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The meson-baryon molecular components for the N∗ and �∗ resonances are investigated in terms of the
compositeness, which is defined as the norm of the two-body wave function from the meson-baryon scattering
amplitudes. The scattering amplitudes are constructed in a πN-ηN-σN-ρN-π� coupled-channels problem in a
meson exchange model together with several bare N∗ and �∗ states, and parameters are fitted so as to reproduce
the on-shell πN partial wave amplitudes up to the center-of-mass energy 1.9 GeV with the orbital angular
momentum L � 2. As a result, the Roper resonance N (1440) is found to be dominated by the πN and σN
molecular components while the bare-state contribution is small. The squared wave functions in coordinate
space imply that both in the πN and σN channels the separation between the meson and baryon is about more
than 1 fm for the N (1440) resonance. On the other hand, dominant meson-baryon molecular components are
not observed in any other N∗ and �∗ resonances in the present model, although they have some fractions of
the meson-baryon clouds.
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I. INTRODUCTION

The spectroscopy of the nucleon resonances N∗ and �∗ is
a key clue to understand nonperturbative aspects of quantum
chromodynamics (QCD), which is the fundamental theory of
hadrons and strong interactions [1]. Historically, the �(1232)
resonance opens the door to the color degrees of free-
dom [2], which is an essential idea of QCD. The masses,
widths, and other properties such as transition strength of
the nucleon resonances have been good tests to examine
the behavior of constituent quarks inside them. Today, rich
spectra of the nucleon resonances have been revealed in
the πN coupled-channels scattering amplitudes by dynami-
cal coupled-channels models [3–6] as well as the K-matrix
approaches [7,8]. In addition, results from the lattice QCD
simulations have been used to discuss the N∗ and �∗ physics
[9–13]. Recent studies on the N∗ and �∗ spectroscopy can be
found in, e.g., Refs. [14–22]. Motivated by these rich spectra
of the nucleon resonances, we are now in a phase of clarifying
their internal structure.

In this study, I utilize the πN scattering amplitudes for the
calculations of the meson-baryon molecular components for
the N∗ and �∗ resonances. This can be done in a strategy de-
veloped in my first paper of a series [23], where I have shown
that the two-body wave function of the bound state, both
in the stable and decaying cases, can be extracted from the
residue of the off-shell scattering amplitude at the bound-state
pole. Furthermore, the normalization of the two-body wave
function from the residue is automatically achieved. In this
sense, once the πN coupled-channels interactions are fixed so
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as to reproduce the empirical πN scattering amplitudes, one
can discuss the internal structure of the N∗ and �∗ resonances
with the meson-baryon wave functions from the off-shell parts
of the scattering amplitudes and its norm, which is called com-
positeness [24–27]. (For calculations of the compositeness,
see, e.g., Refs. [28–41]. See also review articles on hadronic
molecules [42] and hadron-hadron scattering [43].) In partic-
ular, from the πN scattering amplitudes I can unveil amounts
of the meson-baryon molecular components of N∗ and �∗
resonances which are claimed to be “dynamically generated”
without bare N∗ and �∗ states. Furthermore, even for the
resonances which originate from bare states, I can evaluate
how much the bare states are dressed in the meson-baryon
clouds in terms of the compositeness. These are the aim of the
present paper, the second paper of a series for the two-body
wave function and compositeness in general quantum systems
following the first paper [23].

This paper is organized as follows. First, I briefly show the
formulas of the two-body wave function and compositeness
from the scattering amplitude of constituents in Sec. II. Next,
in Sec. III, I construct an effective model to describe the πN
scattering amplitudes and N∗ and �∗ resonances. In Sec. IV,
I utilize the πN scattering amplitudes in the effective model
for the calculations of the two-body wave functions and com-
positeness for the N∗ and �∗ resonances, and I discuss their
meson-baryon molecular components. Section V is devoted to
the conclusion of this study.

II. FORMULAS OF COMPOSITENESS

First of all, I briefly summarize the formulas of the two-
body wave functions and compositeness from the scattering
amplitudes, which were expressed in detail in Refs. [23,31].
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Below, I focus on unstable resonance states, but formulations
and equations are applicable to stable bound states as well.
After showing general formulas in Sec. II A, I rewrite them in
terms of the complex scaling method for numerical calcula-
tions of resonance wave functions in Sec. II B.

A. Two-body wave functions from scattering amplitudes

In this study, I consider a two-body to two-body scatter-
ing, k(q) → j(q′), where k(q) and j(q′) denote the channels
(relative three-momenta) of the two-body initial and final
states, respectively. The scattering is governed by the two-
body interaction Vα, jk (E ; q′, q) in momentum space, where E
is the center-of-mass energy of the system, q(′) ≡ |q(′)|, and
partial-wave projection to a certain quantum number α of
the system was performed. I allow that the interaction may
intrinsically depend on the energy E . Then, the scattering
amplitude Tα, jk (E ; q′, q) in a coupled-channels problem is a
solution of the Lippmann-Schwinger equation:

Tα, jk (E ; q′, q) = Vα, jk (E ; q′, q)

+
Nchan∑
l=1

∫ ∞

0
dk k2 Vα, jl (E ; q′, k)Tα,lk (E ; k, q)

E − El (k) + i0
.

(1)

Here, Nchan is the number of channels and E j (q) is the on-shell
energy of the system in the jth channel as a function of the rel-
ative three-momentum q, for which I take the semirelativistic
option

E j (q) =
√

mj + q2 +
√

Mj + q2 (2)

for stable particle channels and

E j (E ; q) =
√

mj + q2 +
√

Mj + q2 + � j (E ; q) (3)

for unstable particle channels with the self-energy � j whose
practical form is given in Sec. III C. The masses of two parti-
cles in the jth channel are mj and Mj .

In my model space, I treat only two-body to two-body
scattering. In the study of the N∗ and �∗ resonances below,
I will implement one-body states (bare N∗ and �∗) into the
two-body interaction Vα, jk and three-body state (ππN) into
the self-energy � j .

In the physical scattering, the initial and final states are on
their mass shell, E = E j (q′) = Ek (q), and hence the scattering
amplitude Tα, jk (E ; q′, q) is a function only of the energy E ,
which is called the on-shell amplitude. The on-shell amplitude
is a solution of the Lippmann-Schwinger equation (1) and can
be evaluated by the Heitler equation

T on-shell
α, jk (E ) = Kon-shell

α, jk (E )

+
∑

l=stable

Kon-shell
α, jl (E )

[
−i

ρl (E )

2

]
T on-shell

α,lk (E ),

(4)

with the on-shell K-matrix Kon-shell
α, jk and phase space ρl where

l represents channels of stable particles. The K-matrix is a

solution of the following equation,

Kα, jk (E ; q′, q) = Vα, jk (E ; q′, q)

+
Nchan∑
l=1

P
∫ ∞

0
dk k2 Vα, jl (E ; q′, k)Kα,lk (E ; k, q)

E − El (k)
, (5)

and its on-shell part, Kon-shell
α, jk , is obtained by taking the on-

shell momenta q′ and q for the parameters of Kα, jk as E j (q′) =
Ek (q) = E . By means of P , I take the Cauchy principal value
for the integral over the momentum variable in stable open
channels, but it returns to the usual integral in closed channels
or unstable channels. The phase space is defined for stable
channels as

ρ j (E ) = E4 − (
m2

j − M2
j

)2

4πE3
k j (E )θ (E − mj − Mj ), (6)

with the Heaviside step function θ (x) and the on-shell relative
three-momentum

k j (E ) = λ1/2
(
E2, m2

j , M2
j

)
2E

. (7)

Here λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx is the
Källen function.

