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Trapped two-nucleon system in energy-dependent effective field theory
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We discuss how to connect the energy levels of two-particle systems trapped by a harmonic-oscillator force
to scattering amplitudes, with nucleon-nucleon scattering phase shifts in uncoupled channels as the application.
At the center of the proposed framework is the energy-dependent effective field theory that aims to expand
observables in a neighborhood around each reference energy, often taken to be one of the energy levels. We
also investigate how to disentangle the trapping force at short distances and the intrinsic interaction between the
particles.
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I. INTRODUCTION

Many-body methods for studying nuclear structure have
evolved to the point where properties of relatively tightly
bound nuclei can be calculated with microscopic nuclear
forces [1–8]. But ab initio descriptions of nuclear reactions
appear to be more difficult because of the larger size of react-
ing systems [9–13]. In a recent research program, efforts have
been made to calculate scattering amplitudes, using as inputs
the energy levels of many-nucleon systems trapped by an
artificial field, especially a harmonic-oscillator (HO) potential
[14–19]. An indispensable ingredient in this approach is a
model-independent formalism to connect the energy eigen-
value of the trapped states to the scattering amplitude of the
two particles, the so-called quantization condition (QC). We
propose in the paper an energy-dependent effective field the-
ory (EDT) to achieve this goal, by expanding observables in a
kinematic window centered around a reference center-of-mass
(CM) energy. This reference energy can be most conveniently
chosen to be one of the energy eigenvalues of the trapped
system.

We illustrate the framework by studying elastic scattering
of two particles that are often composite from the point of
view of the underlying interaction applied in ab initio calcu-
lations. The EDT formalism developed here describes their
interactions with contact operators; therefore, it appears to
have the usual structure of cluster/halo effective field theory
(EFT) [8,20]. However, the EDT coupling constants depend
on the reference CM energy Er that anchors a particular kine-
matic neighborhood. The EDT can therefore be thought of as
a collection of “member” EFTs that relay each other’s validity
region, and the full set of them as a whole covers a sufficiently
large kinematic domain. Once a reference energy is chosen,
the corresponding member EFT is in charge of the kinematic
configurations that amount to small residual momenta around
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Er , forming expansion of observables in powers of (E − Er ),
where E is the CM energy of the said two particles. In this
sense, the coupling constants of the EDT are still referred to
in the paper as low-energy constants (LECs).

When applied to the trapped particles, the energy of an
eigenstate under consideration can be designated as the ref-
erence energy Er . One collects inputs for the EDT from the
eigenstate, provided by ab initio calculations, in order to deter-
mine the LECs at this reference energy. The idea of expanding
around a reference energy enables us to make use of the
contact EFT toolkit even away from the threshold, where clus-
ter/halo EFT has been traditionally designed to function. We
show that at leading order (LO) the formula first constructed
in Ref. [21], referred to as the BERW formula in the paper,
is established. More importantly, one can calculate reliably
scattering amplitudes around Er by investigating subleading
corrections.

Among the previous studies on HO-trapped systems, EFT
frameworks were frequently employed. In some works, the
underlying interaction had a form of EFT and was at the center
of investigation. So no effort was made to improve the BERW
formula itself [14,15,22]. In others, an EFT was used to solve
simultaneously the two-body problems in the HO trap and
free space [17,18] so as to correlate the spectrum and elastic
scattering amplitude, just like we will do in the paper. But the
EFT expansion in Refs. [17,18] focuses on small momenta
near the threshold, conforming with the conventional wisdom
of contact EFTs [23–25].

It should be mentioned that the idea of building EFTs
for kinematic configurations away from threshold has been
implemented before in various applications. For instance, one
can organize calculations in resonance and threshold regions
separately before somehow combining them [26–28]. An ex-
pansion of scattering amplitude can be constructed close to
its zeros even though they are above the threshold [29]. In
many-fermion systems, an EFT can be developed for small
momentum modes near the filled Fermi surface [30].

Since the HO potential does not vanish within the range
of intrinsic interactions for any finite value of HO frequency
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ω, an additional price must be paid to disentangle the trap-
ping and intrinsic forces. This was addressed in Ref. [17] by
making the LECs of threshold EFT as a function of ω2. We
approach the issue with the EDT framework, extrapolating
scattering observables, rather than the LECs, for ω2 → 0.

