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Valuable theoretical predictions of nuclear dipole excitations in the whole nuclear chart are of great interest
for different applications, including in particular nuclear astrophysics. We present here the systematic study of
the electric-dipole (E1) photon strength functions combining the microscopic Hartree-Fock-Bogoliubov plus
quasiparticle random-phase approximation (HFB + QRPA) model and the parametrizations constrained by the
available experimental giant dipole resonance (GDR) data. For about 10 000 nuclei with 8 � Z � 124 lying
between the proton and the neutron drip-lines on nuclear chart, the particle-hole (ph) strength distributions are
computed using the HFB + QRPA model under the assumption of spherical symmetry and making use of the
BSk27 Skyrme effective interaction derived from the most accurate HFB mass model (HFB-27) so far achieved.
Large-scale calculations of the BSk27 + QRPA E1 photon strength functions are performed in the framework
of a specific folding procedure describing the damping of nuclear collective motion empirically. In particular,
three phenomenological improvements are considered in this folding procedure. First, two interference factors
are introduced and adjusted to reproduce at best the available experimental GDR data. Second, an empirical
expression accounting for the deformation effect is applied to describe the peak splitting of the strength function.
Third, the width of the strength function is corrected by a temperature-dependent term, which effectively
increases the deexcitation photon strength function at low energy. The theoretical E1 photon strength functions
as well as the extracted GDR peaks and widths are comprehensively compared with available experimental
data. A relatively good agreement with data indicates the reliability of the present calculations. Eventually, the
astrophysical rates of (n, γ ) reactions for all the 10 000 nuclei with 8 � Z � 124 lying between the proton and
the neutron drip lines are estimated using the present E1 photon strength functions. The resulting reaction rates
are compared with the previous BSk7 + QRPA results as well as the Gogny-HFB + QRPA predictions based on
the D1M interaction.
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I. INTRODUCTION

About half of the nuclei with A > 60 observed in nature
are formed by the rapid neutron-capture process (r process)
occurring in explosive stellar events [1]. The r process is
believed to take place in environments characterized by high
neutron density (Nn > 1020 cm−3), so that successive neutron
captures proceed into neutron-rich regions well off the β-
stability valley forming exotic nuclei that cannot be produced
and therefore studied in the laboratory. When the tempera-
ture or the neutron density required for the r process are
low enough to break the equilibrium of (n, γ )-(γ , n), the
distribution of the r-process abundance depends directly on
the neutron capture rates of the so-produced exotic neutron-
rich nuclei [2]. The neutron capture rates are commonly
evaluated within the framework of the statistical model of
Hauser-Feshbach, although the direct capture contribution
may play an important role for very exotic neutron-rich

nuclei [3]. The Hauser-Feshbach model makes the funda-
mental assumption that the capture process takes place with
the intermediary formation of a compound nucleus in ther-
modynamic equilibrium. In this approach, the Maxwellian-
averaged neutron capture rate at temperatures of relevance in
r-process environments strongly depends on the electromag-
netic interaction, i.e., on the photon deexcitation probability.
Therefore, a reliable extrapolation of the photon strength func-
tions out towards the neutron-drip line is required for a proper
description of the r process and prediction of the resulting
abundance distribution.

In a massive star, both during the hydrostatic and explosive
burning phases, as well as in type-Ia supernovae, high tem-
peratures of a few billion degrees can also be at the origin of
heavy-element nucleosynthesis by the so-called p process [4].
The p process is responsible for the galactic production of the
35 neutron-deficient stable nuclei and mainly involves pho-
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toreactions on pre-existing nuclei synthesized by the neutron-
capture processes. It is driven by (γ , n), (γ , p), and (γ , α)
reactions as well as their reverse reactions mainly on neutron-
deficient nuclei. Here also, rates are determined within the
Hauser-Feshbach model where the photon strength function
plays a fundamental role for estimating both the photoabsorp-
tion reaction rates and their reverse radiative capture rates [4].

Large-scale calculations of dipole photon strength func-
tion have traditionally been performed on the basis of the
phenomenological Lorentzian model [5,6]. However, this ap-
proach suffers from shortcomings of various sorts. First, it
is unable to predict the enhancement of the dipole photon
strength at energies around and below the neutron separa-
tion energy demonstrated by various experiments [5]. Second,
even if a Lorentzian-like function provides a suitable repre-
sentation of the dipole strength for stable nuclei, the location
of its maximum and its width remain to be predicted from
some systematics or underlying model for each nucleus. The
phenomenological Lorentzian model consequently lacks re-
liability when dealing with exotic nuclei that are particularly
important to the astrophysical applications. On the other hand,
the reliability of the E1 strength predictions can be greatly
improved by the use of microscopic (or semimicroscopic)

models. Provided satisfactory reproduction of available ex-
perimental data, the more microscopic the underlying theory,
the greater the confidence in the extrapolations out towards the
experimentally unreachable regions. However, microscopic
approaches are rarely used for large-scale predictions of the
E1 strength function, mainly because the fine tuning required
to reproduce accurately a large experimental data set is very
delicate and time-consuming. The prominent exceptions are
represented by Refs. [7–10] where the E1 photon strength
functions for the whole nuclear chart were derived within
the mean-field plus quasiparticle random-phase approxima-
tion (QRPA) approach.