Besides the on-shell amplitude, mathematically one may
treat Tα, jk (E ; q′, q) as a function of the three independent
variables E , q′, and q as an off-shell amplitude. In particular,
calculation of the off-shell amplitude with the complex energy
E is essential to extract the two-body wave function from the
scattering amplitude, as seen below.

The scattering amplitude may have resonance poles in the
complex energy plane. Each pole position Epole coincides
with an eigenvalue of the Schrödinger equation for a reso-
nance state as an eigenstate. The pole for a certain resonance
state exists at the same position in the on-shell and off-shell
amplitudes. In particular, the resonance pole in the off-shell
amplitude can be described as

Tα, jk (E ; q′, q) = γ j (q′)γk (q)

E − Epole
+ (regular at E = Epole ), (8)

with the residue γ j (q′)γk (q).
As pointed out first by Weinberg [44] and discussed in

Refs. [23,31], the residue of the off-shell amplitude contains
information on the two-body wave function of the correspond-
ing resonance state as

γ j (q) = 1

(2π )3/2
[Epole − E j (q)]R̃ j (q), (9)

where R̃ j (q) is the radial part of the resonance wave function
in the jth channel in momentum space. An important point
is that one cannot introduce any scaling factor for this wave
function R̃ j (q) because the Lippmann-Schwinger equation (1)
is an inhomogeneous integral equation. Therefore, the wave
function in Eq. (9) should be automatically scaled. Indeed, the
normalization of the wave function in Eq. (9) is guaranteed by
the fact that the residue of the resonance propagator 1/(E −
Ĥ ), where Ĥ is the full Hamiltonian, is chosen to be exactly
unity in the present formulation [23].
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From the residue, one can calculate the norm of the two-
body wave function in the jth channel. In the present notation,
the expression of the norm is

Xj =
∫ ∞

0
dq P̃ j (q), (10)

with the density distribution P̃ j (q) defined as

P̃ j (q) ≡ q2

(2π )3
R̃ j (q)2 = q2

[
γ j (q)

Epole − E j (q)

]2

. (11)

I call Xj the compositeness of the channel j for the reso-
nance state. Here I note that in Eq. (11) one should calculate
the complex number squared rather than the absolute value
squared so as to achieve the normalizability for resonance
wave functions [45].

The wave function in coordinate space can be calculated
by the Fourier transformation, which brings the radial part of
the wave function in coordinate space Rj (r),

Rj (r) = iL

2π2

∫ ∞

0
dq q2R̃ j (q) jL(qr), (12)

where jL(x) is the spherical Bessel function with the orbital
angular momentum L for the channel j. Therefore, after omit-
ting the irrelevant factor iL from the angular part, the density
distribution in coordinate space becomes

P j (r) = r2

[
1

2π2

∫ ∞

0
dq q2R̃ j (q) jL(qr)

]2

= 2r2

π

[∫ ∞

0
dq q2 γ j (q)

Epole − E j (q)
jL(qr)

]2

, (13)

which is related to the compositeness as

Xj =
∫ ∞

0
dr P j (r). (14)

Because the wave function from the scattering amplitude is
automatically scaled, the compositeness (10) and (14) should
be normalized correctly. Indeed, for energy-independent in-
teractions, the compositeness was proved to be exactly unity
in Ref. [45] in the nonrelativistic single-channel resonances,
and the validity was extended to coupled-channels problems
in semirelativistic cases in Ref. [23].

However, when one treats an energy-dependent interaction
and/or unstable constituent with its self-energy, the sum of the
compositeness of all channels deviates from unity. This can be
interpreted as a missing-channel contribution, which is not an
explicit degree of freedom in the model space of the two-body
channels but is implemented into the interaction and/or into
the self-energy. I represent the missing-channel contribution
as Z:

Z ≡ 1 −
Nchan∑
j=1

Xj . (15)

Here, I note that both the compositeness Xj and the
missing-channel contribution Z are model-dependent quanti-
ties because they are not physical observables (see discussion
in Ref. [23]).

For resonance states, the compositeness Xj and the
missing-channel contribution Z become complex in general.
Therefore, in contrast to the stable bound states, one cannot
make a probabilistic interpretation for them. Actually, for
stable bound states, Xj and Z are real and bound in the range
[0, 1] and hence a sum rule

Nchan∑
j=1

|Xj | + |Z| = 1 (16)

is satisfied. On the other hand, this relation is not satisfied
for resonance states because both Xj and Z are complex. To
interpret such complex values, I introduce a quantity U for
resonance states to measure the deviation from the sum rule
(16), according to Refs. [30,37]:

U ≡
Nchan∑
j=1

|Xj | + |Z| − 1. (17)

Because of the definition of Z in Eq. (15), U satisfies U � 0.
Furthermore, U becomes small if Im Xj and Im Z are negli-
gible and Re Xj and Re Z are not negatively large. In such a
case, the wave function of the resonance state considered is
similar to that of a certain stable bound state. In particular, U
goes to zero in a stable bound-state limit, so U is understood
as an uncertainty of the interpretation of the complex-valued
Xj and Z , as discussed in Refs [30,37].

In this line, I employ quantities introduced in Refs. [23,31]:

X̃ j ≡ |Xj |
1 + U

, Z̃ ≡ |Z|
1 + U

. (18)

The quantities X̃ j and Z̃ are real, bound in the range [0, 1], and
automatically satisfy the sum rule:

Nchan∑
j=1

X̃ j + Z̃ = 1. (19)

Then, to estimate uncertainties of the probabilistic interpreta-
tion of X̃ j and Z̃ , I utilize the relation (17), which means that U
measures the deviation from sum rule for a bound state (16).
Therefore, a contribution from each Xj or Z to the deviation U
can be estimated by U divided by the number of the degrees of
freedom Nchan + 1, to which I refer as the reduced uncertainty
Ur:

Ur ≡ U

Nchan + 1
. (20)

In this sense, if and only if Ur � 1, one can interpret X̃ j (Z̃)
as the probability of finding the composite (missing) part, and
Ur can be considered as the uncertainty of the probabilities X̃ j

and Z̃ .

B. Complex scaling method for resonances

To calculate numerically the resonance wave function from
the residue of the scattering amplitude, one has to perform
an analytic continuation to reach the resonance pole Epole in
the complex energy plane. One way to do this is the complex
scaling method [46,47], which I employ in the present study.
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FIG. 1. Feynman diagrams for the meson-baryon interactions in the πN coupled-channels scattering amplitudes.

