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We present a formalism for the fermionic quasiparticle propagator in a superfluid fermionic system. Starting
from a general many-body Hamiltonian confined by the two-body instantaneous interaction, the equation of
motion for the fermionic propagator is obtained in the Dyson form. Before making any approximation, the
interaction kernel is found to be decomposed into static and dynamical (time-dependent) contributions, where
the latter translates to the energy-dependent and the former maps to the energy-independent terms in the energy
domain. The three-fermion correlation function, being the heart of the dynamical part of the kernel, is factorized
into the two-fermion and one-fermion ones. With the relaxed particle number constraint, the normal propagator
is coupled to the anomalous one via both the static and dynamical kernels, which is formalized by introducing
the generalized quasiparticle propagator of the Gor’kov type. The dynamical kernel in the factorized form
is associated with the quasiparticle-vibration coupling (QVC), with the vibrations unifying both the normal
and pairing phonons. The QVC vertices are related to the variations of the Hamiltonian of the Bogoliubov
quasiparticles, which can be obtained by the finite amplitude method.
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I. INTRODUCTION

The nuclear many-body problem has attracted tremendous
attention and effort for decades. Yet, the quantitative descrip-
tion of atomic nuclei calls for further developments, both
in the theoretical and computational aspects. The predictive
power and accuracy required for modern applications, such as
nuclear astrophysics, neutrino physics, and searches beyond
the standard model in the nuclear sector, are still much higher
than can be offered even by the best advanced nuclear models
and computation.

One of the most powerful methods to study quantum
many-body systems is the Green function method, because
various Green functions, or propagators, being particular
cases of a larger class of correlation functions, are directly
related to well-defined observables. In the physics of atomic
nuclei, the single-nucleon propagators are linked to the ener-
gies of odd-particle systems and spectroscopic factors, which
can be extracted from, e.g., transfer or knock-out reactions,
and two-nucleon propagators are associated with nuclear re-
sponse to external probes of electromagnetic, strong, or weak
character.

In the many-body theory, these types of propagators are
connected through the equations of motion (EOMs). For in-
stance, the EOM for a one-fermion propagator is coupled
to that for higher-rank propagators via the dynamical kernel
[1–5]. The importance of the latter couplings in nuclear sys-
tems was realized also in phenomenological approaches of
the nuclear field theory (NFT) [6–11] and the quasiparticle-
phonon models (QPMs) [12,13] without, however, the explicit
link to the underlying bare nucleon-nucleon interaction. The

EOM method for approximating fermionic propagators is ac-
tively employed in quantum chemistry and condensed matter
physics [14–18]; see the recent review [19] devoted to its
systematic assessment.

In this work we aim at an extension of the single-fermion
EOM to the superfluid case. Although some versions of
such an extension are available in the literature, they are
either based on the phenomenological assumptions about the
dynamical kernel [20–29] or use perturbation theory to ap-
proximate it [30–33]. Another class of advanced models based
on the equation of motion phonon method (EMPM) treats
the nuclear many-body problem in terms of coupling between
the Tamm-Dancoff phonons and quasiparticles. Furthermore,
this method provides a recipe for an “ab initio” determination
of the particle(hole)-vibration coupling [34] and for coupling
to complex configurations, such as two and three phonons.
It extends to the particle-hole vibrations [35] as well as the
quasiparticle (normal and pairing) vibrational modes [36].

Here we elaborate on (i) a continuous derivation of the
EOM for the fermionic quasiparticle propagator starting from
the underlying many-body fermionic Hamiltonian with the
bare two-fermion interaction and (ii) on the nonperturbative
treatment of the dynamical kernel of the resulting EOM on
equal footing with the superfluid pairing correlations. We
walk the reader throughout the detailed formalism to provide a
clear understanding of the origin of the many-body effects, in
particular of the emergent collective phenomena in strongly
correlated superfluid media. The model-independent nature
of the exact EOMs should allow practitioners to relate dif-
ferent many-body approaches to each other and to evaluate
the accuracy of model approximations. In this article, we

2469-9985/2021/104(4)/044303(20) 044303-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.104.044303&domain=pdf&date_stamp=2021-10-18
https://doi.org/10.1103/PhysRevC.104.044303


ELENA LITVINOVA AND YINU ZHANG PHYSICAL REVIEW C 104, 044303 (2021)

purposefully do not present numerical calculations to fully
focus on the formal aspects of the theory as done, for instance,
in Refs. [25,30].

The article is organized as follows. In Sec. II we intro-
duce notations and definitions of the fermionic propagators
in correlated media. Section III is devoted to the equations
of motion and associated observables: Sec. III A reviews
briefly the introductory piece of the EOM formalism regard-
ing the normal (nonsuperfluid) single-fermion propagator in
a strongly coupled regime, which was set up in detail in
Ref. [37]; Sec. III B extends the framework to the superfluid
case, i.e., to additional anomalous fermionic propagators;
Sec. III C elaborates on the dynamical kernels of the obtained
EOM’s and on the unified treatment of the normal and pairing
phonons in these kernels, which happen to be components
of one unified dynamical kernel in the quasiparticle world;
Sec. III D relates the observed strength functions to the quasi-
particle transition amplitudes. Section IV establishes a link
between the quasiparticle-vibration coupling (QVC) vertices
in the dynamical kernel and the variations of the quasiparticle
Hamiltonian in the context of the finite amplitude method
(FAM) [38–40]. Section V contains a summary of the pre-
sented work, and the Appendix relates the formalism of this
work to the Gor’kov theory, which turns out to be the static
limit of the proposed approach.

II. FERMIONIC PROPAGATORS IN A
CORRELATED MEDIUM

We aim at developing a framework, where the many-
body Hamiltonian serves as the only input, which determines
uniquely all the properties of the system of interacting
fermions. Thus, the starting point is the fermionic Hamilto-
nian, here in a nonrelativistic form:

H = H (1) + V (2) + W (3) + · · · , (1)

where the operator H (1) is the one-body contribution,

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑
12

v
(MF )
12 ψ

†
1 ψ2 ≡

∑
12

h12ψ
†
1 ψ2 (2)

with matrix elements h12 which, in general, combine the ki-
netic energy t and the mean-field v(MF ) part of the interaction.
The two-body sector associated with the two-fermion interac-
tion is described by the operator V (2),

V (2) = 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3, (3)

while W (3) represents the three-body forces,

W (3) = 1

36

∑
123456

w̄123456ψ
†

1ψ
†

2ψ
†

3ψ6ψ5ψ4. (4)

Here and in the following ψ1 and ψ
†
1 are fermionic field opera-

tors in some basis, whose states are completely characterized
by the number indices. In the latter definitions we used the
antisymmetrized matrix elements v̄1234 and w̄123456. Further
in this work we consider the equations of motion assuming
that the Hamiltonian is confined by the two-body interaction.
From the narrative it will be clear how the theory can be

naturally extended to three-body and multiparticle forces. The
fermionic fields obey the usual anticommutation relations

[ψ1, ψ
†

1′]+ ≡ ψ1ψ
†

1′ + ψ†
1′ψ1 = δ11′ ,

[ψ1, ψ1′ ]+ = [ψ†
1, ψ

†
1′ ]+ = 0, (5)

whereas their time evolution can be described conveniently by
transforming them to the Heisenberg picture:

ψ (1) = eiHt1ψ1e−iHt1 , ψ†(1) = eiHt1ψ†
1e−iHt1 . (6)

Let us consider the fermionic propagator, or correlation
function, in a system of N interacting fermions, which is
directly linked to the observables, such as the energies of
neighboring N ± 1 systems and the single-particle spectro-
scopic strengths. N is supposed to be an even integer number.
The fermionic in-medium propagator, or Green function, is
defined as a correlator of two fermionic field operators:

G(1, 1′) ≡ G11′ (t − t ′) = −i〈T ψ (1)ψ†(1′)〉, (7)

where T is the chronological ordering operator, and the aver-
aging 〈· · · 〉 is performed over the formally exact ground state
of the many-body system of N particles.

The basis of choice is the one which diagonalizes the one-
body (also named single-particle) part of the Hamiltonian (2):
h12 = δ12ε1. The convenience of using this basis will become
obvious below. The single-particle propagator (7) depends ex-
plicitly on a single time difference τ = t − t ′, and the Fourier
transform with respect to τ to the energy domain leads to its
spectral (Lehmann) representation:

G11′ (ε) =
∑

n

ηn
1η

n∗
1′

ε − (
E (N+1)

n − E (N )
0

) + iδ

+
∑

m

χm
1 χm∗

1′

ε + (
E (N−1)

m − E (N )
0

) − iδ
. (8)

It consists of terms of the simple pole character with factor-
ized residues, which is the common feature of the propagators.
The poles are located at the energies E (N+1)

n − E (N )
0 and

−(E (N−1)
m − E (N )

0 ) of the neighboring (N + 1)-particle and
(N − 1)-particle systems, respectively, related to the ground
state of the reference N-particle system. The corresponding
residues are composed of matrix elements of the field opera-
tors between the ground state |0(N )〉 of the N-particle system
and states |n(N+1)〉 and |m(N−1)〉 of the neighboring systems:

ηn
1 = 〈0(N )|ψ1|n(N+1)〉, χm

1 = 〈m(N−1)|ψ1|0(N )〉. (9)

By definition, these matrix elements give the weights of the
given single-particle (single-hole) configuration on top of the
ground state |0(N )〉 in the nth or (mth) state of the (N + 1)-
particle [(N − 1)-particle] systems. The residues are, thereby,
associated with the observable occupancies of the correspond-
ing states.

The two most commonly used two-point two-fermion cor-
relation functions are the particle-hole propagator, often called
response function, and the particle-particle, or fermionic pair,
propagator. The former is defined as

R(12, 1′2′) ≡ R12,1′2′ (t − t ′) = −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉
= −i〈T (ψ†

1 ψ2)(t )(ψ†
2′ψ1′ )(t ′)〉, (10)
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while the latter has the form

G(12, 1′2′) ≡ G12,1′2′ (t − t ′) = −〈T ψ (1)ψ (2)ψ†(2′)ψ†(1′)〉
= −〈T (ψ1ψ2)(t )(ψ†

2′ψ
†
1′ )(t ′)〉, (11)

where we imply that t1 = t2 = t, t1′ = t2′ = t ′. The Fourier
transformation of Eq. (10) to the energy (frequency) domain
leads to the spectral expansion

R12,1′2′ (ω) =
∑
ν>0

[
ρν

21ρ
ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
, (12)

which, similarly to the one for the one-fermion propagator (8),
satisfies the general requirements of locality and unitarity. The
matrix elements in the residues

ρν
12 = 〈0|ψ†

2 ψ1|ν〉 (13)

are the transition densities. They give the weights of the pure
particle-hole configurations on top of the ground state |0〉 in
the model excited states |ν〉 of the same N-particle system.
The poles of the response function (12) are located at the exci-
tation energies ων = Eν − E0 relative to the ground state. The
Fourier image of the two-time two-fermion Green function
(11) reads

iG12,1′2′ (ω) =
∑

μ

α
μ
21α

μ∗
2′1′

ω − ω
(++)
μ + iδ

−
∑
κ

βκ∗
12 βκ

1′2′

ω + ω
(−−)
κ − iδ

,

(14)

where the residues are products of the matrix elements

α
μ
12 = 〈0(N )|ψ2ψ1|μ(N+2)〉, βκ

12 = 〈0(N )|ψ†
2 ψ

†
1 |κ(N−2)〉,

(15)

and the poles ω(++)
μ = E (N+2)

μ − E (N )
0 and ω(−−)

κ
= E (N−2)

κ
−

E (N )
0 are formally exact states of the (N + 2)- and (N − 2)-

particle systems, respectively.
Obviously, Eqs. (8), (12), and (14) are model independent

and valid for any physical approximations to the many-body
states |n〉, |m〉, |ν〉, |μ〉, and |κ〉. In Eqs. (8), (12), and (14) the
sums are formally complete, i.e., run over the discrete spectra
and engage the corresponding integrals over the continuum
states.