In the present paper, a new effort is made to estimate
systematically the E1 strength function on the basis of the
nonrelativistic Hartree-Fock-Bogoliubov plus QRPA (HFB +
QRPA) approach, in a way similar to our previous study [8].
However, since its publication, significant improvements have
been achieved, essentially in the determination of Skyrme
interactions. In particular, a new effective standard Skyrme
interaction, labeled as BSk27, was derived together with the
HFB-27 nuclear mass model, leading to the most accurate
mass model ever achieved within the framework of the nuclear
energy density-functional theory [11]. This effective inter-
action has not been tested yet on QRPA estimates of giant
resonances. Furthermore, compared with the previous HFB
+ QRPA study based on the BSk7 Skyrme interaction [8],
a new fitting procedure aiming at reproducing experimen-
tal photoabsorption data has been implemented to constrain
the parameters entering in the QRPA calculations and the
corrections needed beyond the one-particle–one-hole (1p-1h)
QRPA. In the framework of HFB + QRPA approach with
the recent BSk27 Skyrme interaction, the present study aims
to predict a complete set of E1 photon strength functions
within the whole nuclear chart, simultaneously reproducing
the available experimental data to date. It is expected that
these treatments can significantly improve the predictions of

E1 strength and consequently of the neutron capture rates. It
also allows us to test the systematic uncertainties affecting the
prediction of the photon strength function for exotic neutron-
rich nuclei, in particular by comparing it to the recently
determined D1M + QRPA predictions based on the axially
deformed Gogny-HFB plus QRPA calculations with the D1M
Gogny interaction [5,10]. The derivation of the M1 photon
strength function within the same framework is postponed to
a future study.

The paper is organized as follows: In Sec. II, the QRPA
formalism is sketched and the folding prescription (the damp-
ing method for collective motions) to derive the continuous
E1 photon strength function from the QRPA strength distri-
butions is described. The large-scale calculations of the E1
photon strength functions are performed in Sec. III, taking
into account (1) the determination of the parameters in the
folding prescription based on experimental constraints, (2) the
impact of nuclear deformation, and (3) the nuclear tempera-
ture correction. In Sec. IV, the neutron capture reaction rates
for astrophysical applications are correspondingly computed
based on the present E1 photon strength functions predicted
by the HFB plus QRPA model with the BSk27 Skyrme force.
A summary is given in Sec. V.

II. THEORY

A. Hartree-Fock-Bogoliubov plus quasiparticle random-phase
approximation model

The HFB plus QRPA method allows us to investigate, in
a self-consistent way, the nuclear structure properties of the
ground state as well as collective excitations for the nuclei
ranging from the valley of stability to the drip-line. The QRPA
considers nuclear excitation as a collective superposition of
two quasiparticle (qp) states built on top of the HFB ground
state and this collective aspect of the excitation makes the
QRPA an accurate tool to study the E1 photon strength func-
tion in both closed- and open-shell nuclei [12].

The ground-state properties used here are derived from the
HFB-27 mass model [11] obtained within the HFB frame-
work. HFB-27 is the most accurate mass model we ever
achieved within the framework of the nuclear energy density-
functional theory. It is characterized by a model root mean
square deviation σmod = 0.503 MeV with respect to all the
2408 available mass data [13] for nuclei with neutron and
proton numbers larger than eight. The Skyrme effective in-
teraction, labeled as BSk27, corresponds to the conventional
form of a ten-parameter Skyrme force with a four-parameter
δ-function pairing force treated in the Bogoliubov frame-
work. In addition, as determined by realistic calculations and
by experiments, the underlying Skyrme functional yields a
realistic description of infinite homogeneous nuclear matter
properties, specifically including the incompressibility coef-
ficient, the pressure in charge-symmetric nuclear matter, the
neutron-proton effective-mass splitting, the stability against
spin and spin-isospin fluctuations, as well as the neutron-
matter equation of state. Such properties play a key role in the
description of giant resonances [14]. All details can be found
in Refs. [11,15–20].
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The QRPA calculation of the E1 photon strength function
is performed on top of the HFB ground state. The derivation
of the QRPA response is detailed in Ref. [8] using the Green’s
function formalism. The QRPA response is obtained from the
time-dependent HFB equations [12]

ih̄
∂R
∂t

= [H(t ) + F (t ),R(t )], (1)

in which R is the time-dependent generalized density, H is the
HFB Hamiltonian, and F is the external oscillating field. In
the small-amplitude limit the time-dependent HFB equations
become

h̄ωR′ = [H′,R0] + [H0,R′] + [F,R0], (2)

where the prime (′) stands for the perturbed quantity. The vari-
ation of the generalized density R′ is expressed as a column
vector estimated from ρ′, the transpose of (ρ ′ κ ′ κ̄ ′). In the
three-dimensional space, the first dimension represents the
ph subspace, the second represents the particle-particle (pp)
subspace, and the third represents the hole-hole (hh) subspace.

The variation of the HFB Hamiltonian can be expressed in
terms of the second derivatives of the HFB energy functional
E[ρ, κ, κ̄] with respect to the densities

H′ = Vρ′, (3)

where the residual interaction matrix V is written as

Vab(rσ, r′σ ′) = ∂2E
∂ρb(r′σ ′)∂ρā(rσ )

, (4)

with a, b = 1, 2, 3. Here, the notation ā means that, whenever
a is 2 or 3, then ā is 3 or 2.

