33 and N↓ = 33, we find that, in the continuum
limit, ξ thermo/ξ few = 0.995. In the following, we will therefore
restrict our focus to computing ξ few and multiply by 0.995 to
obtain ξ thermo.

To find the ground state energy, we need to take the limit

E0 = lim
Lt →∞

E (Lt ), (22)

where

E (Lt ) = a−1
t log

Z (Lt − 1)

Z (Lt )
. (23)

Since we will work with ground-state ratios, it is convenient
to define

ξ few(Lt ) = E (Lt )

E few
FG

. (24)

We perform the extrapolation to an infinite number of time
steps by using the asymptotic form

ξ few(Lt ) � ξ few + βe−Lt at �E , (25)

where the unknown parameters ξ few, β,�E are fitted. When
there are multiple sets of data available for the same system,
we perform simultaneous fits using the asymptotic form given
in Eq. (25), with a common value for the extrapolated param-
eter ξ few.

In Fig. 3, we plot the lattice results for ξ few(Lt ) versus
Lt for the L = 4 and L = 5 BCC lattices. In each case we
present data for L′

t = 0 and L′
t = 5 and show the results of

the asymptotic fits. In Fig. 4, we plot the lattice results for
ξ few(Lt ) versus Lt for the L = 6 and L = 7 BCC lattices.
We present data for L′

t = 0 and L′
t = 5 and show the results

of the asymptotic fits. In Fig. 5, we plot the lattice results
for ξ few(Lt ) versus Lt for the L = 8 and L = 9 BCC lattices.
For L = 8 we present data for L′

t = 0 and L′
t = 5, while for

FIG. 4. Lattice results for ξ few(Lt ) vs Lt for the L = 6 and L = 7 BCC lattices. We show data for L′
t = 0 and L′

t = 5 and the results of the
asymptotic fits.
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FIG. 5. Lattice results for ξ few(Lt ) versus Lt for the L = 8 and L = 9 BCC lattices. For L = 8 we show L′
t = 0 and L′

t = 5, while for L = 9
we present data for L′

t = 5 only. In each case we show the results of the asymptotic fits.

L = 9 we present data for L′
t = 5 only. In each case we show

the results of the asymptotic fits. In Fig. 6, we plot the
lattice results for ξ few(Lt ) versus Lt for the L = 10 lattice. We
present data for L′

t = 5 and L′
t = 40 and show the results of

the asymptotic fits. We see that all of the asymptotic fits do
a good job of reproducing the behavior at large Lt . In Table I,
we show the extracted values for ξ few(L) using BCC lattices
for L = 4, · · · , 10.

In order to extrapolate ξ few to the continuum limit, we use
the fitting function

ξ few(ρ) = d1ρ + dγ ργ + ξ few, (26)

where ρ is the density particles in lattice units,

ρ = N↑ + N↓
L3

= 66

L3
. (27)

In Fig. 7 we plot the continuum limit extrapolations for
ξ few(ρ) using γ = 1

3 , 2
3 , 4

3 , 5
3 . We see that the dependence

on γ is quite minor and the extrapolation is dominated by
the ρ1 dependence. Incorporating the extrapolation fits for
all values of γ , we obtain the value ξ few = 0.371(2), From
this we multiply by 0.995 to obtain ξ therm = 0.369(2). These

FIG. 6. Lattice results for ξ few(Lt ) vs Lt for the L = 10 BCC
lattice. We present data for L′

t = 5 and L′
t = 40 and show the results

of the asymptotic fits.

are consistent with cubic lattice results ξfinite = 0.372(2)
and ξ thermo = 0.369(2) [75], as well as other numerical cal-
culations [54,55,73,74] and the experimental measurement
of 0.376(4) [40].

VI. SUMMARY AND OUTLOOK

We have performed quantum many-body calculations
using auxiliary-field Monte Carlo simulations on a three-
dimensional BCC lattice. To our knowledge, this is the first
calculation of a fermionic many-body system on a BCC
lattice. As a benchmark test, we have calculated the ground-
state energy E0 of 33 spin-up and 33 spin-down fermions in
the unitary limit. Using periodic boxes with lattice lengths
L = 4, · · · , 10, we find that the ground state energy ratio is
E0/EFG = 0.369(2), 0.371(2), using two different definitions
of the finite-system energy ratio. This is in excellent agree-
ment with recent results obtained on a simple cubic lattice
[75] using similar auxiliary-field Monte Carlo methods. The
agreement between BCC and simple cubic results gives some
confidence that any remnants of the underlying lattice geom-
etry have been removed by performing the continuum limit
extrapolation. In our calculations we have not yet considered
the thermodynamic limit where the number of particles are
taken to infinity, but we hope to address this challenge in the
future.

TABLE I. Extracted values for ξ few(L) using BCC
lattices for L = 4, · · · , 10.

L ξ few(L)

4 0.3208(2)
5 0.3468(1)
6 0.3567(2)
7 0.3626(2)
8 0.3669(3)
9 0.3684(11)
10 0.3692(12)
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FIG. 7. Plots of the continuum limit extrapolations of ξ few(ρ )
using γ = 1

3 , 2
3 , 4

3 , 5
3 . Density is in lattice units.

We find that the amount of computational effort required
for the BCC lattice calculations is very similar to that for
the simple cubic lattice calculations with the same number of
lattice points. There is a slight increase in computational time
arising from the fact that the BCC lattice has eight nearest
neighbor sites as opposed to six nearest-neighbor sites for the
simple cubic lattice. However, the resulting difference in the
computing time is minor. The quality of the results that one
can extract on the BCC lattice seems also quite comparable.
In both cases, we used the shuttle algorithm described in
Ref. [13] to update the auxiliary fields. In the lattice cal-
culations presented here, we have not required any Fourier
transformation calculations. Fast Fourier transformations on
BCC lattices as well as face-centered cubic (FCC) lattices
have been presented in the literature. Momenta on rectangular
lattices are considered in Ref. [79], while momenta on BCC
and FCC lattices are discussed in Ref. [80].

In the future, we hope to present a similar study for lattice
calculations on an FCC lattice, which has four sites per unit

cell and presents yet another lattice geometry with octahedral
symmetry. Having the ability to perform calculations using
several different lattice spacings and more than one lattice ge-
ometry will be useful for studying the correlations of particles
in quantum many-body systems such as the nucleons in an
atomic nuclei. The correlations of nucleons at densities com-
parable to the saturation density of nuclear matter or greater
are of much interest for both atomic nuclei and the equation
of state of dense matter in neutron stars. Obtaining consis-
tent results from simulations using different lattice geometries
would mitigate the need to perform computationally expen-
sive calculations with the lattice spacing much smaller than 1
fm. It would also be fruitful to explore other interesting and
universal properties of the unitary Fermi gas such as the Tan
contact [55,81–84] describing universal short-distance corre-
lations, spin and density correlations [85,86], superfluid pair-
ing [75,87], and the superfluid critical temperature [63,69,88].
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