III. ONE-FERMION PROPAGATOR: THE EQUATION
OF MOTION (EOM)

A. Normal phase

The time evolution of the fermionic propagator (7) can be
traced by taking its time derivatives. The differentiation with
respect to t leads to

∂t G11′ (t − t ′) = − iδ(t − t ′)〈[ψ1(t ), ψ†
1′ (t ′)]+〉

+ 〈T [H, ψ1](t )ψ†
1′ (t ′)〉, (16)

where [H, ψ1](t ) = eiHt [H, ψ1]e−iHt . Evaluating the commu-
tator and isolating the terms with G11′ (t − t ′), one obtains the
equation

(i∂t −ε1)G11′ (t −t ′) = δ11′δ(t − t ′) + i〈T [V, ψ1](t )ψ†
1′ (t ′)〉,

(17)

which is commonly referred to as the first EOM, or EOM1.
The second EOM is generated by the differentiation of the
last term on the right-hand side of Eq. (17),

R11′ (t − t ′) = i〈T [V, ψ1](t )ψ†
1′ (t ′)〉, (18)

with respect to t ′:

R11′ (t − t ′)
←−
∂t ′ = −iδ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉
− 〈T [V, ψ1](t )[H, ψ†

1′ ](t ′)〉, (19)

which gives the second EOM, or EOM2:

R11′ (t − t ′)(−i
←−
∂t ′ − ε1′ ) =−δ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉
+ i〈T [V, ψ1](t )[V, ψ†

1′ ](t ′)〉.
(20)

Acting on the EOM1 (17) by the operator (−i
←−
∂t ′ − ε1′ ) and

performing the Fourier transformation to the energy domain
with respect to the time difference t − t ′ yield:

G11′ (ω) = G0
11′ (ω) +

∑
22′

G0
12(ω)T22′ (ω)G0

2′1′ (ω) (21)

with the free, or uncorrelated, fermionic propagator G0
11′ (ω) =

δ11′/(ω − ε1) and the interaction kernel (or the one-body
T matrix)

T11′ (t − t ′) = T 0
11′ (t − t ′) + T r

11′ (t − t ′),

T 0
11′ (t − t ′) = −δ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉,
T r

11′ (t − t ′) = i〈T [V, ψ1](t )[V, ψ†
1′](t ′)〉. (22)

The superscript 0 is associated with the static parts of the inter-
action kernels and r with their dynamical, or time-dependent,
parts, which take care of retardation effects. The EOM (21)
can be written in the operator form as

G(ω) = G0(ω) + G0(ω)T (ω)G0(ω). (23)

To transform it to the Dyson equation, one introduces the irre-
ducible part of the T matrix, the self-energy, as � = T irr . The
irreducibility here is taken with respect to the uncorrelated
one-fermion propagator G0, so that the self-energy and the
T matrix are related as follows:

T (ω) = �(ω) + �(ω)G0(ω)T (ω). (24)

Eliminating the T matrix, one arrives at the Dyson equation
for fermionic propagator:

G(ω) = G0(ω) + G0(ω)�(ω)G(ω). (25)

The self-energy consists of the instantaneous mean-field
part �0 and the energy(time)-dependent, or dynamical, part
�r (ω), as follows from the expression for the T matrix (22):

�11′ (ω) = �0
11′ + �r

11′ (ω). (26)

The explicit evaluations of the commutators in Eq. (22)
give for the static (instantaneous) term

�0
11′ = −〈[[V, ψ1], ψ†

1′]+〉 =
∑

il

v̄1i1′lρli, (27)

where ρli = 〈ψ†
iψl〉 is the ground-state one-body density.

To obtain the dynamical part �r (ω) of the mass operator,

044303-3



ELENA LITVINOVA AND YINU ZHANG PHYSICAL REVIEW C 104, 044303 (2021)

which comprises all retardation effects induced by the nu-
clear medium, we first compute its reducible counterpart
T r

11′ (t − t ′):

T r
11′ (t − t ′) = − i

4

∑
2′3′4′

∑
234

v̄1234〈T ψ†(2)ψ (4)ψ (3)

×ψ†(3′)ψ†(4′)ψ (2′)〉v̄4′3′2′1′ , (28)

where we assume that t2 = t3 = t4 = t and t2′ = t3′ = t4′ =
t ′, as constrained by the instantaneous interaction. Here it
becomes clear that, although the EOM for the fermionic
propagator G(ω) (25) is formally a closed equation with
respect to G(ω), its interaction kernel is defined by the
three-fermion Green function. The EOM for the three-body
propagator, however, generates even higher-rank propagators,
which makes the exact solution of the many-body problem
intractable. Instead of reducing the problem to the perturbative
expansions in powers of the interaction, we proceed with the
cluster decomposition of the kernel, which allows for trunca-
tion of the many-body problem at the two-body level. More
precisely [41–44],

i〈T ψ†(2)ψ (4)ψ (3)ψ†(3′)ψ†(4′)ψ (2′)〉
≡ G(432′, 23′4′)

≈ G(4, 4′)G(32′, 23′) + G(3, 3′)G(42′, 24′)

+ G(2′, 2)G(43, 3′4′) + G(4, 2)G(32′, 3′4′)

+ G(2′, 4′)G(43, 23′) − G(3, 2)G(42′, 3′4′)

− G(2′, 3′)G(43, 24′) − G(4, 3′)G(32′, 24′)

− G(3, 4′)G(42′, 23′) − 2G(0)(432′, 23′4′), (29)

where

G(0)(432′, 23′4′)

= −G(4, 4′)G(3, 3′)G(2′, 2) + G(4, 3′)G(3, 4′)G(2′, 2)

+ G(4, 2)G(3, 3′)G(2′, 4′) + G(4, 4′)G(3, 2)G(2′, 3′)

− G(4, 2)G(3, 4′)G(2′, 3′) − G(4, 3′)G(3, 2)G(2′, 4′)

(30)

contains all uncorrelated three-body contributions. The ap-
proximation of Eq. (29) neglects only the fully correlated
three-body terms. Dropping the reducible contributions (terms
containing equal-times one-fermion propagators) in Eq. (29),
we obtain

�r
11′ (t − t ′) = −

∑
2342′3′4′

v̄1234

(
1

4
G(2′, 2)G(pp)(43, 3′4′)

− iG(3, 3′)R(ph)(24, 2′4′)

+ G(3, 3′)G(2′, 2)G(4, 4′)
)

v̄4′3′2′1′

= �
r(pp)
11′ (t − t ′) + �

r(ph)
11′ (t − t ′) + �

r(0)
11′ (t − t ′),

(31)

where the particle-particle (pp) and particle-hole (ph) charac-
ter of the correlation functions defined by Eqs. (10) and (11)
are marked explicitly.

FIG. 1. The mapping of the phonon vertices (empty and filled
circles) and propagators (wavy lines and double lines) onto the bare
interaction (squares, antisymmetrized v̄ and plain v) and two-fermion
correlation functions (rectangular blocks R(ph) and G(pp)) in diagram-
matic form. Lines with arrows stand for fermionic particles (right
arrows) and holes (left arrows). Top: normal (particle-hole) phonon;
bottom: pairing (particle-particle) phonon, as introduced in Eqs. (39)
and (35), respectively.

The self-energy of Eq. (31) serves as a foundation for
microscopic approaches to the single-particle self-energy,
which refer to the phenomenon of particle-vibration cou-
pling, or PVC. To show this explicitly, one can identify the
correlation functions R(ph) and G(pp) contracted with the in-
teraction matrix elements with the phonon propagators and
coupling vertices. This mapping is displayed diagrammati-
cally in Fig. 1. At this point it is convenient to work with the
Fourier image of �r

11′ (t − t ′) in the energy domain:

�r
11′ (ω) =

∫ ∞

−∞
dτ eiωτ�r

11′ (τ ). (32)

The transformation of the first term of Eq. (31) reads

�
r(pp)
11′ (ω) =

∑
22′

[∑
μm

χm∗
2 γ

μ(+)
12 γ

μ(+)∗
1′2′ χm

2′

ω − ω
(++)
μ − ε

(−)
m + iδ

+
∑
κn

ηn∗
2 γ

κ(−)∗
21 γ

κ(−)
2′1′ ηn

2′

ω + ω
(−−)
κ + ε

(+)
n − iδ

]
. (33)

Here the single-particle energies in the neighboring (N +
1)-particle system are denoted as ε(+)

n = E (N+1)
n − E (N )

0 and
those in the neighboring (N − 1)-particle system as ε(−)

m =
E (N−1)

m − E (N )
0 . The pairing phonon vertex functions are then

defined as follows:

γ
μ(+)
12 =

∑
34

v1234α
μ
34, γ

κ(−)
12 =

∑
34

βκ

34v3412. (34)

Sometimes it is convenient to introduce the pairing interaction
amplitude �

pp
12,1′2′ (ω),

i�pp
12,1′2′ (ω) = i

∑
343′4′

v1234G(pp)
43,3′4′ (ω)v4′3′2′1′

=
∑

μ,σ=±1

γ
μ(σ )
12 �(σ )

μ (ω)γ μ(σ )∗
1′2′ , (35)

as the contraction of these vertices with the pairing phonon
propagator:

�(σ )
μ (ω) = σ

ω − σ
(
ω

(σσ )
μ − iδ

) . (36)
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FIG. 2. The dynamical kernel �r of Eq. (31) in terms of the particle-vibration coupling. Same conventions as in Fig. 1 apply, while the
rectangular block G(3) stands for the three-fermion propagator of Eq. (29).

Then, Eq. (33) can be alternatively obtained by the following
convolution:

�
r(pp)
11′ (ω) = i

∑
22′

∫ ∞

−∞

dε

2π i
�

pp
12,1′2′ (ω + ε)G2′2(ε). (37)

The Fourier image of the second term of Eq. (31) can be
treated similarly,

�
r(ph)
11′ (ω) =

∑
33′

[ ∑
νn

ηn
3gν

13gν∗
1′3′η

n∗
3′

ω − ων − ε
(+)
n + iδ

+
∑
νm

χm
3 gν∗

31gν
3′1′χ

m∗
3′

ω + ων + ε
(−)
m − iδ

]
, (38)

if the following mapping is performed:

�
ph
13′,1′3 =

∑
242′4′

v̄1234R(ph)
24,2′4′ (ω)v̄4′3′2′1′

=
∑

ν,σ=±1

gν(σ )
13 D(σ )

ν (ω)gν(σ )∗
1′3′ , (39)

where we introduced the phonon vertices gν and propagators
Dν (ω):

gν(σ )
13 = δσ,+1gν

13 + δσ,−1gν∗
31, gν

13 =
∑

24

v̄1234ρ
ν
42, (40)

D(σ )
ν (ω) = σ

ω − σ (ων − iδ)
, ων = Eν − E0. (41)

The corresponding integral expression is

�
r(ph)
11′ (ω) = −

∑
33′

∫ ∞

−∞

dε

2π i
�

ph
13′,1′3(ω − ε)G33′ (ε). (42)

The new index σ = ±1 in Eqs. (33)–(42) was introduced
to indicate the forward (“particle”) and backward (“hole”)
components of the phonon propagators, that also affects the
vertices. The spectral representations (8) and (14) along with
the definitions (7), (11), and (10) were applied to implement
the mapping. The last term of the self-energy (31) with the
uncorrelated single-particle Green functions transforms to the
energy domain as follows:

�
r(0)
11′ (ω) = −

∑
2342′3′4′

v̄1234

[ ∑
mn′n′′

χm
2′ χ

m∗
2 ηn′

3 ηn′∗
3′ ηn′′

4 ηn′′∗
4′

ω − ε
(+)
n′ − ε

(+)
n′′ − ε

(−)
m + iδ

+
∑

nm′m′′

ηn
2′η

n∗
2 χm′

3 χm′∗
3′ χm′′

4 χm′′∗
4′

ω + ε
(+)
n + ε

(−)
m′ + ε

(−)
m′′ − iδ

]
v̄4′3′2′1′

= −
∑

2342′3′4′
v̄1234G̃(3)0

432′,23′4′ (ω)v̄4′3′2′1′ , (43)

G̃(3)0
432′,23′4′ (ω)

= −
∫ ∞

−∞

dεdε′

(2π i)2
G44′ (ω + ε′ − ε)G33′ (ε)G2′2(ε′). (44)

The full dynamical part of the fermionic self-energy (31) is
shown in Fig. 2 in diagrammatic form. The particle-vibration
coupling vertices are denoted by the circles (empty for the
normal phonon and filled for the pairing ones), the propagator
of the normal phonons is associated with the wavy line, and
that of the pairing phonons is given by the double line with
an arrow. Note that the signs in front of the diagrams depend
on the diagrammatic conventions, for instance, they may not
respect Feynman’s convention. For instance, the last uncorre-
lated term is often shown with the “−” sign in the literature,
and the phonon vertices may include the multiplier i.

The first two diagrams on the right-hand side in Fig. 2
are the topologically similar one-loop diagrams, which are
analogous to the electron self-energy corrections in quan-
tum electrodynamics (QED), where an electron emits and
reabsorbs a photon. In the nucleonic self-energy of quantum
hadrodynamics (QHD) a single nucleon emits and reabsorbs
mesons with various quantum numbers. In the present context,
the first two diagrams of Fig. 2 represent the effects of a
strongly correlated medium, where a single fermion emits and
reabsorbs phonons of particle-particle and particle-hole na-
ture. In this way, the phonons emerge as effective mediators of
interaction, additional to the original bare interaction between
two fermions, which is stipulated by the correlated medium.
This fact can be expresses by introducing an effective Hamil-
tonian containing the explicit phonon degrees of freedom,
which is often used in phenomenological approaches. Fig-
ure 1 illustrates diagrammatically the mappings introduced by
Eqs. (35) and (39). This mapping is a key point for the present
discussion as it emphasizes the essentially nonperturbative
character of the approach and explains the underlying mecha-
nism of the induced in-medium interaction. It also clarifies the
difference between the present case and QED or QHD, where
the fermionic and bosonic degrees of freedom are completely
independent. In contrast, here the emergent composite bosons
are formed by correlated fermionic pairs. Importantly, their
couplings are not the effective parameters of the theory, but
can be calculated consistently from the underlying fermion-
fermion bare interaction.