The relevant quantity is the QRPA Green’s function G,
which relates the perturbing external field to the density
change by

ρ′ = GF. (5)

Using Eqs. (3)–(5) in Eq. (2) yields the Bethe-Salpeter equa-
tion

G = (1 − G0V)−1G0 = G0 + G0VG, (6)

corresponding to a set of 3 × 3 = 9 coupled equations. The
unperturbed Green’s function G0 is defined by

Gab
0 (rσ, r′σ ′; ω) =

∑
i j

[ Ua1
i j (rσ )Ū∗b1

i j (r′σ ′)

h̄ω − (Ei + Ej ) + iη

− Ua2
i j (rσ )Ū∗b2

i j (r′σ ′)

h̄ω + (Ei + Ej ) + iη

]
, (7)

where Ei and Ej are the energies of single qp state and Ui j are
the 3 × 2 matrices with the elements calculated from the HFB
wave functions U and V [8,21].

The HFB wave functions U and V are obtained by solving
the HFB equations in the HF basis with �HF

i = ∑
k Dikχk

expanded on an oscillator basis, which reads

Ul (r) =
∑

i,Ei>0

Uli�
HF
i (r) =

∑
k

[ ∑
i,Ei>0

UliDik

]
χk (r), (8)

FIG. 1. Interference factors CE and CG for each of the 48 spher-
ical nuclei obtained from prescription I (constant value CE = CG =
−0.655 illustrated by dash-dotted line) and prescription II (different
values of CE and CG shown by triangles connected with dashed lines)
as a function of the atomic mass.

and

Vl (r) =
∑

i,Ei>0

Vli�
HF
i (r) =

∑
k

[ ∑
i,Ei>0

VliDik

]
χk (r). (9)

In Eqs. (8) and (9), Uli and Vli are the coefficients of the Bo-
goliubov transformation. The prescription for the calculations
of the HFB wave functions can be found in Ref. [15].

For the transitions from the ground state to excited states
within the same nucleus, only the (ph, ph) component of G
plays a role, and the strength is thus given by

S(ω) = − 1

π
Im

∫
F 11∗(r)G11(r, r′; ω)F 11(r′)drdr′. (10)

Following our previous work [8], we restrict ourselves to
perform the present calculations of the QRPA strength dis-
tribution S(ω) by assuming spherical symmetry. The residual
interaction corresponding to the velocity-dependent terms of
the Skyrme force used for the HFB calculation is approxi-
mated in the (ph, ph) subspace by its Landau-Migdal limit
[22]. On the other hand, the (pp, pp) part of the residual
interaction is self-consistently derived from the pairing force
[15].

Based on the ground-state properties derived by the BSk27
interaction and the above-described QRPA formalism, the
BSk27 ph QRPA strength distributions S(ω) have been cal-
culated for about 10 000 nuclei with 8 � Z � 124. The
computations are performed up to a maximum transition en-
ergy ωmax = 30 MeV with a step of 0.1 MeV. All the qp states
up to an energy cutoff of 60 MeV are included. The spurious
center-of-mass state should come out at zero energy in a fully
consistent calculation. Due to the adoption of the interaction
in Landau-Migdal form, the consistency between mean field
and the residual qp interaction is broken and the isoscalar
Jπ = 1− spurious state becomes imaginary. Therefore, to
remedy this defect, the residual interaction is renormalized by
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FIG. 2. Comparisons between the photon strength function extracted from experimental photoabsorption cross sections [5] and the two
sets of BSk27 + QRPA photon strength functions calculated with the interference factors CE and CG of prescription I (orange dash-dot-dot
line) and prescription II (red dashed line) for 12 representative spherical nuclei. The previous BSk7 + QRPA predictions (green dotted line)
are also shown for comparison.

a factor α on the nuclei of interest. The typical value of α in
the [0.85,1] range drives the spurious state to zero energy. To
calculate the photon strength function of odd-A and odd-odd
nuclei, the procedure developed in Refs. [15,21] is adopted.

III. LARGE-SCALE CALCULATIONS OF THE E1 PHOTON
STRENGTH FUNCTIONS

A. Damping procedure for E1 photon strength function

It is known that the giant dipole resonance (GDR) is ex-
perimentally characterized by a relatively large width and a
corresponding finite lifetime. The QRPA calculations satis-
factorily reproduce the GDR centroid energy and the fraction
of the energy-weighted sum rule exhausted by the E1 mode.
However, it is crucial to go beyond this approximation scheme
to describe properly the damping properties of the collective
motion. Such state-of-the-art calculations including effects
beyond the 1p-1h excitations and phonon coupling [28–35]
are now available but remain computer-wise intractable for
large-scale applications, and extremely challenging for heavy
deformed nuclei, in particular for systems with an odd number
of nucleons. For this reason, a semi-empirical broadening of
the GDR width has been applied to the present QRPA calcu-
lation.

The procedure used in the present work to damp the E1
photon strength function can be found in Refs. [8,36]. The E1
photon strength function SE1(E ) (in e2 fm2 MeV−1) is derived
from the QRPA strength distribution S(ω) by folding it with a

Lorentzian function L(E , ω), i.e.,

SE1(E ) =
∑

σ

L(E , ω)S(ω), (11)

where L(E , ω) is the Lorentzian function given by

L(E , ω) = 1

π

E2�(E ,CG)

{E2 − [ω − �(E ,CE )]2}2 + �(E ,CG)2E2
,

(12)
in which �(E ,CG) is the width at half maximum and
�(E ,CE ) allows for an energy shift of the centroid. The
energy-dependent width �(E ,CG) can be calculated from the
measured decay width of particle (γp) and hole (γh) states,

�(E ,CG) = 1

E

∫ E

0
(1 + CG)[γp(ε) + γh(ε − E )]dε, (13)

and �(E ,CE ) can be obtained from �(E ,CG) by a dispersion
relation [36].