The EDT formalism is explained in Sec. II with the 1S0 NN
scattering as the first example, followed by extension to un-
coupled P waves in Sec. III. Section IV demonstrates how
to remove systematic errors due to finite ω by extracting the
continuum limit of the 1S0 scattering length. Some discussions
and the conclusions are offered in Sec. V.

II. ENERGY-DEPENDENT EFFECTIVE FIELD THEORY

Among others, there are four important length scales at
play inside a trap: the wavelength of the particles λ, the wide-
ness of the trap b, the range of the intrinsic interaction rI , and
the size of the particles d . In this investigation, we assume
that d is much smaller than both λ and b. The HO potential
can be expressed in terms of reduced mass μ and interparticle
distance r,

V HO(r) = 1
2μω2r2, (1)

and the oscillator length is frequently used to characterize its
wideness:

b ≡ (μω)−
1
2 . (2)

Connecting discrete energy spectra of artificially trapped par-
ticles to their scattering amplitudes finds many applications
in various fields of physics [31,32]. Model-independent ex-
traction of scattering information is most conveniently done
when b and rI are well separated: rI � b. Therefore, there
must be a noninteracting region where the intrinsic interaction
at least nearly vanishes and the confining force of the trap is
sufficiently weak. This allows one to construct infinite-volume
scattering wave functions by matching their asymptotic form,
with an undetermined phase shift, to the trapped ones in the
noninteracting region.

It is perhaps easiest to construct the asymptotic wave
functions with auxiliary potentials with contact operators
[17,19,33]. As pointed out in Ref. [19], it matters little
whether the auxiliary potential resembles the underlying,
realistic interactions for distances shorter than rI . More im-
portantly, the contact parameters are not really “constant”; it is
absolutely fine for them to vary from one energy eigenvalue to
another. We now build upon this idea a more systematic EFT
framework that will include effective operators to describe
small momentum fluctuations around a reference energy.

We use the two-nucleon system to illustrate the frame-
work. More specifically, we consider the uncoupled channel
1S0 of NN scattering so that we will not be distracted by
complications such as coupled-channel dynamics. As for
the underlying nucleon-nucleon interaction, we choose the
leading-order chiral force: one-pion exchange plus a constant
contact term, regularized by a Gaussian function with � =
400 MeV, referred to below as V LO

χ . We note that, in this
proof-of-principle exercise, any nucleon-nucleon potentials
are acceptable.

We now turn to the EDT interaction that will underpin both
scattering and trapped states. The 1S0-projected EDT potential
takes the usual form found in the plethora of contact EFT
literature (for instance, see Refs. [23–25]), but with the LECs
labeled by reference energies Er :

V1S0
(p′, p; Er ) = C(Er ) + 1

2 D(Er )(p′2 + p2)

+ 1
2 E (Er )p′2 p2 + · · · , (3)

where p (p′) is the incoming (outgoing) relative momentum.
To calculate observables like scattering amplitudes or energy
levels in the trap, the UV part of the EFT potential needs to be
regularized:

V �
1S0

(p′, p; Er ) = fR

(
p′2

�2

)
V1S0

(p′, p; Er ) fR

(
p2

�2

)
. (4)

We use a Gaussian regulator in the numerical calculations
carried out in the paper:

fR(x) = e−x2
. (5)

The 1S0 T -matrix is generated by the partial-wave Lippmann-
Schwinger equation:

T (p′, p; E )

= V (p′, p) + 1

2π2

∫ ∞

0
dq q2V (p′, q)

T (q, p; E )

E − q2/mN + i0
,

(6)

which is sometimes written symbolically as

T = V + V G0(E )T, (7)

where G0 is the free-particle Green’s function. The T -matrix
is related to the phase shift by

T = − 4π

mN

1

k cot δ − ik
, (8)

where E = k2/mN .
The LO T -matrix is expected to be generated by the C term

alone. When calculating subleading corrections, one often
finds it elucidating to treat higher-order operators in pertur-
bation theory [34]. The T -matrix at each order will calculated
as follows:

T (0) = V (0)
1S0

+ V (0)
1S0

G0T (0), (9)