The dynamical self-energy �r in the form of Eq. (31) and
Fig. 2 helps to relate the approach with the phonon exchange
to the lowest-order perturbation theory and, thus, to assess the
role of complex correlations. In the case of weak coupling
the uncorrelated term(s) play the leading role and the phonon-
exchange interaction can be neglected. In the strong-coupling
regime, in contrast, the phonon coupling dominates over the
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lowest-order uncorrelated term (third term on the right-hand
side of Fig. 2), so that the lowest-order approach does not
produce the leading contribution. However, the situation may
differ in the frameworks based on the effective interactions.
The latter are typically obtained by fitting the bulk nuclear
properties, such as their masses and radii, on the Hartree
or Hartree-Fock level assuming that fermionic self-energy
contains only the static part (27) dependent on the one-body
density. This density is supposed to be implicitly coupled
to correlations in the dynamical part of the self-energy
(31). This becomes obvious if one notices that the one-
fermion density is the equal-times limit of the one-fermion
propagator,

ρ12 = −i lim
t2→t1+0

G(1, 2), (45)

given by the full solution of Eq. (25), which absorbs corre-
lations also from the dynamical part. This fact is typically
expressed in terms of the density dependencies of the effec-
tive interactions; however, these dependencies do not follow
from a detailed analysis of Eq. (25) with the complete kernel
�(ω). The existing versions of the PVC model, which take
into account the dynamical self-energy on top of the effec-
tive interactions inevitably imply an additional procedure to
remove the double counting of PVC. The general reasoning
for the appearance of this double counting is that the PVC is
already contained in the parameters of the phenomenological
mean field [45]. An explicit subtraction of the dynamical
PVC contribution taken in the static limit from the effec-
tive interaction turned out to be an elegant way of avoiding
such a double counting. The subtraction method is widely
applied in calculations of two-body Green functions, in par-
ticular, the particle-hole response [37,45–48]. For the case of
the one-body propagator this method has not been adopted
yet.

Computation of the fermionic self-energy with PVC re-
quires knowledge about the two-fermion propagators R(ph)

and G(pp) or, equivalently, the phonon vertices and propa-
gators. They can be found by solving the EOMs for these
correlation functions together with Eq. (25). The analyses of
the corresponding EOMs can be found in Refs. [5,18,37,49].

B. Superfluid phase

The superfluid phase is characterized by the pronounced
formation of Cooper pairs and, thus, an enhanced role of the
pairing phonons. While in calculations for normal systems
the PVC approach to the self-energy usually neglects the
term with the pairing phonons because of its relatively low
importance, the situation may be different for superfluid sys-
tems. Within the PVC approach discussed above the pairing
interaction is fully dynamical and mediated by the pairing
phonons emerging naturally in the one-fermion self-energy.
In the traditional frameworks based on effective interactions,
however, the pairing is included in static approximations
like the Bardeen-Cooper-Schrieffer or the Bogoliubov ones.
On this level of description, the corresponding Green func-
tion technique is the Gor’kov Green functions which can be
obtained from the EOM1 if the two-body correlations are
neglected (see Appendix for details).

For the ab initio approaches with dynamical self-energies,
however, the idea of introducing the anomalous Green func-
tions can be also very fruitful in the case of using the
basis which already includes the superfluidity effects in some
static approximation. Those can be, for instance, the Hartree-
(Fock)-BCS (HF-BCS) or the Hartree-(Fock)-Bogoliubov
(HFB) bases. Since the states in these bases are of quasi-
particle character, the space of the single-particle variables is
doubled by the Bogoliubov transformation of the fermionic
field operators:

ψ1 = U1μαμ + V ∗
1μα†

μ,

ψ
†
1 = V1μαμ + U ∗

1μα†
μ, (46)

where summation is implied over the repeated index μ, or, in
the operator form, (

ψ

ψ†

)
= W

(
α

α†

)
, (47)

where

W =
(

U V ∗
V U ∗

)
W† =

(
U † V †

V T U T

)
. (48)

In Eq. (46) and henceforth the Greek indices will be used
to denote fermionic states in the HFB basis, while the num-
ber indices and the Roman indices introduced below will be
reserved for the single-particle mean-field basis states. The
transformation W is unitary, and the quasiparticle operators α

and α† form the same anticommutator algebra as the particle
operators ψ and ψ†, so that the matrices U and V satisfy

U †U + V †V = 1, UU † + V ∗V T = 1,

U T V + V T U = 0, UV † + V ∗U T = 0. (49)

To use consistently the HFB basis, which will be referred
to as quasiparticle basis, for the description of the fermionic
propagator, the latter should be also extended. This can be
done with the aid of the generalized field operators � and �†,

�1(t1) =
(

ψ1(t1)
ψ

†
1 (t1)

)
, �

†
1 (t1) = (ψ†

1 (t1) ψ1(t1)) (50)

to the doubled single-particle space:

Ĝ12(t − t ′) = −i〈T �1(t )�†
2 (t ′)〉

= −iθ (t − t ′)

(
〈ψ1(t )ψ†

2 (t ′)〉 〈ψ1(t )ψ2(t ′)〉
〈ψ†

1 (t )ψ†
2 (t ′)〉 〈ψ†

1 (t )ψ2(t ′)〉

)

+ iθ (t ′ − t )

(
〈ψ†

2 (t ′)ψ1(t )〉 〈ψ2(t ′)ψ1(t )〉
〈ψ†

2 (t ′)ψ†
1 (t )〉 〈ψ2(t ′)ψ†

1 (t )〉

)
.

(51)

Notice here that the equal-times limit of this propagator is the
Valatin density matrix [50]

R12 = −i lim
t ′→t+0

G12(t − t ′)

=
(〈ψ†

2 ψ1〉 〈ψ2ψ1〉
〈ψ†

2 ψ
†
1 〉 〈ψ2ψ

†
1 〉

)
≡

(
ρ12 κ12

−κ
∗
12 1 − ρ∗

12

)
(52)
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commonly adopted in the many-body theory [44]. The Fourier
transform of the generalized propagator (51) reads

Ĝ12(ε) =
∑

n

〈0|�1|n〉〈n|�†
2 |0〉

ε − (
E (N+1)

n − E (N )
0

) + iδ

+
∑

m

〈0|�†
2 |m〉〈m|�1|0〉

ε + (
E (N−1)

m − E (N )
0

) − iδ
. (53)

The basis-dependent quantities here are the matrix elements
in the residues. Their transformation to the quasiparticle basis
can be performed with the aid of Eqs. (46) and (50):

〈0|�1|n〉 =
(〈0|ψ1|n〉

〈0|ψ†
1 |n〉

)
=

(〈0|U1μαμ + V ∗
1μα†

μ|n〉
〈0|V1μαμ + U ∗

1μα†
μ|n〉

)
,

〈n|�†
2 |0〉 = (〈n|ψ†

2 |0〉 〈n|ψ2|0〉)

= (〈n|V2μαμ+U ∗
2μα†

μ|0〉 〈n|U2μαμ+V ∗
2μα†

μ|0〉),

〈0|�†
2 |m〉 = (〈0|ψ†

2 |m〉 〈0|ψ2|m〉)

= (〈0|V2μαμ+U ∗
2μα†

μ|m〉 〈0|U2μαμ+V ∗
2μα†

μ|m〉),

〈m|�1|0〉 =
(〈m|ψ1|0〉

〈m|ψ†
1 |0〉

)
=

(〈m|U1μαμ + V ∗
1μα†

μ|0〉
〈m|V1μαμ + U ∗

1μα†
μ|0〉

)
.

(54)

If the ground state |0〉 of the many-body system is the quasi-
particle vacuum, i.e., α|0〉 = 0, Eqs. (54) further reduce to

〈0|�1|n〉 =
(

U1μ

V1μ

)
〈0|αμ|n〉,

〈n|�†
2 |0〉 = (U ∗

2μ V ∗
2μ)〈n|α†

μ|0〉,
〈0|�†

2 |m〉 = (V2μ U2μ)〈0|αμ|m〉,
〈m|�1|0〉 =

(
V ∗

1μ

U ∗
1μ

)
〈m|α†

μ|0〉, (55)

and, thus, the propagator takes the form

Ĝ12(ε) =
∑
nμν

(
U1μ

V1μ

)
(U ∗

2ν V ∗
2ν )

〈0|αμ|n〉〈n|α†
ν |0〉

ε − (En − E0) + iδ

+
∑
mμν

(
V ∗

1ν

U ∗
1ν

)
(V2μ U2μ)

〈0|αμ|m〉〈m|α†
ν |0〉

ε + (Em − E0) − iδ
, (56)

where we omitted the superscripts (N ) and (N ± 1) at the
energies of the intermediate states, as the particle number
conservation is relaxed in the present approach, and put back
the explicit summations over the quasiparticle indices μ and ν.
Furthermore, if the intermediate states are of one-quasiparticle
character, i.e., |m〉 = α†

m|0〉, Eq. (56) determines the mean-
field propagator as

ˆ̃G12(ε) =
∑

μ

(
U1μ

V1μ

)
(U ∗

2μ V ∗
2μ)

〈0|αμ|μ〉〈μ|α†
μ|0〉

ε − (Eμ − E0) + iδ

+
∑

ν

(
V ∗

1ν

U ∗
1ν

)
(V2ν U2ν )

〈0|αν |ν〉〈ν|α†
ν |0〉

ε + (Eν − E0) − iδ

(57)

or, equivalently,

ˆ̃G12(ε) =
∑

μ

(
U1μU †

μ2 U1μV †
μ2

V1μU †
μ2 V1μV †

μ2

)
1

ε − (Eμ − E0) + iδ

+
∑

ν

(
V1νV †

ν2 V1νU †
ν2

U1νV †
ν2 U1νU †

ν2

)∗
1

ε + (Eν − E0) − iδ
.

(58)

The matrix forms of the propagators of Eqs. (56)–(58) can be
directly related to the Gor’kov-type Green functions,

Ĝ12(ε) ≡
(

G(11)
12 (ε) G(12)

12 (ε)

G(21)
12 (ε) G(22)

12 (ε)

)
≡

(
G12(ε) F (1)

12 (ε)

F (2)
12 (ε) G(h)

12 (ε)

)
,

(59)

and the analogous expression for ˆ̃G12(ε) with the obvious
correspondences between the matrix elements. The form of
Eq. (57) is convenient for transforming the fermionic prop-
agator to the quasiparticle basis. Indeed, the forward and
backward components of the Bogoliubov mean-field quasipar-
ticle propagator G̃(±)

νν ′ (ε) defined as

G̃(η)
νν ′ (ε) = δνν ′

ε − η(Eν − E0 − iδ)
(60)

can be obtained by the following transformations:

G̃(+)
νν ′ (ε) =

∑
12

(U †
ν1 V †

ν1) ˆ̃G12(ε)

(
U2ν ′

V2ν ′

)
,

G̃(−)
νν ′ (ε) =

∑
12

(
V T

ν1 U T
ν1

) ˆ̃G12(ε)

(
V ∗

2ν ′
U ∗

2ν ′

)
, (61)

which can be verified with the aid of Eqs. (49). The same
transformations of the exact propagator of Eq. (56) result in

G(η)
νν ′ (ε) =

∑
n

Sη(n)
νν ′

ε − η(En − E0 − iδ)
(62)

with the residues S+(n)
νν ′ = 〈0|αν |n〉〈n|α†

ν ′ |0〉 and S−(m)
νν ′ =

〈0|αν |m〉〈m|α†
ν ′ |0〉 formally distinguished by the fact that the

states |n〉 belong to the (N + 1)-particle system and the states
|m〉 are associated with the (N − 1)-particle system. This
difference will also be neglected in the following.

We can use the advantage of the two-component struc-
ture and of the simple form of the fermionic propagator in
the quasiparticle basis to generate and solve the equation
of motion for this propagator. While the EOM for G(ε) =
G(11)(ε) is discussed in Sec. III A, here we realize that the
EOMs for other three components of the propagator Ĝ(ε)
are needed to complete the system. The G(22)(ε) = G(h)(ε) is
the hole propagator, and its EOM can be obtained from the
one for the G(11)(ε) by conjugation. The anomalous Green
functions G(12)(ε) = F (1)(ε) and G(21)(ε) = F (2)(ε) require
special consideration.

Let us consider first the component F (1):

F (1)
11′ (t − t ′) = −i〈T ψ1(t )ψ1′ (t ′)〉. (63)
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The first EOM for this quantity is again generated by differ-
entiation with respect to t variable, which leads to

(i∂t − ε1)F (1)
11′ (t − t ′) = i

2

∑
ikl

v̄i1kl〈T (ψ†
i ψlψk )(t )ψ1′ (t ′)〉,

(64)
while the differentiation with respect to t ′ yields

(i∂t − ε1)F (1)
11′ (t − t ′)(−i

←−
∂t ′ + ε1′ ) = T (1)

11′ (t − t ′) (65)

with the new T matrix

T (1)
11′ (t − t ′) = T (1)0

11′ (t − t ′) + T (1)r
11′ (t − t ′),

T (1)0
11′ (t − t ′) = −δ(t − t ′)〈[[V, ψ1], ψ1′ ]+〉,

T (1)r
11′ (t − t ′) = i〈T [V, ψ1](t )[V, ψ1′ ](t ′)〉, (66)

where the superscript (1) indicates that this T matrix is asso-
ciated with the anomalous F (1) Green function. The Fourier
transformation of Eq. (65) to the energy domain gives

F (1)
11′ (ε) =

∑
22′

G0
12(ε)T (1)

22′ (ε)G(h)0
2′1 (ε), (67)

where we defined the free hole propagator

G0(h)
11′ (ε) = −G1′1(−ε) = δ11′

ε + ε1
, (68)

in addition to the free particle propagator introduced after
Eq. (21). Equation (67) defines the general structure of the
anomalous propagator F (1): it begins with the free normal
particle propagator and ends with the free normal hole one.
The T matrix T (1) should, therefore, include all the processes
transforming a particle to a hole and a Cooper pair which joins
the pairing condensate.