The interference factors CE and CG introduced in �(E ,CG)
and �(E ,CE ), respectively, are due to the screening cor-
rections of the exchange interaction which can interfere
destructively with self-energy diagrams [36]. The microscopic
evaluation of the interference factor is delicate. In practice, the
values of CE and CG can be phenomenologically determined
through a fit to experimental GDR data. Details of such a
fitting procedure are given in the following section.

044301-4



SYSTEMATICAL STUDIES OF THE E1 PHOTON … PHYSICAL REVIEW C 104, 044301 (2021)

FIG. 3. Same as Fig. 2 for another 12 representative spherical nuclei.

B. Adjustment of the interference factors on experimental
photodata

The photoinduced reaction cross sections and the observed
GDR parameters of peak energy, peak cross section and full
width at half maximum, measured by bremsstrahlung and
quasimonoenergetic and tagged photons, have been compiled
in Refs. [37–40] and provide the most relevant and reliable
source for the determination of the interference factors. In
practice, the E1 photon strength function fE1(E ) [MeV−3] =
SE1(E ) [mb/MeV] × 8.67373 × 10−8 can be simply related
to the photoabsorption cross section σabs [37–40] through

fE1(E ) = σE1(E )

3E (π h̄c)2 . (14)

Since the BSk27 ph QRPA strength distribution S(ω) used to
derive the strength function SE1(E ) in Eq. (11) is calculated
in spherical symmetry, only experimental data of spherical
nuclei are considered in the fitting procedure. For this reason,
we restrict ourselves here to fit the theoretical results predicted
by Eqs. (11)–(13) to experimental photoabsorption strength
functions for 48 spherical nuclei by adjusting the interference
factors CE and CG. Two prescriptions (so-called prescription I
and prescription II) are proposed to extract CE and CG.

In the first prescription (prescription I), a unique constant
value Ccst is adopted for both interference factors CE and
CG for all nuclei. The value of CE = CG = Ccst = −0.655 is

obtained by minimizing the sum S� defined as

S� =
N∑

i=1

[σ expt(Ei ) − σ QRPA(Ei )]
2. (15)

In Eq. (15), σ expt is the experimental photoabsorption cross
sections and σ QRPA is the corresponding QRPA predic-
tions. Ei is picked up in sequence of the GDR energy
range from Emin to Emax with the interval of 0.1 MeV, and
N = (Emax − Emin)/(0.1 MeV). Only data within the energy
range [Emin, Emax] defining the GDR region, as suggested by
Refs. [37–40], are taken into account.

In the second prescription (prescription II), another strat-
egy is followed. In particular, different possible values of
the interference factors CE and CG are considered for each
nucleus. Fits to the experimental photon strength function
from photodata are conducted for the 48 spherical nuclei by
minimizing the sum S� [Eq. (15)] to derive individual values
CE and CG.

The resulting interference factors CE and CG are shown in
Fig. 1 for the 48 spherical nuclei considered. The constant
value CE = CG = −0.655 for prescription I is shown by the
dash-dotted line, while values for the A-dependent prescrip-
tion II are depicted by triangles. The interference factors
impact both the width and the centroid energy of the GDR.
Within the present damping method, the peak energies around
E = 15 MeV can be shifted by 5 × (1 + CE ) MeV upwards
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FIG. 4. Same as Fig. 2 for another nine spherical nuclei for which recent photoneutron emission cross sections have been estimated
[23–27].

approximately. Moreover, if CG � −0.2, the GDR broaden-
ing becomes too large and incompatible with experimental
photoabsorption data, while if CG � −0.8, the fine structure
inherent to the 1p-1h QRPA estimate cannot be adequately
smeared out and leads to photon strength functions again
incompatible with experimental data.

C. Comparison with experimental data

Based on Eqs. (11)–(13), two sets of photon strength func-
tions for the 48 spherical nuclei are calculated using the
interference factors CE and CG obtained with prescriptions I
and II, respectively. In Figs. 2–4, our 2 sets are compared with
experimental photoabsorption data [5,37–40], as well as data
extracted from recent photoneutron cross sections [23–27].
Our previous BSk7 + QRPA predictions [8] are also shown
for comparison. It can be seen that experimental GDR cen-
troid energies and widths are overall rather well reproduced.
However, as observed in Fig. 2, some non-negligible discrep-
ancy between the predictions and experimental data is visible
for light nuclei with mass number A <∼ 100. The description
of such nuclei remains difficult in any global model, including
the Lorentzian approach, and would require future improve-
ments. Similarly to the BSk7 + QRPA results, some extra

strength located about 3–4 MeV above the GDR peak (some-
time also experimentally observed) is systematically found in
the present BSk27 + QRPA calculations. Prescription II is
also seen to lead to a better description of data in comparison
with prescription I.