In the complex scaling method, one transforms the relative
coordinate r and relative momenta q for two-body states into
the complex-scaled values in the following manner:

r → reiθ , q → qe−iθ , (21)

with the scaling angle θ . Then, the equations relevant to my
study become

Tα, jk (E ; q′e−iθ , qe−iθ )

= Vα, jk (E ; q′e−iθ , qe−iθ )

+e−3iθ
Nchan∑
l=1

∫ ∞

0
dk k2 Vα, jl (E ; q′e−iθ , ke−iθ )

E − El (ke−iθ )

×Tα,lk (E ; ke−iθ , qe−iθ ), (22)

Tα, jk (E ; q′e−iθ , qe−iθ )

= γ j (q′e−iθ )γk (qe−iθ )

E − Epole
+ (regular at E = Epole ), (23)

γ j (qe−iθ ) = 1

(2π )3/2
[Epole − E j (qe−iθ )]R̃ j (qe−iθ ), (24)

Xj =
∫ ∞

0
dq P̃

(θ )
j (q) =

∫ ∞

0
dr P(θ )

j (r), (25)

P̃
(θ )
j (q) = e−3iθ q2

[
γ j (qe−iθ )

Epole − E j (qe−iθ )

]2

, (26)

P(θ )
j (r) = 2r2e−3iθ

π

[∫ ∞

0
dq q2 γ j (qe−iθ ) jL(qr)

Epole − E j (qe−iθ )

]2

. (27)

The definitions of the missing-channel contribution Z (15),
uncertainties U (17) and Ur (20), and real-valued quantities X̃
and Z̃ (18) are unchanged.

An important property of the complex scaling method is
that the pole position Epole and compositeness Xj do not de-
pend on the scaling angle θ while density distributions P(θ )

j

and P̃
(θ )
j depend on θ .
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TABLE I. Explicit channels for each quantum number JP, I (L2I 2J for the elastic πN) considered in the present study. The meson-baryon
states are specified by their orbital angular momentum L and total spin S as (L, S).

JP, I (L2I 2J ) Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8

1/2−, 1/2 (S11) πN (0, 1/2) ηN (0, 1/2) σN (1, 1/2) ρN (0, 1/2) ρN (2, 3/2) π�(2, 3/2)
1/2−, 3/2 (S31) πN (0, 1/2) ρN (0, 1/2) ρN (2, 3/2) π�(2, 3/2)
1/2+, 1/2 (P11) πN (1, 1/2) ηN (1, 1/2) σN (0, 1/2) ρN (1, 1/2) ρN (1, 3/2) π�(1, 3/2)
1/2+, 3/2 (P31) πN (1, 1/2) ρN (1, 1/2) ρN (1, 3/2) π�(1, 3/2)
3/2+, 1/2 (P13) πN (1, 1/2) ηN (1, 1/2) σN (2, 1/2) ρN (1, 1/2) ρN (1, 3/2) π�(1, 3/2)
3/2+, 3/2 (P33) πN (1, 1/2) ρN (1, 1/2) ρN (1, 3/2) π�(1, 3/2)
3/2−, 1/2 (D13) πN (2, 1/2) ηN (2, 1/2) σN (1, 1/2) ρN (0, 3/2) ρN (2, 1/2) ρN (2, 3/2) π�(0, 3/2) π�(2, 3/2)
3/2−, 3/2 (D33) πN (2, 1/2) ρN (0, 3/2) ρN (2, 1/2) ρN (2, 3/2) π�(0, 3/2) π�(2, 3/2)
5/2−, 1/2 (D15) πN (2, 1/2) ηN (2, 1/2) ρN (2, 1/2) ρN (2, 3/2) π�(2, 3/2)
5/2−, 3/2 (D35) πN (2, 1/2) ρN (2, 1/2) ρN (2, 3/2) π�(2, 3/2)

III. THE πN COUPLED-CHANNELS
SCATTERING AMPLITUDES

As described in the previous section, one can extract nor-
malized two-body wave functions of resonance states from the
residues of the off-shell scattering amplitudes at the resonance
poles. This fact is of special important when investigating
the internal structure of the N∗ and �∗ resonances, because
nowadays precise πN scattering amplitudes are available from
the partial wave analysis of the experimental data (see, e.g.,
the database of SAID [48]), which allows us to construct
sophisticated models for the πN coupled-channels scattering
amplitudes as done in Refs. [5,6].

In this study, I investigate the meson-baryon molecular
components of the N∗ and �∗ resonances by constructing a
meson-baryon coupled-channels model for the πN amplitudes
partly based on Ref. [49]. For this purpose, I take into account
the πN , ηN , σN , ρN , and π� channels. The interactions
are calculated according to the Feynman diagrams shown in
Fig. 1. Model parameters are fixed so as to reproduce the
results of the SAID partial wave analysis for the on-shell πN
amplitudes [48] up to E = 1.9 GeV with the orbital angular
momentum L � 2, i.e., S11, S31, P11, P31, P13, P33, D13, D33,
D15, and D35 partial waves of the elastic πN scattering. Here
and below, I use the notation L2I 2J with the orbital angular
momentum L, isospin I , and total angular momentum J for
the πN system.

I first summarize the notation of the πN scattering
amplitudes in Sec. III A and then construct the tree-level
interactions in Sec. III B. The self-energies for the unstable
channels, i.e., σN , ρN , and π�, are introduced in Sec. III C.
In Sec. III D, bare N∗ and �∗ states are introduced. Finally,
in Sec. III E, the model parameters are fitted to reproduce the
on-shell πN partial wave amplitudes. Throughout the calcula-
tions, isospin symmetry is assumed.

A. Notation of the scattering amplitudes

First of all, I fix the quantum number of the πN scat-
tering. When one considers the elastic πN scattering, its
partial wave can be uniquely specified by L2I 2J . In a general
coupled-channels analysis, however, the quantum number of
the system should be specified by the spin/parity JP and

isospin I , because the orbital angular momentum L may
change in different channels such as πN and σN . There-
fore, for the coupled-channels scattering amplitude in the
Lippmann-Schwinger equation (1), I use the notation α =
(JP, I ), but for the πN partial waves I use the notation L2I 2J

as well.
For each quantum number α = (JP, I ), I take into account

the πN , ηN , σN , ρN , and π� channels with their orbital
angular momenta L � 2. The explicit channels considered are
summarized in Table I. From the coupled-channels amplitude,
I calculate the normalized on-shell πN amplitude L2I 2J (E ) as

L2I 2J (E ) = −ρπN (E )

2
T on-shell

(JP,I ),11(E ), (28)

where the phase space ρπN of the πN channel is calculated
according to Eq. (6). This normalized πN amplitude satisfies
the optical theorem

Im L2I 2J (E ) = |L2I 2J (E )|2 (29)

below the inelastic threshold for the πN state.