The static kernel T (1)0 in the energy domain can be calcu-
lated straightforwardly:

T (1)0
11′ = −1

2

∑
ikl

v̄i1kl〈[ψ†
i ψlψk, ψ1′ ]+〉

= −1

2

∑
kl

v̄1′1kl〈ψlψk〉 = �11′ , (69)

being just the conventional static pairing gap �. The dynami-
cal kernel reads

T (1)r
11′ (t − t ′) = i

4

∑
ikl

∑
mnq

v̄i1kl〈T (ψ†
i ψlψk )(t )

× (ψ†
mψqψn)(t ′)〉v̄m1′nq. (70)

This kernel can be then treated in a desirable approximation
in full analogy to the case of T r . Remarkably, the T -matrix
equation (67) does not have the free part, which indicates that
the anomalous propagator does not exist in free space and
represents purely in-medium phenomenon.

The T -matrix equations for the remaining components F (2)

and G(h) of the fermionic propagator (59) can be generated

with the same EOM technique, which yields:

F (2)
11′ (ε) =

∑
22′

G(h)0
12 (ε)T (2)

22′ (ε)G0
2′1′ (ε), (71)

G(h)
11′ (ε) = G(h)0

11′ (ε) +
∑
22′

G(h)0
12 (ε)T (h)

22′ (ε)G(h)0
2′1′ (ε). (72)

It is easy to verify that Eqs. (21), (67), (71), and (72) can be
combined into one 2 × 2 matrix equation:(

G11′ (ε) F (1)
11′ (ε)

F (2)
11′ (ε) G(h)

11′ (ε)

)

=
(

G0
11′ (ε) 0
0 G(h)0

11′ (ε)

)
+

∑
22′

(
G0

12(ε) 0
0 G(h)0

12 (ε)

)

×
(

T22′ (ε) T (1)
22′ (ε)

T (2)
22′ (ε) T (h)

22′ (ε)

)(
G0

2′1′ (ε) 0
0 G(h)0

2′1′ (ε)

)
(73)

or, symbolically,

Ĝ11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)T̂22′ (ε)Ĝ0

2′1′ (ε) (74)

with

Ĝ0
11′ (ε) =

(
G0

11′ (ε) 0
0 G(h)0

11′ (ε)

)
, (75)

T̂11′ (ε) =
(

T11′ (ε) T (1)
11′ (ε)

T (2)
11′ (ε) T (h)

11′ (ε)

)
. (76)

Now, introducing the irreducible with respect to Ĝ0(ε) self-
energy, �̂(ε), as

T̂11′ (ε) = �̂11′ (ε) +
∑
22′

�̂12(ε)Ĝ0
22′ (ε)T̂2′1′ (ε), (77)

or �̂11′ (ε) = T̂ irr
11′ (ε) with �̂0

11′ (ε) = T̂ 0
11′ (ε), Eq. (74) can be

transformed to the generalized Dyson, or Gor’kov-Dyson,
equation,

Ĝ11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)�̂22′ (ε)Ĝ2′1′ (ε), (78)

or, explicitly, in matrix form,(
G11′ (ε) F (1)

11′ (ε)

F (2)
11′ (ε) G(h)

11′ (ε)

)

=
(

G0
11′ (ε) 0
0 G(h)0

11′ (ε)

)
+

∑
22′

(
G0

12(ε) 0
0 G(h)0

12 (ε)

)

×
(

�22′ (ε) �
(1)
22′ (ε)

�
(2)
22′ (ε) �

(h)
22′ (ε)

)(
G2′1′ (ε) F (1)

2′1′ (ε)

F (2)
2′1′ (ε) G(h)

2′1′ (ε)

)
. (79)

The Gor’kov-Dyson equation in the form (79) helps reveal the
coupling between the normal and anomalous components of
the fermionic propagator:

G = G0 + G0�G + G0�(1)F (2), (80)

F (1) = G0�F (1) + G0�(1)G(h), (81)
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F (2) = G(h)0�(h)F (2) + G(h)0�(2)G, (82)

G(h) = G(h)0 + G(h)0�(h)G(h) + G(h)0�(2)F (1), (83)

which was not yet obvious in the T -matrix equation (73). The
system of equations (80)–(83) is formally similar to that of the
Gor’kov theory [51] and the theory of finite Fermi systems
[52], where it was obtained for static self-energies (see also
the Appendix). Equations (80)–(83), thereby, generalize the
latter works to the case of the presence of dynamical correla-
tions in the self-energy.

Working in the basis which diagonalized the one-body
part of the Hamiltonian, it is convenient to eliminate the
free propagators from Eq. (79) using the decomposition of
the self-energy into the static and dynamical terms �̂(ε) =
�̂0 + �̂r (ε). With the mean-field propagator defined as the
solution of the Gor’kov-Dyson equation with only the static
self-energy �̂0,

ˆ̃G11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)�̂0

22′
ˆ̃G2′1′ (ε) (84)

or (
G̃11′ (ε) F̃ (1)

11′ (ε)

F̃ (2)
11′ (ε) G̃(h)

11′ (ε)

)

=
(

G0
11′ (ε) 0
0 G(h)0

11′ (ε)

)
+

∑
22′

(
G0

12(ε) 0
0 G(h)0

12 (ε)

)

×
(

�0
22′ (ε) �

(1)0
22′ (ε)

�
(2)0
22′ (ε) �

(h)0
22′ (ε)

)(
G̃2′1′ (ε) F̃ (1)

2′1′ (ε)

F̃ (2)
2′1′ (ε) G̃(h)

2′1′ (ε)

)
(85)

as the free term, the Gor’kov-Dyson equation for the full
quasiparticle propagator takes the form

Ĝ11′ (ε) = ˆ̃G11′ (ε) +
∑
22′

ˆ̃G12(ε)�̂r
22′ (ε)Ĝ2′1′ (ε). (86)

The component structure of this equation is, explicitly,(
G11′ (ε) F (1)

11′ (ε)

F (2)
11′ (ε) G(h)

11′ (ε)

)

=
(

G̃11′ (ε) F̃ (1)
11′ (ε)

F̃ (2)
11′ (ε) G̃(h)

11′ (ε)

)
+

∑
22′

(
G̃12(ε) F̃ (1)

12 (ε)

F̃ (2)
12 (ε) G̃(h)

12 (ε)

)

×
(

�r
22′ (ε) �

(1)r
22′ (ε)

�
(2)r
22′ (ε) �

(h)r
22′ (ε)

)(
G2′1′ (ε) F (1)

2′1′ (ε)

F (2)
2′1′ (ε) G(h)

2′1′ (ε)

)
,

(87)

where the nondiagonal structure of the free mean-field term
induces couplings to all types of the energy-dependent self-
energies for each propagator component. Since the full and
the mean-field propagators, respectively,

Ĝ11′ (ε) ≡
(

G11′ (ε) F (1)
11′ (ε)

F (2)
11′ (ε) G(h)

11′ (ε)

)
, (88)

ˆ̃G11′ (ε) ≡
(

G̃11′ (ε) F̃ (1)
11′ (ε)

F̃ (2)
11′ (ε) G̃(h)

11′ (ε)

)
, (89)

are defined by the spectral representations of Eqs. (56) and
(57), the Gor’kov-Dyson equation (87) can be transformed
to the quasiparticle basis applying the transformations intro-
duced in Eqs. (61) to Eqs. (56) and (57). These operations
yield the Gor’kov-Dyson equation in the quasiparticle basis:

G(η)
νν ′ (ε) = G̃(η)

νν ′ (ε) +
∑
μμ′

G̃(η)
νμ (ε)�r(η)

μμ′ (ε)G(η)
μ′ν ′ (ε), (90)

with η = + and η = −, the quasiparticle forward and back-
ward components isolated by the first and the second
transformations of Eq. (61), respectively. The components
of the dynamical kernel are, accordingly, transformed to the
quasiparticle space as

�
r(+)
μμ′ (ε) =

∑
12

(U †
μ1 V †

μ1)

(
�r

12(ε) �
(1)r
12 (ε)

�
(2)r
12 (ε) �

(h)r
12 (ε)

)(
U2μ′

V2μ′

)

=
∑

12

(
U †

μ1�
r
12U2μ′ + U †

μ1�
(1)r
12 V2μ′

+V †
μ1�

(2)r
12 U2μ′ + V †

μ1�
(h)r
12 V2μ′

)
, (91)

�
r(−)
μμ′ (ε) =

∑
12

(
V T

μ1 U T
μ1

)( �r
12(ε) �

(1)r
12 (ε)

�
(2)r
12 (ε) �

(h)r
12 (ε)

)(
V ∗

2μ′

U ∗
2μ′

)

=
∑

12

(
V T

μ1�
r
12V

∗
2μ′ + V T

μ1�
(1)r
12 U ∗

2μ′

+U T
μ1�

(2)r
12 V ∗

2μ′ + U T
μ1�

(h)r
12 U ∗

2μ′

)
. (92)

Equations (90)–(92), together with the mean-field propaga-
tor of Eq. (60), thereby, completely define the quasiparticle
propagator in a superfluid fermionic system. Notice here that
in the implementations of the Gor’kov-Dyson equation it is
convenient to use the spectral form of Eq. (62) for the full
propagator, which reduces the problem to finding its poles and
the corresponding residues, or the spectroscopic factors. The
considerable advantage of transforming the Gor’kov-Dyson
equation to the quasiparticle basis is that in this basis one
deals with, formally, only two components of the propagator,
instead of four of them in the single-particle basis. More-
over, with the relaxed particle number conservation condition,
which is a feature of the HFB approach and a good approx-
imation of large-N fermionic systems, one can notice that in
Eq. (62) S+(n)

νν ′ = S−(n)
νν ′ , so that the solutions for η = + and

η = − are doubling each other also in the theory extended
by dynamical correlations in the self-energy. This means that
only one of the Eqs. (90) needs to be solved, which further
reduces the computation effort by a factor of 2.

C. The self-energy in the intermediate and strong coupling
regimes: Superfluid PVC, or quasiparticle-vibration

coupling (QVC)

While the static part of the self-energy is determined unam-
biguously by Eqs. (27) and (69), it still depends explicitly on
the one-fermion normal and pairing densities, which are de-
termined by the static limit of the full quasiparticle propagator
Ĝ, according to Eq. (52). Thereby, in a self-consistent theory
the static self-energy depends on the approximation made for
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the quasiparticle propagator, i.e., on the approximation for the
dynamical, or energy-dependent, self-energy �̂r

12(ε). Below
we discuss in detail this part of the self-energy bearing in mind
its matrix structure introduced above:

�̂r
12(ε) =

(
�r

12(ε) �
(1)r
12 (ε)

�
(2)r
12 (ε) �

(h)r
12 (ε)

)
. (93)

The PVC approach was derived for the �r
12(ε) component of

�̂r
12(ε) in Sec. III A with the aid of a cluster decomposition

of the three-fermion propagator. However, in modeling the
superfluid phase, where the particle number conservation is
relaxed, the component �r

12(ε) should be extended for the
inclusion of the propagators via the states with varied particle
number. Keeping all terms containing up to two-fermion cor-
relation functions and neglecting the uncorrelated term, which
is supposed to be of little significance in the intermediate and
strong coupling regimes, one obtains for the irreducible part
of the dynamical T -matrix T r :

�r
11′ (t − t ′)

= T r;irr
11′ (t − t ′)

= − i

4

∑
ikl

∑
pqr

v̄1ikl〈T (ψ†
i ψlψk )(t )(ψ†

q ψ†
pψr )(t ′)〉irr v̄pqr1′

≈ − i

4

∑
ikl

∑
pqr

v̄1ikl [〈T ψk (t )ψ†
q (t ′)〉

× 〈T (ψ†
i ψl )(t )(ψ†

pψr )(t ′)〉
− 〈T ψl (t )ψ†

q (t ′)〉〈T (ψ†
i ψk )(t )(ψ†

pψr )(t ′)〉
+ 〈T ψl (t )ψ†

p (t ′)〉〈T (ψ†
i ψk )(t )(ψ†

q ψr )(t ′)〉
− 〈T ψk (t )ψ†

p (t ′)〉〈T (ψ†
i ψl )(t )(ψ†

q ψr )(t ′)〉
+ 〈T ψ

†
i (t )ψr (t ′)〉〈T (ψlψk )(t )(ψ†

q ψ†
p )(t ′)〉

+ 〈T ψk (t )ψr (t ′)〉〈T (ψ†
i ψl )(t )(ψ†

q ψ†
p )(t ′)〉

− 〈T ψl (t )ψr (t ′)〉〈T (ψ†
i ψk )(t )(ψ†

q ψ†
p )(t ′)〉

+ 〈T ψ
†
i (t )ψ†

q (t ′)〉〈T (ψlψk )(t )(ψ†
pψr )(t ′)〉

− 〈T ψ
†
i (t )ψ†

p (t ′)〉〈T (ψlψk )(t )(ψ†
q ψr )(t ′)〉]v̄pqr1′ . (94)