Furthermore, two sets of the GDR parameters, i.e., the
position of the peak energy (EGDR), the full width at half
maximum (FWHM, �GDR), and the strength (represented by
the photoabsorption cross section) at the peak energy (σpeak)
have been extracted from the calculated BSk27 + QRPA E1
photon strength functions with prescriptions I and II. These
GDR properties are compared with experimental values [6,40]
in Fig. 5 for the 48 spherical nuclei. Deviations between
theoretical and experimental data can be characterized by a
root mean square (rms) factor frms defined as usual as (in this
case for the peak cross section σpeak)

frms = exp

⎡
⎣ 1

Nexpt

Nexpt∑
i=1

(
ln

σ
QRPA
peak (i)

σ
expt
peak(i)

)2
⎤
⎦

1/2

, (16)

where Nexpt = 48 is the number of spherical nuclei included
in our study. Similar frms expressions can be derived for EGDR

and �GDR by simply replacing σpeak with EGDR and �GDR in
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FIG. 5. Comparisons of the experimental GDR properties (black square) compiled in the RIPL-3 database and the BSk27 + QRPA results
calculated by the interference factors of prescriptions I (blue circle) and II (red triangle) for the 48 spherical nuclei. The position of peak energy
(EGDR), the strength (represented by the photoabsorption cross section) at the peak energy (σpeak), and the full width at half maximum (�GDR)
are respectively shown in panels (a)–(c).

Eq. (16). The resulting frms values are given in Fig. 5 for each
GDR parameter and for both prescriptions I and II.

For the peak position EGDR in Fig. 5(a), we obtain a rms
deviation frms = 1.024 with prescription I and 1.016 for pre-
scription II. This means that the GDR centroid are globally
predicted within 2%. Figure 5(b) shows that the GDR experi-
mental peak cross section are determined with a rms deviation
frms = 1.261 for prescription I and 1.031 for prescription II.
Obviously, a better accuracy is obtained with prescription II
since in this case the interference factors are adjusted in-
dividually for each nucleus, but globally both prescriptions
reproduce rather well the experimental trend. In contrast,
more discrepancies can be seen [Fig. 5(c)] between the GDR
theoretical and experimental FWHM. Here also prescription
II gives rise to a significantly better description of the ex-
perimental FWHM with an frms � 1.3 with prescription II
compared with 1.6 for prescription I.

In Fig. 6, the BSk27 + QRPA photon strength functions
are compared with experimental E1 data at low energies
available from nuclear resonance fluorescence (NRF) [41,42]
and proton scattering [43–45] experiments. A relatively good
agreement between theory and experiment can be seen in
Fig. 6. Deviation as well as uncertainties associated with NRF
experiments are discussed in Ref. [5].

Finally, note that most of the other experimental data avail-
able to test prediction of the photon strength function [5] are
also sensitive to the M1 photon strength function and can
therefore not be used directly in the present work to learn more
about the predictive power of our BSk27 + QRPA model. The
future estimate of the M1 photon strength function within the
same framework and with the same interaction will allow us
to include such experimental data for comparison.

D. Interference factors for experimentally unknown nuclei

A major question arises when having to assign the inter-
ference factors to the many experimentally unknown nuclei.

In the case of prescription I, it seems obvious that a con-
stant value CE = CG = −0.655 should be adopted for all the
≈10 000 nuclei of interest. For prescription II, in contrast
and as shown in Fig. 1, the interference factors are clearly
nucleus dependent without any evident pattern as a function
of the neutron number N or atomic mass number A. Con-
sequently, extracting globally a smooth N or A dependence
would inevitably give rise to significant discrepancies if ap-
plied to known nuclei. For this reason, it is proposed to carry
an interpolation to deduce the interference factors for nuclei
for which no GDR data are available on the basis of the
known interference factors for the 48 spherical nuclei. The
GDR parameters, in particular the full width at half maximum
(FWHM), are known to be shell dependent and are essentially
related to the neutron number [10], hence the interpolation is
performed as a function of the neutron number N . Note that
the interference factors of the two nuclei with the minimum
and maximum neutron numbers among the 48 spherical nuclei
(here Nmin = 38 and Nmax = 126) are respectively used for
nuclei with neutron numbers smaller than Nmin or larger than
Nmax.

E. Nuclear deformation effect

For deformed nuclei, the GDR is known to split into two
modes as a result of the different resonance conditions char-
acterizing the oscillations of protons against neutrons along
the axis of rotational symmetry and an axis perpendicular to
it. In the phenomenological approach, the Lorentzian-type for-
mula is generalized to a sum of two Lorentzian-type functions
of peak energies El

GDR and widths �l
GDR [6,8,40]. The peak

energies El
GDR (l = 1, 2) satisfy the relations

E1
GDR + 2E2

GDR = 3EGDR,

E2
GDR/E1

GDR = 0.911η + 0.089, (17)
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FIG. 6. Comparisons of proton scattering [43–45] and NRF [41,42] data with BSk27 + QRPA results obtained with prescriptions I and II.

and each width �l
GDR (l = 1, 2) is given the same dependence

as the respective peak energy El
GDR. In Eq. (17), η is the ratio

of the diameter along the axis of symmetry to the diameter
along an axis perpendicular to it.

In the present study, the deformation effect is implemented
into the damping procedure of Eqs. (11) and (12), in which
the Lorentzian function at a given energy E is split into two
Lorentzian functions centered according to Eq. (17) and char-
acterized by a width �(E ) [see Eq. (13)] obtained from the

same relations as Eq. (17). Note that deformation parameters η

from the HFB-27 mass model [11] are consistently considered
and that only nuclei with a quadrupole deformation parameter
|β2| � 0.15 are regarded as deformed. The resulting pho-
ton strength functions are compared with experimental data
[38,46–51] for six deformed nuclei in Fig. 7. Globally, the
experimental splitting are rather well reproduced, especially
for the well-deformed nuclei 165Ho and 181Ta.