B. Tree-level interactions

Next I formulate the tree-level πN coupled-channels inter-
actions diagrammatically shown in Fig. 1. For this purpose,
I employ effective Lagrangians as summarized in Table II.
Here, the notations for the hadron fields are N = (p, n)t and

�π = (π1, π2, π3) =
(

π+ + π−
√

2
,−π+ − π−

√
2i

, π0

)
, (30)

and hence

�π · �τ =
(

π0
√

2π+√
2π− −π0

)
, (31)

where �τ = (τ 1, τ 2, τ 3) is the Pauli matrices acting on the
isospin states. The �ρ field is expressed in the same man-
ner to the �π field. The � field � = (�++,�+,�0,�−)t is
tied to the isospin transition operators �T = (T 1, T 2, T 3) from
isospin 3/2 to 1/2:

T 1 =
(−1/

√
2 0 1/

√
6 0

0 −1/
√

6 0 1/
√

2

)
, (32)
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TABLE II. Effective Lagrangians for the πN coupled-channels
interaction.

Vertex Lint

πNN −D + F

2 fπ
N̄γ μγ5∂μ �π · �τN

πN� − fπN�

mπ

N̄∂μ �π · �T �μ + h.c.

ρNN
gρNN

2
N̄ (γ μ − κρ

2mN
σμν∂ν )�ρμ · �τN

ππρ gππρ ( �π × ∂μ �π ) · �ρμ

σNN gσNNσ N̄N

ππσ −gππσ

2mπ

∂μ �π · ∂μ �πσ

ηNN
D − 3F

2
√

3 fη
∂μηN̄γ μγ5N

πρNN
(D + F )gρNN

2 fπ
N̄γ μγ5( �π × �ρμ) · �τN

ρρNN
g2

ρNNκρ

8mN
N̄σμν (�ρμ × �ρν ) · �τN

T 2 =
(−i/

√
2 0 −i/

√
6 0

0 −i/
√

6 0 −i/
√

2

)
, (33)

T 3 =
(

0
√

2/3 0 0
0 0

√
2/3 0

)
, (34)

and hence

�π · �T =
(−π− √

2/3π0 √
1/3π+ 0

0 −√
1/3π− √

2/3π0 π+

)
. (35)

For the πNN and ηNN vertices, I employ the chiral La-
grangian with the meson decay constants, fπ and fη, at their
physical values [1], fπ = 92.1 MeV and fη = 1.3 fπ , and fix
the coupling constants D + F = 1.26 and D − F = 0.33 by
the weak decay of octet baryons. Therefore, both the πNN
and ηNN couplings do not contain free parameters, except for
the cutoffs [see Eq. (36)].

As for the πN� vertex, I treat the coupling constant fπN�

as a free parameter. I use the real-valued physical �(1232)
mass m� = 1210 MeV for the propagator of the diagram (1c)
in Fig. 1. I allow that the parameters for the � in the dia-
gram (1c) may differ from those for the bare � introduced in
Sec. III D for better reproduction of the experimental data.

In the case of the ρ and σ exchanges, the coupling con-
stants gρNN , κρ , gππρ , gσNN , and gππσ are free parameters. For
these t-channel ρ and σ exchanges, I use the real-valued phys-
ical mass for the ρ meson, mρ = 775.3 MeV, but a real-valued
bare mass for the σ meson, mσ0 = 700 MeV (see Sec. III C).

To regularize the divergences from the integrals of the
Lippmann-Schwinger equation (1), I introduce a dipole form
factor

F (�, q) ≡
(

�2

�2 + q2

)2

, (36)

with a cutoff � for each meson-baryon-baryon vertex with
q being the three-momentum of the meson. I also use the
dipole form factor (36) for the meson-meson-meson vertex
with q being the three-momentum of the exchanged meson.

The cutoffs � are model parameters and may take different
values for different vertices.

The energies of the mesons and baryons in the initial and
final states are respectively fixed to their on-shell values [see
Eq. (B2) in Appendix B]. Therefore, the meson-baryon in-
teractions of the diagrams in Fig. 1 do not depend on the
center-of-mass energy E but only on the relative momenta q
and q′. The explicit forms of the interaction terms and their
partial-wave projections are given in Appendix C.

C. Self-energies for the σN, ρN, and π� channels

Let us turn to the self-energies for the σN , ρN , and π�

channels.
Because the σ , ρ, and � resonances are unstable particles,

one should take into account their self-energies as in Eq. (3).
I take the strategy to calculate the self-energy developed in
Refs. [6,50]. For the ρ and � resonances, I use the same
formulas and parameters in Ref. [6]. On the other hand, to
describe the σ resonance I use the same formula but dif-
ferent parameters so as to reproduce the ππ (I = 0, L = 0)
phase shift in particular near the ππ threshold where the σ

resonance exists. The effective interaction of the ππ (I = 0,
L = 0) scattering is

Vσ (E2; q′, q) = g0

E2 − mσ0

fg(q′) fg(q) + h0 fh(q′) fh(q), (37)

with monopole form factors

fg(q) = λ2
g

q2 + λ2
g

, fh(q) = λ2
h

q2 + λ2
h

. (38)

Here E2 is the total energy of the ππ system and q(′) is the
relative momentum of the initial (final) ππ state. The bare
σ mass mσ0 , coupling constants g0 and h0, and cutoffs λg

and λh are the model parameters for the σ resonance. As
a result of the fit to the ππ (I = 0, L = 0) phase shift, I
obtain mσ0 = 700 MeV, g0 = 616 GeV−1, h0 = 1189 GeV−2,
λg = 178 MeV, and λh = 217 MeV for the σ resonance.

With the parameters for the σ , ρ, and � resonances, I find
resonance poles at E2 = 486 − 213i MeV, 765 − 75i MeV,
and 1210 − 55i MeV for the σ , ρ, and � resonances, respec-
tively. The σN , ρN , and π� self-energies, �σN , �ρN , and
�π�, respectively, are calculated in the same manner as in
Ref. [6], and then I obtain the kinetic energy (3) in these
channels:

EσN (E ; q) =
√

m2
σ0

+ q2 +
√

m2
N + q2 + �σN (E ; q), (39)

EρN (E ; q) =
√

m2
ρ0

+ q2 +
√

m2
N + q2 + �ρN (E ; q), (40)

Eπ�(E ; q) =
√

m2
π + q2 +

√
m2

�0
+ q2 + �π�(E ; q), (41)

with the bare ρ mass mρ0 = 812 MeV and bare � mass m�0 =
1280 MeV [6]. I note that the kinetic energies for the unstable
channels as well as the self-energies depend on the energy
E because they implicitly involve the three-body ππN state.
Therefore, this E dependence in the kinetic energy may give
a deviation of the compositeness from unity and hence a
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FIG. 2. Branch cuts for the πN , ηN , σN , ρN , and π� channels.
The solid lines indicate the usual cuts, i.e., cuts with the complex-
scaling angle θ = 0◦, while the dashed lines are those with θ = 45◦.
The line for the ηN channel is shifted slightly upward for a better
visualization. The boxes denote the branch points, whose positions
are written in the parentheses in units of MeV.

nonzero missing-channel contribution Z (15) corresponding
to the implicit ππN state, as discussed in Ref. [23].