The first four terms in the square brackets form the fully
antisymmetrized product of the single-fermion normal prop-
agator and the particle-phonon response, and the fifth term is
the single-hole normal propagator coupled to the two-fermion
Green function. These terms are the same as we had in
Sec. III A for the particle number conserving normal phase.
As we relax the condition of the particle number conservation
here, the additional four terms with anomalous one-fermion
and two-fermion propagators appear in �r . Employing the
definitions of F (1) and R of Eqs. (63) and (10), and adding
the second anomalous fermionic propagator F (2),

F (2)
11′ (t − t ′) = −i〈T ψ

†
1 (t )ψ†

1′ (t ′)〉, (95)

as well as the double-anomalous fermionic pair propagators

G(01)
12,1′2′ (t − t ′) = −i〈T (ψ†

1 ψ2)(t )(ψ2′ψ1′ )(t ′)〉, (96)

G(10)
12,1′2′ (t − t ′) = −i〈T (ψ1ψ2)(t )(ψ†

2′ψ1′ )(t ′)〉, (97)

G(11)
12,1′2′ (t − t ′) = −i〈T (ψ1ψ2)(t )(ψ2′ψ1′ )(t ′)〉, (98)

G(02)
12,1′2′ (t − t ′) = −i〈T (ψ†

1 ψ2)(t )(ψ†
2′ψ

†
1′ )(t ′)〉, (99)

G(20)
12,1′2′ (t − t ′) = −i〈T (ψ†

1 ψ
†
2 )(t )(ψ†

2′ψ1′ )(t ′)〉, (100)

G(22)
12,1′2′ (t − t ′) = −i〈T (ψ†

1 ψ
†
2 )(t )(ψ†

2′ψ
†
1′ )(t ′)〉, (101)

one can recast the dynamical self-energy �r
11′ (t − t ′) in the

following form:

�r
11′ (t − t ′)

= i

4

∑
ikl

∑
prq

v̄1ikl
[
4Gkq(t − t ′)Ril,r p(t − t ′)

+G(h)
ir (t − t ′)Glk,pq(t − t ′) + 2F (1)

kr (t − t ′)G(02)
il,pq(t − t ′)

+2F (2)
iq (t − t ′)G(10)

lk,r p(t − t ′)
]
v̄pqr1′ . (102)

Notice that here and below we use the redefined two-fermion
propagator iG12,1′2′ (t − t ′) → G12,1′2′ (t − t ′), i.e., we intro-
duced an additional factor i in the right-hand side of Eq. (11).
This allows one to treat both the particle-hole and the particle-
particle propagator in a unified way. With this redefinition
and with G(h)(1, 2) = −G(2, 1) it is easy to verify that the
first two terms in Eq. (102) are the same as those in Eq. (31).
Otherwise, compared to the latter expression, in Eq. (102) we
dropped the uncorrelated terms, which are relatively unimpor-
tant in intermediate and strong coupling regimes, and added
the two other terms with the anomalous propagators arising
from the decomposition of Eq. (94). To transform �r

11′ (t − t ′)
of Eq. (102), with the new last two terms, to the energy do-
main, the following spectral expansions of these propagators
are helpful:

F (1)
11′ (t − t ′) = −iθ (t − t ′)

∑
n

e−iεn (t−t ′ )ηn
1χ

n
1′

+ iθ (t ′ − t )
∑

m

eiεm (t−t ′ )χm
1 ηm

1′ , (103)

F (2)
11′ (t − t ′) = −iθ (t − t ′)

∑
n

e−iεn (t−t ′ )χn∗
1 ηn∗

1′

+ iθ (t ′ − t )
∑

m

eiεm (t−t ′ )ηm∗
1 χm∗

1′ , (104)

G(10)
12,1′2′ (t − t ′) = −iθ (t − t ′)

∑
μ

e−iωμ(t−t ′ )α
μ
21ρ

μ∗
2′1′

− iθ (t ′ − t )
∑
κ

eiωκ (t−t ′ )βκ∗
12 ρκ

1′2′ , (105)

G(02)
12,1′2′ (t − t ′) = − iθ (t − t ′)

∑
μ

e−iωμ(t−t ′ )ρ
μ
21α

μ∗
2′1′ −

− iθ (t ′ − t )
∑
κ

eiωκ (t−t ′ )ρκ∗
12 βκ

1′2′ , (106)

where the matrix elements χ, η, α, β were defined in Eqs. (9)
and (15) and ρ was introduced in Eq. (13). Here, as mentioned
above, to have nonvanishing anomalous propagators, we relax
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the particle number conservation condition on both the ground
and excited states, so that the particle number is conserved
only on average. In Eqs. (103)–(106) we have introduced
the single-particle energy differences εn = En − E0 and the
transition frequencies ωμ = Eμ − E0. We still keep different
indices for numbering the intermediate states in odd and even
nuclei in the positive-frequency and negative-frequency com-
ponents of the propagators, as the pairs n − m and μ − κ, but
keep in mind that the states with variable particle numbers are
treated on equal grounds.

With the help of Eqs. (103)–(106), completed by the simi-
lar expressions for the particle and hole propagators as well as
for the particle-hole and the particle-particle propagators,

G11′ (t − t ′) = −iθ (t − t ′)
∑

n

e−iεn (t−t ′ )ηn
1η

n∗
1′

+ iθ (t ′ − t )
∑

m

eiεm (t−t ′ )χm
1 χm∗

1′ , (107)

G(h)
11′ (t − t ′) = −iθ (t − t ′)

∑
n

e−iεn (t−t ′ )χn∗
1 χn

1′

+ iθ (t ′ − t )
∑

m

eiεm (t−t ′ )ηm∗
1 ηm

1′ , (108)

R12,1′2′ (t − t ′) = −iθ (t − t ′)
∑

ν

e−iων (t−t ′ )ρν
21ρ

ν∗
2′1′

− iθ (t ′ − t )
∑

ν

eiων (t−t ′ )ρν∗
12 ρν

1′2′ , (109)

G12,1′2′ (t − t ′) = −iθ (t − t ′)
∑

μ

e−iωμ(t−t ′ )α
μ
21α

μ∗
2′1′

− iθ (t ′ − t )
∑
κ

eiωκ (t−t ′ )βκ∗
12 βκ

1′2′ , (110)

the Fourier image of �r takes the form:

�r
11′ (ε)

=
∫ ∞

−∞
dτ eiετ�r

11′ (τ )

=
∑
33′

[∑
νn

gν
13η

n
3η

n∗
3′ gν∗

1′3′

ε − εn − ων + iδ
+

∑
νm

gν∗
31χ

m
3 χm∗

3′ gν
3′1′

ε + εm + ων − iδ

+
∑
μm

γ
μ(+)
13 χm∗

3 χm
3′ γ

μ(+)∗
1′3′

ε − εm − ωμ + iδ
+

∑
κn

γ
κ(−)∗
31 ηn∗

3 ηn
3′γ

κ(−)
3′1′

ε + εn + ωκ − iδ

+
∑
μn

gμ
13η

n
3χ

n
3′γ

μ(+)∗
1′3′

ε − εn − ωμ + iδ
+

∑
κm

gκ∗
31 χm

3 ηm
3′γ

κ(−)
3′1′

ε + εm + ωκ − iδ

+
∑
μn

γ
μ(+)
13 χn∗

3 ηn∗
3′ gμ∗

1′3′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(−)∗
31 ηm∗

3 χm∗
3′ gκ3′1′

ε + εm + ωκ − iδ

]
,

(111)

where the definitions of the normal and pairing phonon ver-
tices (34) and (40) were employed.

Derivations analogous to that for �r can be conducted for
the other components of the dynamical self-energy. To get an
expression for �(1)r , one can start with the exact T matrix
T (1)r of Eq. (70) and approximate its irreducible part by the

cluster decomposition retaining all terms up to those with
two-fermion correlation functions. Again, neglecting the un-
correlated terms, one gets

�
(1)r
11′ (t − t ′)

= T (1)r;irr
11′ (t − t ′)

= i

4

∑
ikl

∑
mnq

v̄i1kl〈T (ψ†
i ψlψk )(t )(ψ†

mψqψn)(t ′)〉irr v̄m1′nq

≈ i

4

∑
ikl

∑
mnq

v̄i1kl [〈T ψk (t )ψn(t ′)〉〈T (ψ†
i ψl )(t )(ψ†

mψq)(t ′)〉

+ 〈T ψl (t )ψq(t ′)〉〈T (ψ†
i ψk )(t )(ψ†

mψn)(t ′)〉
− 〈T ψk (t )ψq(t ′)〉〈T (ψ†

i ψl )(t )(ψ†
mψn)(t ′)〉

− 〈T ψl (t )ψn(t ′)〉〈T (ψ†
i ψk )(t )(ψ†

mψq)(t ′)〉
+ 〈T ψ

†
i (t )ψ†

m(t ′)〉〈T (ψlψk )(t )(ψqψn)(t ′)〉
− 〈T ψl (t )ψ†

m(t ′)〉〈T (ψ†
i ψk )(t )(ψqψn)(t ′)〉

+ 〈T ψk (t )ψ†
m(t ′)〉〈T (ψ†

i ψl )(t )(ψqψn)(t ′)〉
− 〈T ψ

†
i (t )ψq(t ′)〉〈T (ψlψk )(t )(ψ†

mψn)(t ′)〉
+ 〈T ψ

†
i (t )ψn(t ′)〉〈T (ψlψk )(t )(ψ†

mψq)(t ′)〉]v̄m1′nq.

(112)

With the definitions introduced above, the �(1)r component of
the dynamical self-energy can be rewritten as

�
(1)r
11′ (t − t ′)

= − i

4

∑
ikl

∑
prq

v̄i1kl
[
4F (1)

kr (t − t ′)Ril,qp(t − t ′)

+ F (2)
ip (t − t ′)G(11)

lk,rq(t − t ′) + 2Gkp(t − t ′)G(01)
il,rq(t − t ′)

+ 2G(h)
ir (t − t ′)G(10)

lk,qp(t − t ′)
]
v̄p1′rq. (113)

The transformation of �
(1)r
11′ (t − t ′) to the energy domain re-

quires the additional spectral expansions of the anomalous
propagators,

G(01)
12,1′2′ (t − t ′) = −iθ (t − t ′)

∑
μ

e−iωμ(t−t ′ )ρ
μ
21β

μ∗
2′1′

− iθ (t ′ − t )
∑
κ

eiωκ (t−t ′ )ρκ∗
12 ακ

1′2′ , (114)

G(11)
12,1′2′ (t − t ′) = −iθ (t − t ′)

∑
μ

e−iωμ(t−t ′ )α
μ
21β

μ∗
2′1′

− iθ (t ′ − t )
∑
κ

eiωκ (t−t ′ )βκ∗
12 ακ

1′2′ ,

(115)

so that the Fourier image of �(1)r then reads

�
(1)r
11′ (ε)

=
∫ ∞

−∞
dτ eiετ�

(1)r
11′ (τ )
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FIG. 3. The component structure of the QVC self-energy given in Eqs. (111), (116), (117), and (118) in diagrammatic form.

= −
∑
33′

[∑
νn

gν
13η

n
3χ

n
3′gν∗

3′1′

ε − εn − ων + iδ
+

∑
νm

gν∗
31χ

m
3 ηm

3′gν
1′3′

ε + εm + ων − iδ

+
∑
μn

γ
μ(+)
13 χn∗

3 ηn∗
3′ γ

μ(−)∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(−)∗
31 ηm∗

3 χm∗
3′ γ

κ(+)
1′3′

ε + εm + ωκ − iδ

+
∑
μn

gμ
13η

n
3η

n∗
3′ γ

μ(−)∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

gκ∗
31 χm

3 χm∗
3′ γ

κ(+)
1′3′

ε + εm + ωκ − iδ

+
∑
μn

γ
μ(+)
13 χn∗

3 χn
3′g

μ∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(−)∗
31 ηm∗

3 ηm
3′gκ1′3′

ε + εm + ωκ − iδ

]
.

(116)

The remaining components �(2) and �(h) are found analo-
gously and read

�
(2)r
11′ (ε)

=
∫ ∞

−∞
dτ eiετ�

(2)r
11′ (τ )

= −
∑
33′

[∑
νn

gν
31χ

n∗
3 ηn∗

3′ gν∗
1′3′

ε − εn − ων + iδ
+

∑
νm

gν∗
13η

m∗
3 χm∗

3′ gν
3′1′

ε + εm + ων − iδ

+
∑
μn

γ
μ(−)
31 ηn

3χ
n
3′γ

μ(+)∗
1′3′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(+)∗
13 χm

3 ηm
3′γ

κ(−)
3′1′

ε + εm + ωκ − iδ

+
∑
μn

gμ
31χ

n∗
3 χn

3′γ
μ(+)∗
1′3′

ε − εn − ωμ + iδ
+

∑
κm

gκ∗
13 ηm∗

3 ηm
3′γ

κ(−)
3′1′

ε + εm + ωκ − iδ

+
∑
μn

γ
μ(−)
31 ηn

3η
n∗
3′ gμ∗

1′3′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(+)∗
13 χm

3 χm∗
3′ gκ3′1′

ε + εm + ωκ − iδ

]
.