To test the predictive power of the present approach for
deformed nuclei, we compare in Fig. 8 the centroid energies

FIG. 7. Comparison between experimental [5] and BSk27 + QRPA photon strength functions for six deformed nuclei. Both prescriptions
I (dash-dotted line) and II (dashed line) are shown.
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FIG. 8. Comparison between experimental and BSk27 + QRPA
peak energies for 36 deformed nuclei. Both prescriptions I (blue
circles) and II (red triangles) are shown. The low- and high-energy
peak energies are shown in panels (a) and (b), respectively.

of the two peaks predicted by BSk27 + QRPA with known
GDR parameters [6,40] for 36 deformed nuclei. Here also,
globally the peak energies can be rather well described, in
particular by our prescription II, prescription I usually over-
estimating the energy of the first peak for rare-earth nuclei
and underestimating it for actinides. For this reason, the subse-
quent calculations will be carried out based on the interference
factors of prescription II that, overall, leads to significantly
better descriptions of the GDR experimental features.

F. Temperature-dependent correction and low-energy strength

The BSk27 + QRPA results obtained up to now focused
on the photoabsorption at energies characteristic of the GDR
region. However, some experimental studies [52–54] indicate
that the photon strength function may also depend on the
excitation energy of the initially decaying state and conse-
quently that the deexcitation (downwards) strength function
may differ from the photoabsorption (upwards) one. This
violation of the so-called Brink hypothesis can be described

by introducing a temperature-dependent correction to the pho-
toabsorption strength function (see, e.g., Refs. [8,55,56]).

In the present study, two temperature-dependent correc-
tions (Correction I and Correction II) as inspired from the
Fermi-liquid theory [55] are considered. For both correc-
tions, a temperature-dependent term is explicitly added to the
energy-dependent width �(E ) [see Eq. (13)], namely,

�′(E , T ) = �(E ) + 4παT 2�(E )

EGDRE
, (18)

and

�′(E , T ) = �(E ) + 4π2T 2�GDR

E2
GDR

, (19)

for Correction I and Correction II, respectively. In Eqs. (18)
and (19), T refers to the nuclear temperature of the absorbing
state, and α is a normalization constant. In Eqs. (18) and (19),
for simplicity, mean values of the GDR peak energy and width
for the 48 spherical nuclei are adopted, namely, EGDR = 15.5
MeV and �GDR = 5.2 MeV and the normalization constant
α is set to two [8]. The modified width �′(E , T ) is imported
into the damping procedure to determine the deexcitation E1
photon strength function, guaranteeing the compatibility with
γ -absorption data.

Taking into account both expressions of the temperature-
dependent corrections for the width �′(E , T ) given by
Eq. (18) (Correction I) and Eq. (19) (Correction II), two sets of
temperature-dependent BSk27 + QRPA E1 photon strength
functions have been computed for temperatures ranging be-
tween T = 0 (i.e., without correction) to T = 2.0 MeV. In
such calculations, both the interference factors of prescription
II (see Sec. III D) and the deformation effect (see Sec. III E)
are simultaneously considered.

To test the temperature dependence, we compare in Fig. 9
both corrections at different temperatures (namely, T = 1 and
2 MeV) with the theoretical results obtained by the shell
model [57,58] for the four light nuclei 43Sc, 44Sc, 44Ti, and
45Ti. It can be seen in Fig. 9 that the shell-model calcula-
tions are fairly well reproduced by the temperature-dependent
BSk27 + QRPA results. The E1 photon strength functions be-
low the neutron separation energies are dramatically affected
by the temperature correction. A nonzero behavior with a sig-
nificant increase and broadening of the E1 strength function
is obtained for E → 0. It can also be seen that, in the case
of Correction I, the extra enhancement of the E1 strength
function resulting from the 1/E dependence of Eq. (18) can
be observed as an “upbend” behavior at E → 0. Note that
the upbend of the strength function observed experimentally
[59,60] has been assumed to be of the M1 nature follow-
ing shell-model predictions [61], although no experimental
evidence exists for the moment. However, the “upbend” be-
havior of the temperature-dependent E1 strength at E → 0
obtained with Eq. (18) (Correction I) is clearly not confirmed
by the shell model. For this reason, in the study to follow, the
temperature-dependent correction II is adopted.

At the low energies ranging from 4 to 8 MeV, the BSk27
+ QRPA E1 strength fE1 calculated by Eq. (19) (Correction
II) with different temperatures of T = 0.0, 0.6, and 1.0 MeV
are systematically compared with the compiled experimental
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FIG. 9. Comparison between the shell model E1 strength function [57,58] and the temperature-dependent BSk27 + QRPA results obtained
with corrections I and II at T = 0, 1.0 and 2.0 MeV for two isotopes of Sc and two isotopes of Ti.

data for 60 nuclei from 25Mg to 239U [6] in Fig. 10 and for 25
nuclei from 96Mo to 240Pu [62] in Fig. 11, respectively. The
data sets used for the comparison include resolved-resonance
measurements, thermal capture measurements, and photonu-
clear data. In some cases the original experimental data need
to be corrected, typically for nonstatistical effects, so that only
the results recommended by Refs. [6,62,63] are considered
in Figs. 10 and 11. We find that all the BSk27 + QRPA
results with and without temperature-dependent corrections
reproduce well the trend of the experimental E1 strength
within the error bars. In particular, the rms deviation frms [see
Eq. (16)] on the ratios of the theoretical predictions to the
experimental data are estimated to frms = 2.12, 2.01, and 2.06
for T = 0.0, 0.6, and 1.0 MeV, respectively, for the 60 nuclei
from 25Mg to 239U compiled in RIPL3 [6], and frms = 1.73,
1.54, and 1.58 for the 25 nuclei from 96Mo to 240Pu from
the recent analysis of the average resonance capture (ARC)
measurements [62,63]. Such a degree of accuracy is similar to