By calculating the energy E which satisfies E =
EσN,ρN,π�(E ; q) with the momentum q from 0 to +∞, I obtain
the branch cuts for these channels, which are plotted in Fig. 2
as solid lines together with the branch cuts for the stable
channels πN and ηN . I note that for the energy satisfying
Re E > 2mπ + mN = 1215 MeV and Im E < 0 I perform the
analytic continuation to the second Riemann sheet of the ππN
channel by deforming appropriately the momentum integral
paths in the formulas of the self-energies.

Here, it is instructive to see how these branch cuts behave
with a finite value of the complex-scaling angle θ in the
complex scaling method. For this purpose, in Fig. 2 I also plot
the branch cuts with θ = 45◦ in the complex scaling method
as the dashed lines. As one can see, each branch cut rotates
clockwise with a finite value of the scaling angle. In practical
calculations, one can reach the second Riemann sheet in each
channel for the complex energy E in the region sandwiched
between the solid and dashed lines of Fig. 2.

Finally, I comment on the three-body unitarity. In the
πN scattering, the ππN three-body channel opens at the
ππN threshold. In the present model, I implicitly include
the ππN discontinuities arising from the s-channel propaga-
tion of the three-body states in the self-energies for the σN ,
ρN , and π� channels. The three-body cut for this process
is depicted in Figs. 3(a) and 3(b) as the thick dashed lines.
On the other hand, I do not include the ππN discontinuities
induced by the t-channel π exchanges in the π� → σN , ρN
transitions and by the u-channel N exchange in the π� →
π� transition, which are depicted in Figs. 3(c) and 3(d),
respectively. In this sense, I partly take into account the ππN
three-body unitarity. To satisfy the three-body ππN unitarity
fully, it is necessary to include the so-called Z diagrams,
which corresponds to Figs. 3(c) and 3(d), in addition to the
usual two-body to two-body interaction terms [51].

FIG. 3. Diagrams for the ππN three-body unitary cut. Diagrams
shown in panels (a) and (b) are taken into account in the present
model, while those in panels (c) and (d) are not included.

D. Bare N∗ and �∗ states

Now, I introduce bare N∗ and �∗ states, which are em-
bedded into the πN coupled-channels interactions. They are
described as s-channel interactions

V bare
jk (E ; q′, q) = g jgk

2mπ (E − M0)

(
q′

mπ

)L′(
q

mπ

)L

× F (�, q′)F (�, q). (42)

These interactions are added to each partial-wave component
of the πN coupled-channels interaction V in Eq. (1). Here, M0

is the bare mass, g j is the coupling constant of the bare state
to the channel j, form factor F is the same as in Eq. (36),
and L(′) is the orbital angular momentum of the initial (final)
meson-baryon state. The bare mass M0, coupling constant g j ,
and cutoff � are free parameters and are fixed in the fits. I use
a single cutoff � for each N∗ or �∗ state to reduce the number
of parameters.

Because the bare-state contributions are implemented into
the two-body coupled-channels interactions as in Eq. (42),
they depend on the energy E , which will bring nonzero
missing-channel contribution Z (15) corresponding to the im-
plicit bare states [23].

A problem is to specify the number of bare N∗ and �∗
states in each partial wave. In the present study, I take into
account the bare states only if the bare states can significantly
improve the fitting and reproduce well resonance-like behav-
iors of the on-shell πN amplitudes. In this strategy, I introduce
the bare N∗ and �∗ states listed in Table III, in which the fitted
values of the parameters are shown as well.

E. Fit to the experimental πN amplitudes

The present model for the πN coupled-channels ampli-
tudes contains the model parameters: coupling constants,
cutoffs, and bare-state masses. They can be determined by
fitting the experimental data of the on-shell πN scattering
amplitudes. In the present study, while I fix the cutoffs
for the meson-meson-meson vertices as �ππρ = �ππσ =
1000 MeV, I allow the other model parameters to vary freely
so as to reproduce the on-shell πN scattering amplitudes.
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TABLE III. Bare N∗ and �∗ states introduced in the present model. Their fitted bare masses M0, cutoffs �, and coupling constants g are
also shown. The channels are specified by the indices 1, 2, . . ., 8 in the same order as in Table I.

JP, I (L2I 2J ) M0 [MeV] � [MeV] g1 g2 g3 g4 g5 g6 g7 g8

1/2−, 1/2 (S11) 1919 855 2.054 −0.570 0.415 −1.817 −0.031 −0.043
” 2150 575 1.095 −0.761 −0.227 −2.651 −0.386 0.181
1/2+, 1/2 (P11) 1912 634 −1.116 0.299 2.221 0.157 0.719 0.610
3/2+, 3/2 (P33) 1314 476 1.089 −0.310 −0.288 0.046
3/2−, 1/2 (D13) 2043 608 0.148 0.033 −1.028 −1.935 −0.152 −0.213 −0.149 −0.068
3/2−, 3/2 (D33) 1824 446 0.168 −2.488 0.142 0.262 2.762 0.150
5/2−, 1/2 (D15) 1821 494 0.142 0.189 0.060 0.096 0.167

The fixed value �ππρ = �ππσ = 1000 MeV is a typical value
of the hadronic scale, and I checked that the on-shell πN
scattering amplitudes only weakly depend on the meson-
meson-meson cutoffs �ππρ , �ππσ .

For the on-shell πN scattering amplitudes, I employ the
database of SAID [48]. Restricting the center-of-mass energy
E � 1.9 GeV and orbital angular momentum L � 2, I obtain
the model parameters listed in Tables III and IV by the fitting.

The results of the on-shell πN amplitudes are shown in
Fig. 4. As one can see, the present model reproduces the on-
shell πN amplitudes fairly well except for the S31, P31, and P13

amplitudes. In particular, the resonance-like behavior in S11,
P11, P33, D13, D33, and D15 is well reproduced. Indeed, fittings
to these amplitudes are significantly improved by introducing
two bare N∗ states in the S11 and one bare N∗ or �∗ state in
the P11, P33, D13, D33, and D15, respectively.

On the other hand, I can quantitatively reproduce the
S31 and P31 amplitudes only in the low-energy region E �
1250 MeV. For the P13 amplitude, I can only reproduce the
smallness of the absolute value of the amplitude (�0.1). I
expect that one could cure these discrepancies in the S31,
P31, and P13 amplitudes by employing further diagrams of
the meson-baryon interactions or phenomenological contact
potentials as done in Ref. [6] for the S31 partial wave and
by taking into account other meson-baryon channels such as
K� and K�. I note that although the experimental data imply
resonances around 1600 MeV and 1700 MeV in the S31 and
P13, respectively, I do not include bare states in these partial

TABLE IV. Fitted values of coupling constants and cutoff param-
eters. Cutoff parameters are in units of MeV.

fπN� −0.439
gππρ 2.876
gρNN 8.783
κρ 4.806
gππσ 3.188
gσNN 21.571
�πNN 566
�πN� 510
�ππρ 1000
�ρNN 564
�ππσ 1000
�σNN 564
�ηNN 843

waves because bare states will not significantly improve the
fittings.