T (1) = (1 + T (0)G0)V (1)
1S0

(1 + G0T (0) ), (10)

T (2) = (1 + T (0)G0)V (2)
1S0

(1 + G0T (0) ) + (1 + T (0)G0)V (1)
1S0

× (G0 + G0T (0)G0)V (1)
1S0

(1 + G0T (0) ), (11)

where

V (0)
1S0

= C(0), (12)

V (1)
1S0

= C(1) + 1
2 D(0)(p′2 + p2), (13)

V (2)
1S0

= C(2) + 1
2 D(1)(p′2 + p2) + 1

2 E (0) p′2 p2. (14)

We have formally expand coupling constants at each order of
EFT expansion, e.g.,

C(Er ) = C(0)(Er ) + C(1)(Er ) + C(2)(Er ) + · · · , (15)
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which does not, however, introduce more free parameters to
the EFT [35].

According to the power counting above, we show the first
two orders explicitly. The LO T -matrix is found to be

T (0)(E ) = − 4π

mN

1

α0(Er ) − ik
, (16)

where E = k2/mN is the CM energy, and

α0(Er ) = − 4π

mN

[
C−1

0 (Er ) + θ1mN�
]
, (17)

where θn depends on the regularization scheme

1

2π2

∫
dq qn−1 f 2

R

(
q2

�2

)
≡ θn�

n. (18)

We have discarded the terms vanishing for � → ∞. The NLO
correction is given by

T (1) = − 4π

mN

−α1(Er )

[α0(Er ) − ik]2 (E − Er ), (19)

where

α1(Er ) ≡ 1

4π

D(0)

C(0)2 , Er ≡ mN

(
θ3mNC(0)�3 − C(1)

D(0)

)
. (20)

The conversion of these T -matrices to the phase shifts must
respect perturbative unitarity of the S-matrix so that its break-
ing is always in higher order by the same power counting
[36,37]. Therefore, we can rewrite the sum of T (0) and T (1)

by adding necessary terms at N2LO and beyond:

T (0+1) = − 4π

mN

1

α0(Er ) + α1(Er )(E − Er ) − ik
, (21)

which resembles the effective range expansion

k cot δ=α0(Er ) + α1(Er )(E − Er ) + α2(Er )(E − Er )2 + · · · .

(22)
The energy levels of the trapped particles are generated by

the total Hamiltonian of the trapping force and NN interac-
tions. The underlying interaction V LO

χ is first put in the trap to
generate energy eigenvalues that will later be used as “data.”
In order to determine the LECs of V �

1S0
, the energy spectrum

of the following Hamiltonian must match the data, at least
partially:

Hω = H0 + V HO + V �
1S0

. (23)

To calculate subleading corrections to the eigenvalues, we
treat higher-order terms as perturbations, in a fashion similar
to scattering amplitudes.

The previous effort to demonstrate renormalizability of the
EDT potential in 1S0 scattering now pays off, for b as an
infrared scale will not change the ultraviolet behavior of EDT
as long as � � p � b−1 = √

mNω/2, where p is the average
momentum of the trapped state. So, we expect the energy
eigenvalues En generated by Hω are independent of � at the
limit � → ∞. In the following, we will, as a convention, use
large enough cutoff values in the EDT calculations to ensure
that the results reach the limit � → ∞.

At LO, the EDT potential has only one operator with no ex-
plicit momentum dependence. This is precisely the auxiliary

FIG. 1. The LO 1S0 phase shifts (the circles) approach the BERW
value (the dotted line) for large cutoff values; the ground state for
ω = 10 MeV is used as the input. See the text for more explanation.

potential used in Ref. [19], with which the BERW formula
was reproduced at the limit � → ∞:

p2l+1 cot δl (E ) = (−1)l+1(4μω)l+ 1
2



(
3
4 + l

2 − E
2ω

)



(
1
4 − l

2 − E
2ω

) , (24)

where E is an energy eigenvalue and l is the orbital angular
momentum. We verify this numerically. For ω = 10.0 MeV,
the ground-state CM energy E0 = 7.47 MeV is produced by
the underlying NN interaction, and it is taken as the reference
energy: Er = E0. Tuning C(0)(Er ; �) in the LO EDT potential
(12) for any given � to reproduce E0 as the ground-state
energy, we can then calculate the phase shifts in the neigh-
borhood of the CM energy E = Er . If we restrict ourselves to
a statement on the phase shift for exactly E = Er , and nowhere
else, we expect to rediscover the same result predicted by the
BERW formula. This is indeed the case, as shown in Fig. 1.