FIG. 10. Systematic comparison between the experimental E1
strength fE1 at the energies ranging from 4 to 8 MeV in RIPL3
compilation for 60 nuclei from 25Mg to 239U [6] and the BSk27
+ QRPA results calculated by Eq. (19) (Correction II) at different
temperatures of T = 0, 0.6, and 1.0 MeV.

the one obtained with the previous BSk7 + QRPA calculation
[8] and the Gogny D1M+QRPA calculation [10]. The frms

values indicate that the BSk27 + QRPA calculation taking
into account the temperature-dependent correction is globally
in better agreement with the γ -decay data, although the cal-
culation without temperature correction remains compatible
with experimental results.

G. Comparisons with other predictions of E1 strength

For all the ≈10 000 nuclei with 8 � Z � 124 lying be-
tween the proton and the neutron drip lines, we have
calculated a complete set of temperature-dependent BSk27
+ QRPA E1 photon strength functions. These have been
obtained through the damping procedure of Eqs. (11)–(13)
(Sec. III A) with the interference factors of prescription II (see
Secs. III B–III D), the deformation effects (Sec. III E), as well
as the temperature-dependent correction II (Sec. III F).

FIG. 11. Systematic comparison between ARC E1 strength
function for 25 nuclei from 96Mo to 240Pu at the energies ranging
from 4 to 8 MeV [62] and BSk27 + QRPA results calculated by
Eq. (19) (Correction II) at three different temperatures of T = 0.0,
0.6, and 1.0 MeV.
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FIG. 12. The E1 photon strength functions for the isotopes of Sn
(from A = 115 to A = 155 with a step of �A = 5) obtained from
(a) the empirical Lorentzian model SMLO [40,64], (b) the D1M +
QRPA [5,10], (c) the BSk7 + QRPA [8], and (d) the present BSk27
+ QRPA.

We compare in Fig. 12 our BSk27 + QRPA E1 pho-
ton strength function in the isotopic chain of Sn (from A =
115 to A = 155 with a step of �A = 5) with the empirical
simple modified Lorentzian (SMLO) [40,64], D1M+QRPA
[5,10], and BSk7 + QRPA [8] models. Note that the SMLO
model [40,64] is an updated version of the generalized
Lorentzian model that has been thoroughly compared with all

FIG. 13. Ratios of the neutron capture reaction rates at the
temperature of T9 = 1 calculated with the E1 BSk7 + QRPA,
D1M+QRPA, and SMLO models to the one obtained with the
present BSk27 + QRPA model for the Sn isotopes in the mass range
from A = 115 to A = 155.

experimental data available. Our new BSk27 + QRPA results
are rather similar to the other QRPA predictions and the
empirical Lorentzian approximation for nuclei close to the
valley of β stability. However, in the neutron-rich region, the
present BSk27 + QRPA calculations start deviating from the
Lorentzian curves in the same way as the BSk7 + QRPA
used to. For the Sn isotopes above N = 82 shell closure, in
particular, some extra strength is found to be located in the
low-energy range of [5,10] MeV. The more exotic the nucleus,
the stronger this low-energy E1 strength.

IV. CALCULATIONS OF THE ASTROPHYSICAL
NEUTRON CAPTURE REACTION RATES

The E1 photon strength function directly impacts the
neutron capture reaction rate of astrophysical interest. To
quantitatively investigate such an impact, systematical com-
parisons of the neutron capture reaction rates calculated with
different E1 photon strength functions are performed for all
the ≈10 000 nuclei with 8 � Z � 124 lying between the pro-
ton and the neutron drip lines. The reaction rates are estimated
on the basis of the Hauser-Feshbach statistical model with the
TALYS reaction code [65–67].

For the nuclear ingredients used in TALYS, all experimental
information are considered whenever available, and if not,
various local and global microscopic (or semimicroscopic)
nuclear models have been incorporated to represent the nu-
clear structure and interaction properties. Such a combination
of experimental data and model predictions allows not only
for the essential coherence of the predictions for all experi-
mental unknown data, but also a rather reliable extrapolation
away from experimentally known energy or mass regions,
as required in specific applications like nuclear astrophysics.
More specifically, the experimental inputs of the nuclear
masses [13], the discrete energy levels [6], as well as the
model predictions including the Skyrme-HFB nuclear masses
[11], the JLMB optical model potentials [68,69] and the HFB
+ combinatorial nuclear level densities [70] are considered.
Furthermore, in order to keep the consistency, all these nuclear
ingredients are identically used for calculations of the neutron
capture rates with different E1 photon strength functions.
Note, however, to study the impact of the E1 strength function
only, the M1 contribution to the deexcitation mode is omitted
in all calculations here.

Figure 13 compares the neutron capture reaction rates
at T9 = 1 (where T9 is the temperature in units of 109 K)
computed with the present BSk27 + QRPA E1 photon
strength function to those obtained with the BSk7 + QRPA,
D1M+QRPA, and SMLO models for the Sn isotopes in the
mass range from A = 115 to A = 155. We can see from
Fig. 13 that predictions with BSk27 + QRPA are very close
to those obtained with BSk7 + QRPA along the whole Sn
isotopic chain. In contrast, BSk27 + QRPA rates may be
larger than D1M + QRPA or SMLO rates by a factor of about
five for the most exotic neutron-rich Sn isotopes.