IV. THE MESON-BARYON COMPOSITENESS
FOR THE N∗ AND �∗ RESONANCES

In this section, I calculate the compositeness of the πN ,
ηN , σN , ρN , and π� channels for the N∗ and �∗ resonances.

One of the most interesting features in hadron physics
is the competition between hadron degrees of freedom and
quark degrees of freedom. In the present N∗/�∗ case, bare
states which are expected to originate from quark degrees of
freedom are embedded into the πN coupled channels. As a
consequence, even if a meson-baryon interaction is strongly
attractive enough to make a bound state, the bound state is
in general contaminated by bare N∗/�∗ states which couple
to the meson-baryon system. Conversely, it is inevitable that
a bare N∗/�∗ state is dressed in meson-baryon clouds. The
compositeness is applicable to evaluating both the dominance
of the meson-baryon molecular components and the fractions
of the meson-baryon clouds for physical nucleon resonances.

In the present study, I employ the interaction diagrams
in Fig. 1 and several bare N∗ and �∗ states for the πN
coupled-channels scattering, and fix the model parameters
so as to reproduce the on-shell πN amplitude, as explained
in the previous section. I perform the analytic continuations
of the scattering amplitudes to the complex energy plane in
the complex scaling method, and find resonance poles cor-
responding to the N (1535) and N (1650) in the spin/parity
JP = 1/2−, N (1440) in 1/2+, N (1520) in 3/2−, N (1675) in
5/2−, �(1232) in 3/2+, and �(1700) in 3/2−, where the
names are taken from Particle Data Group (PDG) [1]. Their
pole positions are listed in Table V together with the results
of the compositeness X (25), missing-channel contributions
Z (15), uncertainties U (17) and Ur (20), and real-valued
quantities X̃ and Z̃ (18).

Below, I discuss the internal structure of the N∗ and �∗
resonances on their resonance poles.

A. N(1440)

The N (1440) resonance in JP = 1/2+, also known as
the Roper resonance, is one of the most interesting states
among the nucleon resonances. The Roper resonance is
lighter than the lowest negative-parity nucleon excitations,
i.e., N (1535) in JP = 1/2− and N (1520) in JP = 3/2−,
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FIG. 4. Fitted πN scattering amplitudes L2I 2J . Lines (points) represent results of the present calculation (SAID analysis [48]).

which cannot be easily explained if one assumes that the
Roper resonance is a radial excitation of nucleon as a three-
quark system. A promising physical interpretation is that
the Roper resonance is the first radial excitation of nucleon
but consists of a dressed-quark core augmented by a me-
son cloud [52]. Importance of the contribution from the πN
coupled-channels dynamics was also pointed out in, e.g.,
Refs. [3,9,11,13,53,54]. In this sense, the use of the two-body
wave functions and compositeness in my approach is quite
suitable for studying the internal structure of the Roper reso-
nance.

In the present πN coupled-channels model, I find two poles
of the scattering amplitude corresponding to the Roper res-
onance at Epole = 1362 − 106i MeV and 1361 − 114i MeV.
The pole positions deviate only slightly from the value
reported by PDG. The former pole is found with the complex-
scaling angle θ � 45◦ in the complex scaling method. This
indicates that the former pole exists in the second Riemann
sheets of the πN and π� channels but in the first Riemann
sheets of the ηN , σN , and ρN channels (see Fig. 2), to which
I refer as (21112) in the order πN , ηN , σN , ρN , and π�.
On the other hand, the latter pole is found with the scaling
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TABLE V. Nucleon resonances obtained in this study. I here show their pole positions in the present model Epole and their locations in
terms of the Riemann sheets, pole positions listed by the Particle Data Group (PDG) [1], compositeness X (25), missing-channel contributions
Z (15), uncertainties U (17) and Ur (20), and real-valued quantities X̃ and Z̃ (18). The notation of the pole locations is explained in the text.
The indices 1, 2, 3 (1, 2) for the ρN (π�) channel represent the same order as in Table I.

N (1535) 1/2− N (1650) 1/2− N (1440)1 1/2+ N (1440)2 1/2+

Epole [MeV] 1527 − 45i 1699 − 70i 1362 − 106i 1361 − 114i
Location (22111) (22112) (21112) (21111)
Epole(PDG) [MeV] (1500–1520) − (55–75)i (1640–1670) − (50–85)i (1360–1380) − (80–95)i (1360–1380) − (80–95)i
XπN −0.09 + 0.01i −0.05 − 0.02i 0.47 + 0.35i 0.55 + 0.28i
XηN −0.42 − 0.19i −0.02 − 0.01i −0.00 − 0.01i −0.00 − 0.01i
XσN −0.00 + 0.03i −0.00 + 0.09i 0.40 + 0.15i 0.46 + 0.03i
XρN (1) 0.37 − 0.09i 0.21 − 0.60i −0.00 + 0.00i −0.00 + 0.00i
XρN (2) 0.31 − 0.00i 0.09 − 0.01i −0.00 − 0.03i −0.01 − 0.03i
Xπ�(1) 0.06 − 0.01i 0.07 + 0.12i 0.03 − 0.24i 0.02 − 0.06i
Z 0.78 + 0.25i 0.71 + 0.43i 0.11 − 0.23i −0.01 − 0.22i
U 1.15 0.87 0.55 0.40
Ur 0.16 0.12 0.08 0.06
X̃πN 0.04 0.03 0.38 0.44
X̃ηN 0.22 0.01 0.00 0.00
X̃σN 0.01 0.05 0.28 0.33
X̃ρN (1) 0.18 0.34 0.00 0.00
X̃ρN (2) 0.14 0.05 0.02 0.02
X̃π�(1) 0.03 0.08 0.15 0.05
Z̃ 0.38 0.44 0.17 0.16