Let us turn to higher orders and to investigate what kind
of improvement can be gained beyond the BERW formula.
Before looking at scattering processes, we examine the spectra
calculated with the higher-order EDT potentials. The ground-
state energy as a function of ω is shown in Fig. 2(a). The
data at three different frequencies, (ω − �ω,ω,ω + �ω) =
(6.5, 7.0, 7.5) MeV, are used as the inputs to determine the
LECs. The determination is arranged so that the LO EDT
curve goes through the datum at ω = 7.0 MeV, the NLO
through both 7.0 and 7.5 MeV, and finally the N2LO through
all of the data. Unless noted otherwise, when fitting the EDT
LECs, we will always pick the data in the same fashion:
usually three of them, one for each of three values of ω. The
predictions by the EDT for energy eigenvalues at higher fre-
quencies are systematically improved with increasing orders.
To better visualize the improvement, the deviation from the
data �E of each order is plotted in Fig. 2(b).

If �ω is quite small, the energies for ω ± �ω can be
computed from the eigenstate for ω alone, by considering
small change of ω in first-order perturbation theory:

V±�ω ≡ ±μ�ω ωr2, (25)

�E± = 〈�ω|V±�ω|�ω〉, (26)
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FIG. 2. (a) 1S0 ground-state energies as function of HO frequency ω. The circles represent the data, the dot-dashed line LO of the EDT,
the dashed line NLO, and the solid line N2LO. (b) Similar to (a), but the deviation from the data, energies generated by the underlying NN
potential, at each order is shown instead.

where �ω is the eigenstate for ω. In other words, at least some
of the LECs for a given Er can be determined in practice with
a fixed value of ω, as opposed to varying ω for multiple times.
This realization could be useful in larger-scale calculations
where varying ω can be computationally expensive but the
wave function of �ω can be saved in storage.

The LECs obtained from fitting to the ground-state energy
(Fig. 2) are then used to predict the 1S0 phase shifts. The same
procedure is repeated with the first and second excited states,
and Er is adjusted accordingly so that it is always in close
proximity to the energy eigenvalue under consideration. The
results are plotted in Fig. 3. Although it is quite encouraging
that three states provide enough inputs to produce a good
agreement with the chiral phase shifts, we do not have any
a priori reason to expect an equally efficient result in other
partial waves (cf. Sec. III). But the EFT framework enables
us to gauge how reliable the prediction of phase shifts is,
by examining how rapid the results converge with increasing

FIG. 3. The 1S0 phase shifts as a function of the CM energy. The
circles represent those generated by the underlying NN potential
V LO

χ , the dot-dashed line is the LO of the EDT, the dashed line NLO,
and the solid line N2LO. The squares are the BERW values calculated
with these three energy eigenvalues. There are three energy windows,
corresponding to the ground, first, and second excited states for
ω = 7 MeV used as the inputs. In addition to the obvious sequence
in energies, they are also distinguished by different colors.

orders. We can find out the validity window for each mem-
ber EFT identified with Er , by looking at where the EDT
expansion diverges.

III. P WAVES

For the S waves, the LO EDT potential is iterated to all
orders; that is, the Lippmann-Schwinger equation is solved
exactly in both scattering and trapping problems. But for
higher partial waves, no immediate extension of such a non-
perturbative iteration of contact potentials is known to be
renormalizable (see Ref. [38] for the latest study), unless a
dimeron field is explicitly used [39].