(117)

�
(h)r
11′ (ε)

=
∫ ∞

−∞
dτ eiετ�

(h)r
11′ (τ )

=
∑
33′

[∑
νm

gν
31χ

m∗
3 χm

3′ gν∗
3′1′

ε − εm − ων + iδ
+

∑
νn

gν∗
13η

n∗
3 ηn

3′gν
1′3′

ε + εn + ων − iδ

+
∑
μn

γ
μ(−)
31 ηn

3η
n∗
3′ γ

μ(−)∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(+)∗
13 χm

3 χm∗
3′ γ

κ(+)
1′3′

ε + εm + ωκ − iδ

+
∑
μn

gμ
31χ

n∗
3 ηn∗

3′ γ
μ(−)∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

gκ∗
13 ηm∗

3 χm∗
3′ γ

κ(+)
1′3′

ε + εm + ωκ − iδ

+
∑
μn

γ
μ(−)
31 ηn

3χ
n
3′g

μ∗
3′1′

ε − εn − ωμ + iδ
+

∑
κm

γ
κ(+)∗
13 χm

3 ηm
3′gκ1′3′

ε + εm + ωκ − iδ

]
.

(118)

Equations (111), (116), (117), and (118) are illustrated dia-
grammatically in Fig. 3. Notice here that in Eqs. (111), (116),
(117), and (118) we still formally distinguish between the
states |ν〉, |μ〉, and |κ〉 in systems with even particle numbers
as well as between the states |n〉 and |m〉 with odd particle
numbers, although the particle number constraint is already
partly relaxed in the “mixed” terms containing the products
of g and γ vertices [last two lines in each of Eqs. (111),
(116), and (117), (118)]. If we further relax the particle num-
ber constraint and imply the particle-number nonconserving
approximation, as done in the HFB and in the quasiparticle
random phase approximation (QRPA) [44], Eqs. (111), (116),
(117), and (118) can be combined in the superposition of
Eq. (91) as follows:

�
r(+)
νν ′ (ε) =

∑
ν ′′μ

[
�

(11)μ
νν ′′ �

(11)μ∗
ν ′ν ′′

ε−Eν ′′ −ωμ+iδ
+ �

(02)μ∗
νν ′′ �

(02)μ
ν ′ν ′′

ε + Eν ′′ + ωμ − iδ

]
,

(119)
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where the energies Eν ′′ marked by the Greek index stand for
the quasiparticle energies of the Bogoliubov kind, and the
vertex functions �(11) and �(02) are defined as follows:

�
(11)μ
νν ′ =

∑
12

[
U †

ν1

(
gμ

12η
ν ′
2 + γ

μ(+)
12 χν ′∗

2

)

−V †
ν1

((
gμ

12

)T
χν ′∗

2 + (
γ

μ(−)
12

)T
ην ′

2 )
]
, (120)

�
(02)μ
νν ′ = −

∑
12

[
V T

ν1

(
gμ

12η
ν ′
2 + γ

μ(+)
12 χν ′∗

2

)

−U T
ν1

((
gμ

12

)T
χν ′∗

2 + (
γ

μ(−)
12

)T
ην ′

2 )
]
. (121)

In this way, one arrives at the forward component of the
self-energy �r(+) (119) in the quasiparticle basis. Remark-
ably, the vertices �(11) and �(02) are linear combinations of
the vertices of the normal and pairing phonons. From the
form of Eq. (119) it is clear that in the superfluid case these
phonons are components of the unified vibrations which exist
simultaneously in N-partilce and N ± 2-particle systems. This
is a consequence of the particle-number nonconservation, and
it is a well-known feature of approaches like QRPA. Figure 3
further clarifies how such vibrations enter the components of
the dynamical self-energy.

The matrix elements η and χ in the generalized ver-
tices �(11) and �(02), which are defined in Eqs. (9), contain
information about the many-body structure of the single-
fermion states. The leading approximation to the self-energy
of Eq. (119) would imply the mean-field, or HFB, character of
the intermediate quasiparticle states ν ′′. In this case, the matrix
elements η and χ in Eqs. (120,121) reduce to

ην
1 = 〈0|ψ1|ν〉 = U1ν,

χν
1 = 〈ν|ψ1|0〉 = V ∗

1ν, (122)

so that the vertices �(11) and �(02) reduce to

�
(11)μ
νν ′ =

∑
12

[
U †

ν1gμ
12U2ν ′ + U †

ν1γ
μ(+)
12 V2ν ′

−V †
ν1

(
gμ

12

)T
V2ν ′ −V †

ν1

(
γ

μ(−)
12

)T
U2ν ′

]
≡ [U †gμU +U †γ μ(+)V − V †gμT V − V †γ μ(−)T U ]νν ′ ,

(123)

�
(02)μ
νν ′ = −

∑
12

[
V T

ν1gμ
12U2ν ′ + V T

ν1γ
μ(+)
12 V2ν ′

−U T
ν1

(
gμ

12

)T
V2ν ′ − U T

ν1

(
γ

μ(−)
12

)T
U2ν ′

]
≡ − [

V T gμU + V T γ μ(+)V − U T gμT V

−U T γ μ(−)T U
]
νν ′ . (124)

The expression for the backward component of the
fermionic self-energy in the quasiparticle basis �r(−) can be
obtained in a similar way by combining Eqs. (111), (116),
(117), and (118) in the superposition of Eq. (92). As already
mentioned above, analyzing the component structure of the
Dyson equation in the quasiparticle basis (90) and the propa-
gators (60) and (62), it is easy to see that Eqs. (90) for (+) and
(−) components of the quasiparticle propagator have the same

solutions for the energies En and the spectroscopic factors
S(±)n

νν ′ , so that one of the two equations (90) is redundant unless
the particle number conservation is restored. Thus, summariz-
ing the discussion of this subsection, the final Gor’kov-Dyson
equation for the quasiparticle propagator in our quasiparticle-
vibration coupling (QVC) approach takes the form

G(+)
νν ′ (ε) = G̃(+)

νν ′ (ε) +
∑
μμ′

G̃(+)
νμ (ε)�r(+)

μμ′ (ε)G(+)
μ′ν ′ (ε) (125)

with the mean-field quasiparticle propagator G̃(+) defined by
Eq. (60) and the dynamical self-energy given by Eq. (119)
with the vertices of Eqs. (120) and (121). In the leading
approximation with respect to the QVC, which implies the
mean-field character of the intermediate fermionic states in
the self-energy, the vertices simplify to the form of Eqs. (123)
and (124). A more advanced approach would imply an it-
erative self-consistent procedure, where, after solving the
Gor’kov-Dyson equation, the quasiparticle propagators are in-
serted back into the self-energy, and the procedure is repeated
until convergence. In that case, the more general expressions
of Eqs. (120) and (121) should be employed, with the obvious
correspondence between the matrix elements η and χ and the
spectroscopic factors S(±). This type of calculation scheme
was implemented, for instance, in Refs. [30–33], but in a per-
turbative approach to the dynamical self-energy, which does
not fully include collective QVC effects.

D. Strength function and transition amplitudes

As it is clear from the definitions of the QVC vertices
(120), (121), (34), and (40), they should be calculated by
solving the equations of motion for the response function
(10) and the fermionic pair propagator (11). The EOMs for
these functions were discussed, in particular, in Refs. [37,49].
However, similarly to the one-fermion EOM, in the superfluid
regime the EOMs for the particle-hole response and for the
pair propagator are coupled as these propagators form the
components of one object, the two-quasiparticle propagator.
This becomes possible with relaxing the particle number con-
straint on both the ground and excited states.

The response of a many-body fermionic system to an exter-
nal probe associated with the field operator F is characterized
by the strength function defined as

S(ω) =
∑

n

[|〈n|F |0〉|2δ(ω − ωn) − |〈n|F †|0〉|2δ(ω + ωn)],

(126)

where the summation over n runs through all excited states.
As we continue to consider a more general case of superfluid
systems, it is convenient to express the operator F in terms of
the quasiparticle fields:

F = 1

2

∑
μμ′

(
F 20

μμ′α
†
μα

†
μ′ + F 02

μμ′αμ′αμ

)
,

F † = 1

2

∑
μμ′

(
F 20∗

μμ′ αμ′αμ + F 02∗
μμ′ α

†
μα

†
μ′

)
. (127)
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While Eq. (126) is model independent, the matrix elements
in it obviously depend on the model assumptions about both
the ground |0〉 and excited |n〉 states. Let us consider here
the simplest case, when the excitations are determined by the
action of the one-phonon operator Qn†, as

Qn† = 1

2

∑
μμ′

(
X n

μμ′α
†
μα

†
μ′ − Y n

μμ′αμ′αμ

)
, (128)

Qn = 1

2

∑
μμ′

(
X n∗

μμ′αμ′αμ − Y n∗
μμ′α

†
μα

†
μ′

)
(129)

on the ground state, while its Hermitian conjugate determines
the vacuum condition, i.e.,

|n〉 = Qn†|0〉, Qn|0〉 = 0. (130)

Below we discuss the QVC vertex extraction for the simplest
excitation operator (128) and its conjugate (129), which are
just the superpositions of two-quasiparticle operators and rep-
resent the QRPA. However, it will be clear below that the
approach can be further generalized to more complex exci-
tation operators.

The amplitudes X n and Y n appearing in Eqs. (128) and
(129) are to be determined from the equations of motion. The
overlap of two excited state wave functions reads

〈n|n′〉 = 〈0|QnQn′†|0〉 = 〈0|[Qn, Qn′†]|0〉
=

∑
μ�μ′

∑
ν�ν ′

〈0|[(X n∗
μμ′αμ′αμ − Y n∗

μμ′α
†
μα

†
μ′

)
,

× (
X n′

νν ′α
†
να

†
ν ′ − Y n′

νν ′αν ′αν

)]|0〉
=

∑
μ�μ′

∑
ν�ν ′

〈0|(X n∗
μμ′X n′

νν ′ [αμ′αμ, α†
να

†
ν ′ ]

+Y n∗
μμ′Y n′

νν ′[α†
μα

†
μ′ , αν ′αν]

)|0〉. (131)

If the commutators are evaluated in the quasiboson approxi-
mation,

〈0|[αμ′αμ, α†
να

†
ν ′]|0〉 ≈ 〈HFB|[αμ′αμ, α†

να
†
ν ′]|HFB〉

= δμνδμ′ν ′

〈0|[α†
μα

†
μ′, αν ′αν]|0〉 ≈ 〈HFB|[α†

μα
†
μ′ , αν ′αν]|HFB〉

= −δμνδμ′ν ′ , (132)

the following orthonormality relation can be obtained for the
X n and Y n amplitudes:

1

2

∑
μμ′

(
X n∗

μμ′X n′
μμ′ − Y n∗

μμ′Y n′
μμ′

) = δnn′ . (133)

The associated completeness relations read∑
n

(
X n

μμ′X n∗
νν ′ − Y n∗

μμ′Y n
νν ′

) = δμνδμ′ν ′ , μ � μ′, ν � ν ′,

∑
n

(
X n

μμ′Y n∗
νν ′ − Y n∗

μμ′X n
νν ′

) = 0, μ � μ′, ν � ν ′. (134)

For our purposes it is convenient to express the external
field operator (127) and, subsequently, the strength function
(126), in terms of the X n and Y n amplitudes of the excitation

(phonon) operators Qn† and Qn. With the established proper-
ties of the X n and Y n amplitudes, the pairs of the quasiparticle
field operators can be then isolated by constructing the linear
combinations∑

n

(
X n∗

μμ′Qn† + Y n
μμ′Qn

) = α†
μα

†
μ′ , (135)

∑
n

(
Y n∗

μμ′Qn† + X n
μμ′Qn

) = αμ′αμ. (136)

With these relationships, the matrix elements of the external
field operator from Eq. (126) read

〈n|F |0〉 = 〈n|
∑
μ�μ′

(
F 20

μμ′α
†
μα

†
μ′ + F 02

μμ′αμ′αμ

)|0〉

=
∑
μ�μ′

〈n|F 20
μμ′

∑
n′

(
X n′∗

μμ′Qn′† + Y n′
μμ′Qn′)

+ F 02
μμ′

∑
n′

(
Y n′∗

μμ′Qn′† + X n′
μμ′Qn′)|0〉

=
∑
μ�μ′

(
F 20

μμ′X n∗
μμ′ + F 02

μμ′Y n∗
μμ′

)
, (137)

〈n|F †|0〉 = 〈n|
∑
μ�μ′

(
F 20∗

μμ′ αμ′αμ + F 02∗
μμ′ α

†
μα

†
μ′

)|0〉

=
∑
μ�μ′

〈n|F 20∗
μμ′

∑
n′

(
Y n′∗

μμ′Qn′† + X n′
μμ′Qn′)

+ F 02∗
μμ′

∑
n′

(
X n′∗

μμ′Qn′† + Y n′
μμ′Qn′)|0〉

=
∑
μ�μ′

(
F 02∗

μμ′ X n∗
μμ′ + F 20∗

μμ′ Y n∗
μμ′

)
. (138)

In the practical implementations of the strength function
calculation, the delta-functions in Eq. (126) are approximated
by the Lorentz distribution