N (1520) 3/2− N (1675) 5/2− �(1232) 3/2+ �(1700) 3/2−

Epole [MeV] 1506 − 53i 1652 − 57i 1216 − 54i 1666 − 84i
Location (22112) (22 - 12) (2 - - 11) (2 - - 12)
Epole(PDG) [MeV] (1505–1515) − (52.5–60)i (1655–1665) − (62.5–75)i (1209–1211) − (49–51)i (1640–1690) − (100–150)i
XπN 0.05 + 0.16i −0.03 + 0.05i −0.03 + 0.59i −0.03 + 0.00i
XηN 0.01 − 0.00i 0.06 + 0.24i
XσN 0.15 + 0.11i
XρN (1) 0.01 − 0.06i 0.01 − 0.00i 0.00 − 0.00i 0.48 − 0.09i
XρN (2) 0.04 − 0.02i 0.02 − 0.01i 0.01 + 0.00i 0.05 − 0.02i
XρN (3) 0.08 − 0.04i 0.09 − 0.02i
Xπ�(1) −0.00 + 0.00i 0.08 + 0.07i 0.00 − 0.00i −0.08 − 0.23i
Xπ�(2) 0.02 − 0.00i −0.01 + 0.04i
Z 0.62 − 0.15i 0.86 − 0.35i 1.02 − 0.59i 0.50 + 0.31i
U 0.24 0.37 0.77 0.54
Ur 0.03 0.06 0.15 0.08
X̃πN 0.14 0.04 0.33 0.02
X̃ηN 0.01 0.18
X̃σN 0.15
X̃ρN (1) 0.05 0.01 0.00 0.32
X̃ρN (2) 0.04 0.02 0.01 0.03
X̃ρN (3) 0.08 0.06
X̃π�(1) 0.00 0.08 0.00 0.16
X̃π�(2) 0.02 0.03
Z̃ 0.51 0.67 0.66 0.39

angle 25◦ � θ � 40◦, and hence it exists in the sheet (21111).
Because the former pole is closer to the physical region, i.e.,
the real energy axis, the former is the resonance pole for the
Roper resonance and I write it as N (1440)1. On the other hand,
the latter pole is the shadow pole for the Roper resonance [53]
and I write it as N (1440)2. I note that the pole positions Epole

do not depend on the scaling angle θ but one can switch the
Riemann sheets at a certain energy by varying θ .

From the residues of the off-shell scattering amplitudes
at the poles, I can calculate the two-body wave functions
and compositeness as their norms both for the N (1440)1 and
N (1440)2, according to the method in Sec. II. The results of
the compositeness Xj (25) of the jth meson-baryon channel
and missing-channel contribution Z (15) are listed in Table V.
I checked that the compositeness does not depend on the
scaling angle θ . As one can see from the table, although the
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FIG. 5. Density distributions of the πN and σN components for the N (1440) resonance in coordinate space. (a) For the N (1440)1 pole
with the complex-scaling angle θ = 50◦. (b) For the N (1440)2 pole with the complex-scaling angle θ = 35◦.

values of the compositeness are complex due to the resonance
nature, the real parts of XπN and XσN for the both poles are as
large as 0.5, which should be compared with unity, and their
imaginary parts are smaller than the real parts. On the other
hand, the missing-channel contribution Z is close to zero.
Because the nonzero value of Z comes from the bare state in
the meson-baryon interaction (42) as well as the ππN state in
the self-energies of Eqs. (39)–(41), the present result strongly
implies that, while the πN and σN molecular components
dominate both the N (1440)1 and N (1440)2 states as “thick
meson clouds,” the bare-state contribution is small.

The complex-valued compositeness, however, cannot be
interpreted as probabilities of finding meson-baryon compo-
nents. To draw a more definite conclusion, I calculate the
real-valued quantities X̃ and Z̃ (18) together with U (17) and
Ur (20) for the N (1440)1 and N (1440)2 states. The results
are listed in Table V. The value of the reduced uncertainty
Ur is smaller than 0.1 for both poles. Therefore, according
to the discussions in the end of Sec. II A, I can interpret
X̃ j (Z̃) as the probability of finding the composite (missing)
part with small uncertainties. From the values in Table V, I
can conclude more definitely that the πN and σN molecular
components, whose contributions are almost the same as each
other, dominate the N (1440)1 and N (1440)2 states while the
bare-state contribution is about less than 20% in the present
model. These finding are consistent with the previous studies
in, e.g., Refs. [3,9,11,13,52–54], in which a significant con-
tribution from meson-baryon coupled channels was reported.
In particular, the present study supports the scenario drawn in
Ref. [3] that the πN → σN transition potential and treatment
of the ππN components in the unstable σN channel are im-
portant for the description of the Roper resonance.

The squared wave functions in coordinate space (27) repre-
sent the behavior of relative motions between the mesons and
baryons as the density distributions. The density distributions
P(θ )

j for the N (1440)1 and N (1440)2 states are plotted in Fig. 5
as functions of the relative distance r between the mesons
and baryons. The scaling angle is fixed as θ = 50◦ for the
N (1440)1 and θ = 35◦ for the N (1440)2. Although the den-

sity distributions are complex for resonances in general and
depend on θ , they provide information on the typical distance
between the mesons and baryons. The results of the density
distributions imply that both in the πN and σN channels
the meson-baryon separation is about more than 1 fm for the
N (1440)1 and N (1440)2 states.

B. �(1232)

The �(1232) resonance in JP = 3/2+ is also interesting,
because there are several suggestions of its large πN com-
ponent. Historically, it was pointed out in Ref. [55] that the
�(1232) resonance can occur by the attractive p-wave πN in-
teraction. A hint of the large effect of the meson cloud is seen,
for instance, in the M1 transition form factor for γ ∗N → � at
Q2 = 0 [56]. Further studies on the dynamical generation of
the �(1232) resonance can be seen, e.g., in Refs. [28,31,57].
I can examine the picture of a large πN component in terms
of the compositeness.

In the present model, I observe the resonance pole for the
�(1232) at 1216 − 54i MeV in the Riemann sheet (2 - - 11),
where hyphen represents a decoupled channel. The compos-
iteness calculated from the residue and pole position for the
�(1232) is listed in Table V. The πN compositeness XπN

has non-negligible imaginary part but its real part is small.
The other meson-baryon channels, i.e., the ρN (L = 1, S =
1/2), ρN (L = 1, S = 3/2), and π� channels, give negligible
contributions to the compositeness, and hence the missing-
channel contribution Z is almost unity in the real part and
negatively large in the imaginary part. Because the bare �∗
state exists near the physical pole position, I can expect that
Z is dominated by the bare state. Therefore, the results im-
ply that the bare-state contribution is the most essential for
the physical �(1232) resonance. Nevertheless, I expect that
the large absolute value |XπN | reflects the importance of the
πN channel in the �(1232) and affects the properties of the
�(1232) as the meson clouds.

Besides, the reduced uncertainty Ur is as large as 0.15
owing to the large imaginary part in the πN channel. There-
fore, although X̃πN takes a non-negligible value ≈0.3, I cannot
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definitely interpret it as the probability of finding πN compo-
nent inside the �(1232) resonance.

C. N(1535), N(1650), N(1520), N(1675), and �(1700)

Next, I consider the other resonances: N (1535) and
N (1650) in JP = 1/2−, N (1520) in 3/2−, N (1675) in 5/2−,
and �(1700) in 3/2−. The results of their pole positions and
compositeness are listed in Table V.

The N (1535) and N (1650) resonances exist in the Rie-
mann sheets (22111) and (22112), respectively. The results of
the compositeness for the N (1535) imply that the bare-state
contribution is dominant but the coupling to the ηN channel,
whose branch point is the closest to the N (1535) pole position,
would be large. However, the real part of the ηN composite-
ness XηN is negatively large, which is canceled with the real
parts of the ρN compositeness. As a consequence, the reduced
uncertainty Ur is as large as X̃ηN,ρN (1),ρN (2) for the N (1535)
and I cannot interpret X̃ηN,ρN (1),ρN (2) as the probabilities of
finding the ηN and ρN components, respectively.