Let us briefly recapitulate the renormalization issue with
the nonperturbatative treatment of purely short-range P-wave
potentials, which has the following generic form after partial-
wave projection:

VP(p′, p; Er )

= p′ p
[
CP(Er ) + 1

2 DP(p′2 + p2) + 1
2 EP(Er )p′2 p2 · · · ].

(27)

The on-shell 3P0 T -matrix obtained by iterating the CP term is

T (E ) = − 4π

mN

k2

αP0(Er ) − θ ′
1�(E − Er ) − ik3

, (28)

where

θ ′
1 ≡ 4πmNθ1, (29)

αP0(Er ) = − 4π

mN

[
C−1

P (Er ; �) − θ3mN�3 − θ1m2
NEr�

]
. (30)

If we are interested in the phase shift at precisely E = Er ,
which is the case for the BERW formula, there will not be
significant sensitivity to � because 1/C(0)

p (Er ) can absorb the
cubic divergence and the linear piece proportional to Er . But
any prediction away from E = Er is linearly dependent on �.
So, with a straightforward nonperturbative treatment of the CP

term, while we still recover the BERW formula for P waves,
the energy expansion we previously sought is lost.
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FIG. 4. (a) The 3P0 ground-state energy as a function of ω. (b) The deviation from the data as a function of ω. The symbols are the same as
those of Fig. 2.

There are two solutions. One is to resort to a power count-
ing facilitated by the dimeron field, which is particularly
useful if there are resonances in the P waves [39,40]. The
other is to exploit, if it is the case, the smallness of the P-wave
phase shifts by developing a perturbative power counting. In
fact, we can follow pionless EFT [39] and let CP, DP, and EP

parametrize each nonvanishing term of expansion in (E − Er ).
To be more specific,

T (0) = V (0)
P , (31)

T (1) = V (1)
P , (32)

T (2) = V (2)
P + V (1)

P G0V
(1)

P , (33)

T (3) = V (3)
P + 2V (2)

P G0V
(1)

P + V (1)
P G0V

(1)
P G0V

(1)
P , (34)

where

V (0)
P = 0, (35)

V (1)
P = C(0)

P p′ p, (36)

V (2)
P = p′ p

(
C(1)

P + 1
2 D(0)

P (p2 + p′2)
)
, (37)

V (3)
P = p′ p

(
C(2)

P + 1
2 D(1)

P (p2 + p′2) + 1
2 E (0)

P p2 p′2). (38)

Again, the computation of energy levels of the trapped parti-
cles can be done by adding the HO potential.

The ground-state energy for the 3P0 channel is shown in
Fig. 4. It appears that the expansion converges slower than the
1S0, which is also reflected by the phase shifts plotted in Fig. 5
where the inputs from the first and second excited states are
taken as well.

IV. ω DEPENDENCE OF SCATTERING OBSERVABLES

As discussed at the beginning of Sec. II, model-
independent extraction of scattering parameters from the
trapped energy levels hinges on matching the scattering
asymptotic wave function and the “inside” part of the trapped
wave function in a noninteracting region where both trapping
and intrinsic forces vanish. This requirement will not be met
perfectly in the case of the HO trap, as long as a finite value
is taken by ω. Therefore, the scattering amplitudes computed
in the previous sections under the assumption ω → 0 depend

artificially on ω, T (E ; ω2), a contamination related to the
infrared scale b. In this section we discuss how to remove this
artifact.

We expect to remove the implicit ω dependence of scatter-
ing amplitudes by subtracting the trapping force from within
the range of the intrinsic interaction, which is equivalent to
adding the opposite of the HO potential but only at short
distances:

Vsub(r; ω2) = − 1
2μω2r2 θ (rI − r). (39)

This is in fact a change to the full Hamiltonian Hω, so the
energy eigenvalues will shift from before the alteration of the
HO trap. Consequently, one can no longer apply the BERW
formula to the shifted energy levels. But we can always follow
the recipe illustrated in the previous sections, calculating the
energy levels with the altered trapping field, feeding them to
the EDT potential encompassed by the same altered trapping
field, and computing the phase shifts in the end. The end result
will be the infinite-volume amplitude free of ω: T∞(E ). If
ω is sufficiently small, the calculations leading up to T∞(E )
from T (E ; ω) can be done by treating Vsub as a perturbation,
for both energy eigenvalues and scattering amplitudes. This
observation tells us that the discrepancy between T (E ; ω) and

FIG. 5. The 3P0 phase shifts as a function of the CM energy.
The lowest three states for ω = 7 MeV are used as the inputs. The
symbols are the same as those of Fig. 3.
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FIG. 6. The 1S0 phase shifts as a function of the CM energy, with
the ground state for ω = 56 MeV used as the input. See Fig. 3 for
explanation of the symbols.