Similar deviations between the rates with BSk27 + QRPA
and D1M + QRPA can be observed for the other isotopic
chains in Fig. 14 where rates are compared for all nuclei
with 8 � Z � 110 in the (N, Z) plane. Ratios between both
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FIG. 14. Representation in the (N, Z) plane of the ratios of the neutron capture reaction rates at T = 109 K obtained with the present BSk27
+ QRPA E1 photon strength function to those obtained with the previous D1M + QRPA model. The open black squares correspond to the
stable nuclei and very-long-lived actinides.

predictions remain essentially within a factor of two, except
for the most neutron-rich nuclei where a factor of ten at most
can be reached, BSk27 + QRPA giving rise to larger neutron
capture rates with respect to D1M + QRPA.

V. SUMMARY

Nuclear dipole excitations in the whole chart of nuclei are
key ingredients for different nuclear applications, in partic-
ular for nuclear astrophysics. In the present study, the E1
photon strength functions for about 10 000 nuclei with 8 �
Z � 124 lying between the proton and the neutron drip lines
are systematically investigated combining simultaneously the
microscopic HFB + QRPA model and the constraints from
various available experimental information sensitive to the
photon strength function.

In such an approach, the nuclear ground state is described
through the BSk27 Skyrme effective nucleon-nucleon inter-
action which has been shown to provide so far the most
accurate mass (and radii) predictions from mean-field models
and at the same time to reproduce nuclear matter properties
as estimated from realistic microscopic calculations [11]. In
the QRPA framework, the nuclear excitation is considered as
the collective superposition of two qp states built on top of the
BSk27 HFB ground state, and the response function for the
nuclear excitation, represented as the ph strength distribution,
is derived from the Green’s function formalism. Large-scale
calculations of the BSk27 QRPA ph strength distributions
for all the ≈10 000 nuclei with 8 � Z � 124 have been per-
formed assuming spherical symmetry.

Despite the predictive power of the HFB + QRPA ap-
proach, a number of phenomenological corrections needs to
be included in order to describe effects beyond the stan-
dard 1p-1h HFB + QRPA model, but also to reproduce
accurately available experimental data. By folding the ph
strength distributions by a Lorentzian-type function, neglected
effects, such as phonon coupling or 2p-2h excitations can be

phenomenologically included. Such a folding procedure in-
troduces two phenomenological interference factors, CE and
CG that have been adjusted to reproduce at best experimental
GDR parameters for spherical nuclei. Two prescriptions are
proposed and tested, although only the most accurate one
with an individual adjustment nucleus by nucleus has been
retained. For nuclei for which no experimental data are avail-
able, interpolations of CE and CG between experimentally
constrained values are performed as a function of the neutron
number N .

To break the spherical symmetry, an empirical expression
accounting for deformation effects is applied in the above-
mentioned folding procedure of the QRPA photon strength
function. The systematical comparison of the GDR parameter
for 36 deformed nuclei show that deformation effects can be
fairly well introduced by a simple split of the GDR structure,
as classically done in empirical studies and also observed
experimentally in photonuclear data.

Finally, a temperature-dependent correction of the width
of folding Lorentzian function is introduced to take into ac-
count the possible nonzero energy of the initial absorbing
state. Such a correction is fundamental to extract the deex-
citation photon strength function from the photoabsorption
strength calculated on the basis of the HFB + QRPA ap-
proach. Two specific corrections are introduced and tested
against shell-model predictions and available low-energy data.
Such temperature corrections lead to a significant increase
and broadening of the E1 photon strength function below
the neutron separation energies and is needed to reproduce
experimental data derived from deexcitation channels, such
as ARC data.

Taking into account all those corrections beyond the
present HFB + QRPA approach, (i.e., effects beyond QRPA,
deformation, and temperature effects), a complete set of E1
photon strength functions for about 10 000 nuclei with 8 �
Z � 124 lying between the proton and the neutron drip lines
are generated on the basis of the BSk27 interaction. This
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model has been shown to reproduce experimental photodata
relatively well, at least for A >∼ 100 nuclei, with an accuracy
similar to what would have been obtained with a Lorentz-type
approach globally fit to the data [40]. The E1 description for
light A <∼ 100 nuclei remains difficult in any of the models
available nowadays. Compared with the empirical Lorentzian
formula, a systematic increase of the E1 strength function is
found for neutron-rich nuclei. While a global agreement is
found with respect to our previous BSk7 + QRPA predic-
tions, more strength is found at low energies relative to the
axially deformed D1M + QRPA predictions. Such an extra
low-energy strength has a direct impact on neutron capture
cross sections and rates, the latter being found to be larger by
up to a factor of ten for exotic neutron-rich nuclei lying close
to the neutron drip line.

Further improvements for the study of the photon strength
function may be envisioned. In particular, in order to better
describe the low-energy region, it is necessary to consider
the magnetic-dipole (M1) contribution. A complete E1 + M1
photon strength functions predicted fully consistently within
the same approach can allow us to broaden the comparison
with available experimental data and to improve the esti-
mate of radiative neutron capture and photoneutron rates of

astrophysical interest. Experimental efforts to further improve
the description of the photon strength function, in particular
with the future measurement of the photonuclear excitation
at the Extreme Light Infrastructure—Nuclear Physics (ELI-
NP), are promising [71]. It is believed that working along
such a path is a way to further improve the study of r and
p processes of nucleosynthesis on the basis of reliable and
accurate nuclear physics inputs.
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