δ(ω − ωn) = 1

π
lim
�→0

�

(ω − ωn)2 + �2
, (139)

so that

S(ω) = 1

π
lim
�→0

∑
n

[
|〈n|F |0〉|2 �

(ω − ωn)2 + �2

− |〈n|F †|0〉|2 �

(ω + ωn)2 + �2

]

= − 1

π
lim
�→0

Im
∑

n

[ |〈n|F |0〉|2
ω − ωn + i�

− |〈n|F †|0〉|2
ω + ωn + i�

]

= − 1

π
lim
�→0

Im �(ω), (140)

where �(ω) is the polarizability of the system:

�(ω) =
∑

n

[ |〈n|F |0〉|2
ω − ωn + i�

− |〈n|F †|0〉|2
ω + ωn + i�

]

=
∑

n

[
Bn

ω − ωn + i�
− B̄n

ω + ωn + i�

]
(141)
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with the transition probabilities defined as

Bn = |〈n|F |0〉|2, B̄n = |〈n|F †|0〉|2. (142)

Notice that Eqs. (140), (141), and (142) are model inde-
pendent, i.e., valid for any excitation operator and any type of
ground state. For the external field operator of one-body type
(127), the polarizability takes the form

�(ω) =
∑

n

[ 〈n|F |0〉∑
μ�μ′

(
F 20∗

μμ′ X n
μμ′ + F 02∗

μμ′ Y n
μμ′

)
ω − ωn + i�

−
∑

μ�μ′
(
F 02∗

μμ′ X n∗
μμ′ + F 20∗

μμ′ Y n∗
μμ′

)〈n|F †|0〉∗
ω + ωn + i�

]
. (143)

Grouping the parts associated with the same external field
matrix elements, one realizes that the combinations

Xμμ′ (ω) ≡ δR20
μμ′ (ω)

=
∑

n

[
X n

μμ′ 〈n|F |0〉
ω − ωn + i�

− Y n∗
μμ′ 〈0|F |n〉

ω + ωn + i�

]
,

Yμμ′ (ω) ≡ δR02
μμ′ (ω)

=
∑

n

[
Y n

μμ′ 〈n|F |0〉
ω − ωn + i�

− X n∗
μμ′ 〈0|F |n〉

ω + ωn + i�

]
(144)

can be used to compute the polarizability as follows:

�(ω) =
∑
μ�μ′

(
F 20∗

μμ′ Xμμ′ (ω) + F 02∗
μμ′ Yμμ′ (ω)

)
, (145)

which is consistent with Ref. [53].
Equations (144) express the important relationship be-

tween the amplitudes Xμμ′ (ω),Yμμ′ (ω) and X n
μμ′ ,Y n

μμ′ . In the
vicinity of a particular frequency, for instance, at ω → ωn one
term dominates the sums in Eq. (144),

Xμμ′ (ω → ωn) = X n
μμ′ 〈n|F |0〉

ω − ωn + i�
,

Yμμ′ (ω → ωn) = Y n
μμ′ 〈n|F |0〉

ω − ωn + i�
, (146)

so that Eqs. (146) can be inverted for determining the ampli-
tudes X n

μμ′,Y n
μμ′ (see also Ref. [53]):

X n
μμ′ = 1

〈n|F |0〉
∮

γn

Xμμ′ (ω)
dω

2π i
,

Y n
μμ′ = 1

〈n|F |0〉
∮

γn

Yμμ′ (ω)
dω

2π i
, (147)

where γn is a contour enclosing the pole ω = ωn − i�. Up
to a phase, the matrix element 〈n|F |0〉 is determined by the
transition probability Bn, i.e.,

〈n|F |0〉 = eiφ
√

Bn, (148)

and the opposite phase is contained in the amplitudes
X n

μμ′ ,Y n
μμ′ as they are the matrix elements of the transition

density matrix 〈0|Rμμ′ |n〉. So, if the residues in Eq. (146)
are real, the amplitudes X n

μμ′ ,Y n
μμ′ can be alternatively

found as

X n
μμ′ = − lim

�→0

�√
Bn

Im Xμμ′ (ωn),

Y n
μμ′ = − lim

�→0

�√
Bn

Im Yμμ′ (ωn), (149)

up to an unimportant overall phase factor. Since the transition
probabilities and the strength function values at the poles are
related via Eq. (140),

Bn = π lim
�→0

� · S(ωn), (150)

with the given strength function the X n and Y n can be alterna-
tively found via

X n
μμ′ = − lim

�→0

√
�

πS(ωn)
Im Xμμ′ (ωn),

Y n
μμ′ = − lim

�→0

√
�

πS(ωn)
Im Yμμ′ (ωn). (151)

From the analysis of Eqs. (143)–(145), (12), and (14), see also
Ref. [53], it is clear that the amplitudes X n and Y n are the
transition densities for the transitions between the ground state
and excited states |n〉 in the quasiparticle basis, while their
energy-dependent counterparts X (ω) and Y (ω) are variations
of the densities in the external field F , which is reflected in
the notations used in Eq. (144). While the latter amplitudes
contain the information about the external field, the former
ones do not, being the solutions of the homogenius EOMs.
The latter aspect will be discussed in detail in the next section.
Here we notice that the coefficients between these pairs of am-
plitudes in Eqs. (147), (149), and (151) carry the information
about the external field contained in the amplitudes X (ω) and
Y (ω). Notice also that the established relationships between
the pairs of amplitudes X (ω),Y (ω) and X n,Y n should be
valid for the transition amplitudes beyond QRPA, when the
excitation operator has a more complex structure.

IV. PHONON VERTEX EXTRACTION IN THE FINITE
AMPLITUDE FORMALISM

Both pairs of amplitudes X (ω), Y (ω) and X n,Y n are the
solutions of the QRPA equations. As mentioned above, while
the amplitudes X n,Y n satisfy the QRPA equation, which does
not contain explicitly the external field:(

A B
B∗ A∗

)(
X n

Y n

)
= ωn

(
X n

−Y n

)
; (152)

the amplitudes X (ω),Y (ω) satisfy the QRPA equation in the
presence of external field, or(

A B
B∗ A∗

)(
X (ω)
Y (ω)

)
+

(
F 20

F 02

)
= ω

(
X (ω)

−Y (ω)

)
, (153)

sometimes called the linear response equation [44]. The
matrices A and B are associated with the variations of
the components of the quasiparticle Hamiltonian in the
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quasiparticle basis [53],

δH20
μμ′ (ω) =

∑
ν�ν ′

(Aμμ′,νν ′Xνν ′ (ω) + Bμμ′,νν ′Yνν ′ (ω))

− (Eμ + Eμ′ )Xμμ′ (ω),

δH02
μμ′ (ω) =

∑
ν�ν ′

(A∗
μμ′,νν ′Yνν ′ (ω) + B∗

μμ′,νν ′Xνν ′ (ω))

− (Eμ + Eμ′ )Yμμ′ (ω), (154)

such that

δH (t ) = η(δH (ω)e−iωt + δH†(ω)eiωt ) (155)

is the variation of the Hamiltonian H (t ) = H0 + δH (t ) in
response to small oscillations of an external field,

F (t ) = η(Fe−iωt + F †eiωt ), (156)

with η being a small linear expansion parameter and H0 the
mean-field Hamiltonian of the Bogoliubov quasiparticles:

H0 =
(

h − λ �

−�∗ −h∗ + λ

)
, (157)

where λ is the chemical potential.
Equation (154) leads to the finite-amplitude form of the

QRPA equation (153):

Xμν (ω) = δH20
μν (ω) + F 20

μν

ω − Eμ − Eν

,

Yμν (ω) = δH02
μν (ω) + F 02

μν

−ω − Eμ − Eν

. (158)

The full variation of the quasiparticle Hamiltonian δH (ω) has
the following matrix structure:

δH (ω) = 1

2
(α† α)

(
δH11(ω) δH20(ω)

−δH02(ω) −δH11T (ω)

)(
α

α†

)
,

(159)

where(
δH11(ω) δH20(ω)

−δH02(ω) −δH11T (ω)

)

= W†

(
δh(ω) δ�(+)(ω)

−δ�(−)∗(ω) −δhT (ω)

)
W

=
(

U † V †

V T U T

)(
δh(ω) δ�(+)(ω)

−δ�(−)∗(ω) −δhT (ω)

)(
U V ∗
V U ∗

)
,

(160)

so that the components of the variation δH are expressed
through the variations of the mean-field single-particle Hamil-
tonian h and pairing fields �(±):

δH11 = U †δhU + U †δ�(+)V − V †δ�(−)∗U

−V †δhT V,

δH20 = U †δhV ∗ + U †δ�(+)U ∗ − V †δ�(−)∗V ∗

−V †δhT U ∗,

−δH02 = V T δhU + V T δ�(+)V − U T δ�(−)∗U

−U T δhT V,

−δH11T = V T δhV ∗ + V T δ�(+)U ∗ − U T δ�(−)∗V ∗

−U T δhT U ∗. (161)

The variations of the single-particle Hamiltonian and the pair-
ing fields are related to the variations of the normal and pairing
densities,1

δh12(ω) =
∑

34

v̄1423δρ34(ω), (162)

δ�
(±)
12 (ω) = 1

2

∑
34

v̄1234δκ
(±)
34 (ω), (163)

while the latter density variations are, in turn, related to the
Xμμ′ (ω) and Yμμ′ (ω) amplitudes [39,40]:

δρ12(ω) = (UX (ω)V T + V ∗Y T (ω)U †)12 (164)

δρ
†
12(ω) = (V ∗X †(ω)U † + UY ∗(ω)V T )12 (165)

δκ
(+)
12 (ω) = (UX (ω)U T + V ∗Y T (ω)V †)12 (166)

δκ
(−)
12 (ω) = (V ∗X †(ω)V † + UY ∗(ω)U T )12. (167)

The latter means that in the vicinity of a pole ω → ωn these
density variations can be related to the respective transition
densities in the same way as X (ω),Y (ω) are related to X n,Y n

in Eq. (146):

δρ12(ω → ωn) = ρn
12〈n|F |0〉

ω − ωn + i�
,

δκ
(+)
12 (ω → ωn) = κ

n(+)
12 〈n|F |0〉

ω − ωn + i�
,

δκ
(−)∗
12 (ω → ωn) = κ

n(−)∗
12 〈n|F |0〉

ω − ωn + i�
, (168)

where

ρn
12 = (UX nV T + V ∗Y nT U †)12,

κ
n(+)
12 = (UX nU T + V ∗Y nT V †)12,

κ
n(−)
12 = (V ∗X n†V † + UY n∗U T )12. (169)

Now the variations in Eqs. (161) can be related to the
latter transition densities. Namely, the variation of the single-
particle Hamiltonian at ω → ωn reads

δh12(ω → ωn) =
∑

34

δh12(ω)

δρ34(ω)
δρ34(ω) =

=
∑

34

δh12(ω)

δρ34(ω)
ρn

34
〈n|F |0〉

ω − ωn + i�

=
∑

34

v̄1423ρ
n
34

〈n|F |0〉
ω − ωn + i�

= gn
12

〈n|F |0〉
ω − ωn + i�

, (170)

1In this section it is implied that v̄ can be approximated by some
effective interaction.
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where the definition of the phonon vertex gn (40) was applied.
Analogously, for δ�(+),

δ�
(+)
12 (ω → ωn) =

∑
34

δ�
(+)
12 (ω)

δκ
(+)
34 (ω)

δκ
(+)
34 (ω)

=
∑

34

δ�
(+)
12 (ω)

δκ
(+)
34 (ω)

κ
n(+)
34

〈n|F |0〉
ω − ωn + i�

= 1

2

∑
34

v̄1234κ
n(+)
34

〈n|F |0〉
ω − ωn + i�

= γ
n(+)
12

〈n|F |0〉
ω − ωn + i�

, (171)

and, for δ�(−)∗,

δ�
(−)∗
12 (ω → ωn) =

∑
34

δ�
(−)∗
12 (ω)

δκ
(−)∗
34 (ω)

δκ
(−)∗
34 (ω)

=
∑

34

δ�
(−)∗
12 (ω)

δκ
(−)∗
34 (ω)

κ
n(−)∗
34

〈n|F |0〉
ω − ωn + i�

= 1

2

∑
34

v̄∗
1234κ

n(−)∗
34

〈n|F |0〉
ω − ωn + i�

= γ
n(−)T
12

〈n|F |0〉
ω − ωn + i�

, (172)

where we applied the definitions of Eq. (34) for the
pairing phonon vertices γ n(±) and identified the pairing
transition densities κ

n(±) with the matrix elements in the
residues of the particle-particle propagator (14) and (15) as
follows:

αn
12 = 〈0|ψ2ψ1|n〉 = κ

n(+)
12 , (173)

βn
12 = 〈0|ψ†

2 ψ
†
1 |n〉 = κ

n(−)∗
21 . (174)

Now, inserting Eqs. (170), (171), and (172) into Eqs. (161),
we get at the pole ω → ωn

δHi j
μμ′ (ω → ωn) = �

(i j)n
μμ′

〈n|F |0〉
ω − ωn + i�

, (175)

with {i j} = {11, 02, 20}, i.e., the relationship between
the variations of the quasiparticle Hamiltonian and the
quasiparticle-phonon vertices, two of which were defined by
Eqs. (123) and (124). Notice the analogy of Eq. (175) to
Eqs. (146). The QVC vertices �(11)n and �(02)n, which enter
the quasiparticle self-energy of Eq. (119), can thus be ex-
tracted from the variations of the quasiparticle Hamiltonian
δH11 and δH02 as follows:

�
(i j)n
μμ′ = 1

〈n|F |0〉
∮

γn

δHi j
μμ′ (ω)

dω

2π i
, (176)

where γn is a contour enclosing the pole ω = ωn − i�. For
the real residues in Eq. (175), up to an unimportant phase, this

can be simplified to

�
(i j)n
μμ′ = − lim

�→0

�√
Bn

Im δHi j
μμ′ (ωn + i�)

= − lim
�→0

√
�

πS(ωn)
Im δHi j

μμ′ (ωn + i�). (177)

The relationships (176) and (177) can be useful if the finite
amplitude method of solving QRPA equations is available.
This idea was realized in Ref. [54], where the Gor’kov-Dyson
equation for quasiparticle propagators was solved numerically
on the base of the relativistic HFB. In particular, in Ref. [54]
the method of the QVC vertex extraction was proven efficient
enough to tackle heavy nuclei with axial deformation. No-
tice here that Eqs. (176) and (177) allow for generalization
of the FAM-QRPA to the inclusion of the QVC effects in
a fully variational form. This possibility will be considered
elsewhere.