T∞(E ) is a polynomial in ω2 for sufficiently small ω2:

T (E ; ω2) − T∞(E ) = c1ω
2 + c2ω

4 + · · · . (40)

If rI/b � 1, which translates into

μωr2
I � 1, (41)

there is an almost noninteracting region, so ω is expected to
be within the convergence radius of Eq. (40). Examining the
first-order correction,

−1

2
μω2

∫ rI

dr r4ψ2(r; E ), (42)

we realize, however, that other scales embedded in the wave
function could facilitate the perturbation theory. Therefore,
the criterion μωr2

I � 1 could be unnecessarily conservative.
In Fig. 6, the ground state for ω = 56 MeV is used and the
phase shifts close to Er are only a few degrees off. Given
that μωr2

I � 1.3, where rI = m−1
π � 1.4 fm, the surprisingly

good agreement with the data can only be ascribed to the
short-range structure of the wave function ψ (r; E ). Analyzing
the wave function can be difficult, especially in ab initio calcu-
lations for many-nucleon systems. So we refrain from making
a general statement about the precise convergence radius of
the series (40).

The EDT framework does not automatically address the
issue of removing the infrared artifacts, but we are better
equipped to tackle it. With the BERW formula alone, one
cannot vary ω while fixing the value of the CM energy E at
which the amplitude is calculated. This can be done now in
the EDT framework. We note that Ref. [17] used a different
strategy, building into the EFT Lagrangian interaction terms
proportional to ω2.

As an application, we show how to extract the 1S0 scattering
length a1S0

, which is an observable associated with E = 0.
Tabulated in Table I are the values of a1S0

calculated for vari-
ous ω’s, up to N2LO in the EDT expansion:

a1S0
= a(0) + a(1) + a(2) + · · · (43)

Besides extrapolating to the threshold, the EDT offers a means
to assess truncation uncertainty of higher order in (E − Er ).

TABLE I. a1S0
(fm) calculated at each order with various values

of ω. �a is the EDT truncation uncertainty.

ω (MeV) a(0) a(1) a(2) �a

6.0 −9.66 −5.95 −3.24 1.8
8.0 −7.69 −5.66 −3.45 2.1

10.0 −6.59 −5.34 −3.45 2.2
12.0 −5.74 −5.02 −3.40 2.3

We estimate a(3) to be order of

∼
∣∣∣∣∣a(2) a(2)

a(1)

∣∣∣∣∣, (44)

which is used as the EDT truncation uncertainty and listed in
the column with header �a in Table I.

Following Eq. (40), we expect a1S0
(ω) to be a polynomial

in ω2:

a1S0
(ω) = a∞ + c1ω

2 + c2ω
4 + c3ω

6 + · · · . (45)

To extract the infinite-volume limit of the scattering length
a∞, we fit the above polynomial to the values of a(2) in Table I,
using a least-square weighted by the truncation uncertainty
�a. The fits with increasing polynomial degree are performed,
and the results are plotted in Fig. 7. a1S0

(ω) for some other
values of ω are also shown even though they were not em-
ployed in the fits. With increasing degree in ω2, the value of
a∞ approaches its “true” value of −23.74 fm, with −23.4 fm
resulting from the fit to the third-degree polynomial.

V. DISCUSSIONS AND CONCLUSIONS

We have proposed a framework of energy-dependent ef-
fective field theory to convert the energy levels of trapped
particles to their scattering amplitudes. The EDT developed
for this purpose is a collection of contact EFTs. Unlike the
more common hierarchy of EFTs where the underlying one

FIG. 7. Extrapolation of a1S0
(ω) to the infinite-volume limit. The

stars represent the N2LO EDT result of a1S0
for different values of

ω2. The dot-dashed, dashed, and solid lines are respectively linear,
quadratic, and cubical polynomials in ω2, fitted to four inputs of
a1S0

(ω) that have their EDT truncation uncertainty �a shown by the
bars.

044001-6



TRAPPED TWO-NUCLEON SYSTEM IN … PHYSICAL REVIEW C 104, 044001 (2021)

also applies to the lower-energy region, each member EFT of
the EDT specializes in describing a certain kinematic region
marked by a reference kinematic parameter. In the case of
two-particle elastic scattering, this reference kinematic param-
eter is chosen to be the CM energy. The Lagrangians of these
member EFTs have the same set of interaction terms, but with
LECs depending on the reference energy:

LEDT =
∑
Er

L[Ci(Er )]. (46)

Each member EFT underpins an expansion of scattering
amplitudes and trapped states around its reference energy;
therefore, it can connect observables from both sides. It
will not be surprising if the EDT does not offer strong
predictive power, but this is hardly a concern because its
usefulness lies in extracting scattering observables from en-
ergy levels; how much is gained relies on how much is
invested.

The BERW forumla is precisely the LO of the said ex-
pansion, and one can now reliably predict the phase shifts
at energies different from the trapped states, thanks to the
systematic approximation provided by the EDT framework.
One might be discouraged by the increasing number of LECs
required by higher orders because it demands more inputs
from ab initio calculations of the energy levels. We have
argued, however, that more inputs of energy eigenvalues for
varied ω can be obtained by first-order perturbation theory,
which entails only the wave function for Er . This has the
potential to save computational costs, as opposed to explicitly
varying ω in ab initio calculations.

In the illustrative application of 1S0 NN scattering, we
have based the power counting on expansion of the T -matrix
around the reference energy [see Eq. (21)]. But it is quite
likely that we need to develop distinctive power counting
for different systems. For example, near a resonance, a two-
parameter interaction is needed to set up the LO so that both
energy and width of the resonance can be captured. Another
example is demonstrated in Sec. III by the application to the
P waves, using a perturbative power counting by exploiting
smallness of the 3P0 NN phase shifts.

The presence of the trapping force within the range of
intrinsic interactions leads to dependence on the frequency ω,
an unwanted infrared artifact. We showed that the artifact is a
polynomial in ω2 and can be removed by extrapolating to the
limit ω2 = 0.

For the particular problem of two-particle elastic scatter-
ing, using the full EDT machinery may seem an overkill. One

could approximate the energy eigenvalue as a function of ω

with a Taylor expansion:

E (ω) = E0 + f1(ω − ω0) + f2(ω − ω0)2 + · · · , (47)

which, when coupled with the BERW formula, will also yield
the phase shifts for a certain energy region. But the EDT’s
ability to extrapolate to the continuum limit is lost because the
BERW formula does not allow one to calculate the amplitude
at a fixed energy while varying ω [17].

The EDT framework offers encouraging prospect for
applications to more complicated nuclear reactions. For a
specific reaction, it is quite straightforward to generalize to a
cluste/halo EFT Languangian [20], using the nuclear clusters
participating in the reaction as the degrees of freedom, with
the LECs depending on a reference energy, or other kinematic
variables. On the side of ab initio calculations, energy levels
of all the interacting constituent nucleons are produced and
used to determine the LECs. A similar program was carried
out to study elastic scattering of the neutron by a nucleus in
Ref. [18], but limited to the validity region of the conventional
pionless or cluster EFT. We can now make use of the EDT
framework laid out in the paper and go beyond that limitation.
The Coulomb force [41] and coupled-channel effects can be
accounted for with relative ease [19].

But there are more serious obstacles to overcome before
artificial HO trapping becomes a general facility for ab initio
description of nuclear reactions. For a given value of the CM
enegy of the reaction under consideration, what are the values
of ω one needs to cover in the ab initio calculations in the HO
trap so that a reliable infinite-volume extrapolation by way
of ω2 polynomials (40) can be achieved? There should be
a method in place to estimate these values beforehand. This
is further complicated by the size d of each cluster if d is
comparable with other scales of the system.

Yet another issue to be addressed is three-body or even
higher-body channels in some reactions. For instance, for
nucleon-deuteron breakup, the two-body framework must be
extended to incorporate the three-body final states. Even if
only elastic scattering cross section is of interest, the mixing is
always present in the trap between two-body and three-body
states above the breakup threshold, which cannot be dealt with
in a pure two-body formalism.
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