V. SUMMARY

We presented a theoretical framework for fermionic prop-
agators in strongly coupled superfluid fermionic many-body
systems. Starting from the general Hamiltonian with a bare
two-fermion interaction, we worked out the equations of mo-
tion for the Gor’kov set of two normal and two anomalous
propagators. In contrast to the original Gor’kov theory, the
kernels of the obtained EOMs contain dynamical components
with three-fermion propagators. These propagators are ap-
proximated by factorizing them into the all possible products
of two-fermion and one-fermion propagators with the relaxed
particle number conservation condition. The resulting set of
coupled equations, called Gor’kov-Dyson equations, is for-
mulated first in the mean-field single-particle basis, i.e., the
basis which diagonalizes the one-body part of the underlying
Hamiltonian.

Then, it is shown explicitly that, by the transformation
to the HFB basis, the four pairwise coupled Gor’kov-Dyson
equations reduce to one equation for the forward or for the
dual backward component of the quasiparticle propagator.
This scales down considerably the computational effort and
reveals important relationships between the two represen-
tations. The dynamical kernel of the resulting equation is
mapped to the quasiparticle-vibration coupling, where the
normal and pairing phonons become components of the uni-
fied phonons, which can be found by solving an EOM for
the two-quasiparticle fermionic propagator. Although we did
not discuss the latter EOM in detail, we considered the
simplest case of it known as QRPA and pointed out how
the solutions of the QRPA equation can be used to extract
the quasiparticle-vibration coupling vertices, which enter the
dynamical kernel of the Gor’kov-Dyson equation in the quasi-
particle basis. Finally, we proposed a method for extracting
the vertices from the QRPA implemented within the finite
amplitude method. This may be particularly useful for practi-
tioners dealing with systems with a large number of fermions,
such as medium-mass and heavy atomic nuclei, and non-
spherical shapes. The latter case is especially difficult for
traditional QRPA solvers, and FAM-QRPA and its possible
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extensions are the methods of choice for such systems. A
recent example can be found in Ref. [54]. Therefore, the
link between FAM-QRPA and the Gor’kov-Dyson equation
in the quasiparticle basis found in this work makes it possible
to perform efficient calculations beyond the HFB mean-field
approach. It also paves the way to the QVC extensions of the
FAM-QRPA.
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APPENDIX: THE GOR’KOV THEORY AS ONE-FERMION
EXPANSION OF THE FIRST EOM

The Gor’kov theory for the fermionic propagator can be
obtained starting from the first EOM (17):

(i∂t − ε1)G11′ (t − t ′) = δ11′δ(t − t ′) + R11′ (t − t ′), (A1)

where

R11′ (t − t ′) = i〈T [V, ψ1](t )ψ†
1′ (t ′)〉

= i

2

∑
ikl

v̄i1kl〈T (ψ†
i ψlψk )(t )ψ†

1′ (t ′)〉.
(A2)

Instead of generating the second EOM as done in
Sec. III A, Eq. (20), one can approximate the expecta-
tion value in R11′ (t − t ′) by the cluster decomposition, or
factorization, as

i〈T (ψ†
i ψlψk )(t )ψ†

1′ (t ′)〉
≈ i〈T ψ

†
i (t )ψ†

1′ (t ′)〉〈ψlψk〉
− i〈T ψl (t )ψ†

1′ (t ′)〉〈ψ†
i ψk〉 + i〈T ψk (t )ψ†

1′ (t ′)〉〈ψ†
i ψl〉

= −κkl F
(2)

i1′ (t − t ′) + ρkiGl1′ (t − t ′) − ρliGk1′ (t − t ′),

(A3)

with the static normal ρkl = 〈ψ†
l ψk〉 and pairing κkl = 〈ψlψk〉

densities and the anomalous fermionic propagator

F (2)
11′ (t − t ′) = −i〈T ψ

†
1 (t )ψ†

1′ (t ′)〉, (A4)

which has nonvanishing contribution if the particle number
conservation is relaxed in the ground state wave function, as
well as the pairing densities. As a reminder, the densities listed
above are related to the components of the single-fermion self-
energy in the superfluid mean-field approximation as

�̃12 =
∑

kl

v̄1k2lρlk, �12 = 1

2

∑
kl

v̄12klκkl . (A5)

Thus, in the approximation of Eq. (A3) the EOM for the
fermionic propagator takes the form

(i∂t − ε1)G11′ (t − t ′)

= δ11′δ(t − t ′)

+
∑

i

[
�1iF

(2)
i1′ (t − t ′) + �̃1iGi1′ (t − t ′)

]
. (A6)

Introducing the Fourier images for the time-dependent entities
of Eq. (A6) as

G11′ (t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ )G11′ (ω), (A7)

F (2)
11′ (t − t ′) =

∫ ∞

−∞

dω

2π
e−iω(t−t ′ )F (2)

11′ (ω), (A8)

δ(t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ ), (A9)

the EOM for the fermionic propagator can be transferred to
the energy (frequency) domain:

G11′ (ω) = G0
11′ (ω) +

∑
i j

G0
1i(ω)

[
�i jF

(2)
j1′ (ω) + �̃i jG j1′ (ω)

]
.

(A10)

Thereby, one can see that the fermionic propagator G(ω), also
called normal propagator in the case of superfluidity, becomes
coupled to the anomalous propagator F (2)(ω) via the pairing
mean field �. This indicates that, in order to have a closed
system of equations, another EOM should be generated for
this new propagator in the same approximation. Taking the
time derivative of Eq. (A4) yields

(i∂t + ε1)F (2)
11′ (t − t ′) = R(2)

11′ (t − t ′), (A11)

with

R(2)
11′ (t − t ′) = i〈T [V, ψ

†
1 ](t )ψ†

1′ (t ′)〉

= i

2

∑
ikl

v̄ik1l〈T (ψ†
i ψ

†
k ψl )(t )ψ†

1′ (t ′)〉. (A12)

The factorization of the expectation value in the latter term
into products of one-fermion correlation functions, similarly
to the case of Eq. (A25), leads to

i〈T (ψ†
i ψ

†
k ψl )(t )ψ†

1′ (t ′)〉
≈ i〈T ψ

†
i (t )ψ†

1′ (t ′)〉〈ψ†
k ψl〉

− i〈T ψ
†
k (t )ψ†

1′ (t ′)〉〈ψ†
i ψl〉 + i〈T ψl (t )ψ†

1′ (t ′)〉〈ψ†
i ψ

†
k 〉

= −ρlkF (2)
i1′ (t − t ′) + ρliF

(2)
k1′ (t − t ′) − κ

∗
ikGl1′ (t − t ′),

(A13)

so that

(i∂t + ε1)F (2)
11′ (t − t ′)

= −
∑

i

[
�̃i1F (2)

i1′ (t − t ′) + �∗
1iGi1′ (t − t ′)

]
. (A14)

The Fourier transform of the latter equation reads

F (2)
11′ (ω) = −

∑
i j

G(h)0
1i (ω)

[
�̃T

i jF
(2)
j1′ (ω) + �∗

i jG j1′ (ω)
]
.

(A15)
The complete set of Gorkov propagators includes the other

two correlation functions, namely

G(h)
11 (t − t ′) = −i〈T ψ

†
1 (t )ψ1′ (t ′)〉, (A16)

F (1)
11′ (t − t ′) = −i〈T ψ1(t )ψ1′ (t ′)〉. (A17)
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Proceeding similarly with those, one gets

(i∂t + ε1)G(h)
11′ (t − t ′) = δ11′δ(t − t ′) + R(h)

11′ (t − t ′), (A18)

R(h)
11′ (t − t ′) = i〈T [V, ψ

†
1 ](t )ψ1′ (t ′)〉

= i

2

∑
ikl

v̄ik1l〈T (ψ†
i ψ

†
k ψl )(t )ψ1′ (t ′)〉, (A19)

i〈T (ψ†
i ψ

†
k ψl )(t )ψ1′ (t ′)〉

≈ i〈T ψ
†
i (t )ψ1′ (t ′)〉〈ψ†

k ψl〉
− i〈T ψ

†
k (t )ψ1′ (t ′)〉〈ψ†

i ψl〉+i〈T ψl (t )ψ1′ (t ′)〉〈ψ†
i ψ

†
k 〉

= −ρlkG(h)
i1′ (t − t ′) + ρliG

(h)
k1′ (t − t ′) − κ

∗
ikF (1)

l1′ (t − t ′),

(A20)

(i∂t + ε1)G(h)
11′ (t − t ′)

= δ11′δ(t − t ′) −
∑

i

[
�̃T

1iG
(h)
i1′ (t − t ′) + �∗

1iF
(1)

i1′ (t − t ′)
]
,

(A21)

G(h)
11′ (ω) = G(h)0

11′ (ω) −
∑

i j

G(h)0
1i (ω)

[
�̃T

i jG
(h)
j1′ (ω)

+�∗
i jF

(1)
j1′ (ω)

]
(A22)

and

(i∂t − ε1)F (1)
11′ (t − t ′) = R(1)

11′ (t − t ′), (A23)

R(1)
11′ (t − t ′) = i〈T [V, ψ1](t )ψ1′ (t ′)〉

= i

2

∑
ikl

v̄i1kl〈T (ψ†
i ψlψk )(t )ψ1′ (t ′)〉, (A24)

i〈T (ψ†
i ψlψk )(t )ψ1′ (t ′)〉

≈ i〈T ψ
†
i (t )ψ1′ (t ′)〉〈ψlψk〉

− i〈T ψl (t )ψ1′ (t ′)〉〈ψ†
i ψk〉 + i〈T ψk (t )ψ1′ (t ′)〉〈ψ†

i ψl〉
= −ρliF

(1)
k1′ (t − t ′) + ρkiF

(1)
l1′ (t − t ′) − κklG

(h)
i1′ (t − t ′),

(A25)

(i∂t − ε1)F (1)
11′ (t − t ′)

=
∑

i

[
�̃1iF

(1)
i1′ (t − t ′) + �1iG

(h)
i1′ (t − t ′)

]
, (A26)

F (1)
11′ (ω) =

∑
i j

G0
1i(ω)

[
�̃i jF

(1)
j1′ (ω) + �i jG

(h)
j1′ (ω)

]
. (A27)

The combination of Eqs. (A10), (A22), (A27), and (A15),

G11′ (ω) = G0
11′ (ω) +

∑
i j

G0
1i(ω)

[
�i jF

(2)
j1′ (ω) + �̃i jG j1′ (ω)

]
,

F (2)
11′ (ω) = −

∑
i j

G(h)0
1i (ω)

[
�̃T

i jF
(2)
j1′ (ω) + �∗

i jG j1′ (ω)
]
,

G(h)
11′ (ω)= G(h)0

11′ (ω)−
∑

i j

G(h)0
1i (ω)

[
�̃T

i jG
(h)
j1′ (ω)+�∗

i jF
(1)
j1′ (ω)

]
,

F (1)
11′ (ω) =

∑
i j

G0
1i(ω)

[
�̃i jF

(1)
j1′ (ω) + �i jG

(h)
j1′ (ω)

]
, (A28)

constitutes the famous Gor’kov theory and describes a super-
fluid many-fermion system in the mean-field approximation.
Eqs. (A28) can also be written in the matrix form(

G11′ (ω) F (1)
11′ (ω)

F (2)
11′ (ω) G(h)

11′ (ω)

)

=
(

G0
11′ (ω) 0

0 G(h)0
11′ (ω)

)
+

∑
22′

(
G0

12(ω) 0
0 G(h)0

12 (ω)

)

×
(

�̃22′ (ω) �22′ (ω)
−�∗

22′ (ω) −�̃T
22′ (ω)

)(
G2′1′ (ω) F (1)

2′1′ (ω)

F (2)
2′1′ (ω) G(h)

2′1′ (ω)

)
,

(A29)

which is consistent with Eq. (79) if the self-energy is confined
by its mean-field part.
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