On the other hand, for the N (1650), because Ur = 0.12,
I can interpret X̃ρN (1) and Z̃ as the probabilities with uncer-
tainties ≈0.1. The results of X̃ j and Z̃ indicate that about
half of the N (1650) comes from missing channels, in the
present case the bare state, while it has a certain fraction of
the ρN (L = 0, S = 1/2) cloud.

Similarly, the poles of the N (1520), N (1675), and �(1700)
resonances are found in the (22112), (22 - 12), and (2 - - 12)
Riemann sheets, respectively. The results of the composite-
ness indicate that they are dominated by missing channels,
i.e., the bare states. The �(1700) resonance has a certain
fraction of the ρN (L = 0, S = 3/2) cloud, while the N (1520)
and N (1675) resonances have only small fractions of meson-
baryon clouds.

These results indicate that although the N (1535), N (1650),
N (1520), N (1675), and �(1700) resonances have some frac-
tions of the meson-baryon clouds, they do not have dominant
meson-baryon molecular components. The largest fractions
of the meson-baryon clouds are the ρN for the N (1650) and
�(1700) resonances, which amount to ≈0.3 with uncertain-
ties ≈0.1. These are because the resonance pole positions are
close to the ρN branch point and coupling constants of the
N∗/�∗ bare states to the ρN channel are large, as seen in
Table III.

V. CONCLUSION

In this study, I have investigated the internal structure of the
nucleon resonances N∗ and �∗ in terms of the meson-baryon
two-body wave functions and compositeness. One of the most
essential parts in my approach is to extract the meson-baryon
two-body wave functions by using the pole positions for
the nucleon resonances in the complex energy plane of the
πN coupled-channels scattering amplitudes and residues for
them. Here, the scattering amplitudes are solutions of the
Lippmann-Schwinger equation. In this strategy, for each reso-
nance pole I can obtain wave functions of the πN and coupled
channels which are automatically scaled, thanks to the inho-
mogeneous property of the Lippmann-Schwinger equation.

As a consequence, by calculating the compositeness, which is
defined as the norm of the two-body wave function from the
meson-baryon scattering amplitudes, and by comparing the
compositeness with unity, I can evaluate the dominance of the
meson-baryon molecular components as well as the fractions
of meson-baryon clouds for physical nucleon resonances.

For this purpose, I have constructed a meson exchange
model in a πN-ηN-σN-ρN-π� coupled-channels problem
and involve several bare N∗ and �∗ states. The coupling con-
stants, cutoffs, and bare-state masses as the model parameters
were fixed so as to reproduce the experimental data of the
on-shell πN scattering amplitudes in the center-of-mass en-
ergy E � 1.9 GeV and orbital angular momentum L � 2. The
constructed model reproduced the on-shell πN amplitudes
fairly well and generated resonance poles corresponding to the
N (1535) and N (1650) in the spin/parity JP = 1/2−, N (1440)
in 1/2+, N (1520) in 3/2−, N (1675) in 5/2−, �(1232) in
3/2+, and �(1700) in 3/2− in the complex energy plane of
the scattering amplitudes. In the present model, the Roper
resonance N (1440) is composed of two poles in different π�

sheets.
Then, I have calculated the meson-baryon wave func-

tions and compositeness from the scattering amplitudes for
these nucleon resonances. As a result, the Roper resonance
N (1440), for both the two poles, was found to be dominated
by the πN and σN molecular components, whose contribu-
tions are almost the same as each other, while the bare-state
contribution is about less than 20% in the present model.
The squared wave functions in coordinate space imply that
in both the πN and σN channels the separation between the
meson and baryon is about more than 1 fm for the N (1440)
resonance. On the other hand, dominant meson-baryon molec-
ular components were not observed in any other N∗ and �∗
resonances in the present model, although they have some
fractions of the meson-baryon clouds.

Here I emphasize that the present strategy to calculate
the compositeness is in general applicable as long as the
Lippmann-Schwinger equation is fully solved for hadron-
hadron scatterings. In this sense, a more definite conclusion
about the composite nature of nucleon resonances will be
drawn with more sophisticated models such as Refs. [5,6,21],
in which the authors precisely reproduced experimental data
of not only the on-shell πN amplitudes but also the pion- and
photon-induced reactions. Furthermore, excited baryons with
nonzero strangeness, i.e., �∗, �∗, �∗, and �∗ states, will be
important as a next target, because they will be discovered and
be investigated extensively in near future experiments at J-
PARC, Jefferson Laboratory, etc., as well as in the relativistic
heavy ion collisions. To construct scattering amplitudes for
these resonances, approaches in, e.g., Refs. [58,59] will be
helpful.

Finally, I comment on the model dependence of the
two-body wave functions and compositeness. Because the
compositeness as well as the wave functions are not ob-
servable, the compositeness is in general a model-dependent
quantity. This fact has a special meaning when one dis-
cusses a hadron-hadron molecular component in a hadron
resonance. The strong interactions between hadrons emerge
as a nonperturbative phenomenon of the underlying theory,
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QCD, and hence one cannot obtain the strong interactions
between hadrons by analytically solving QCD. This is in con-
trast to the electromagnetic case, in which the electromagnetic
interactions can be directly obtained by the fundamental the-
ory, quantum electrodynamics (QED). Therefore, to pin down
the hadron-hadron interaction and calculate its off-shell part,
which plays an essential role in the two-body wave functions
and compositeness, we have to fix a scheme based on a cer-
tain principle such as meson exchanges and employ effective
Lagrangians which govern the hadron-hadron interaction. The
present article indeed suggests a strategy in this line to eluci-
date the internal structure of hadron resonances in terms of the
hadron-hadron molecular components.
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APPENDIX A: MASSES OF HADRONS

In this study, I employ isospin-symmetric masses for
hadrons: mπ = 138.0 MeV, mη = 547.9 MeV, and mN =
938.9 MeV. These values are used in the t-channel pion
propagators and in the s- and u-channel nucleon propaga-
tors as well as in the initial and final states. The masses in
the unstable initial and final states are taken from the bare
states in the self-energies: mσ0 = 700 MeV, mρ0 = 812 MeV,
and m�0 = 1280 MeV. The value mσ0 = 700 MeV is used
for the t-channel σ exchange in the πN → πN interaction,
while physical values mρ = 775.3 MeV and m� = 1210 MeV
are used for the t-channel ρ exchange and u-channel � ex-
change in the πN → πN interaction, respectively.

APPENDIX B: PARTIAL WAVES OF THE
MESON-BARYON INTERACTIONS

In this Appendix, I summarize the notations and partial-
wave projections of the meson-baryon (MB) interactions.

1. Notations

The meson-baryon scatterings are denoted by
M(kμ, λM )B(pμ, λB) → M ′(k′μ, λM ′ )B′(p′μ, λB′ ), where
k(′)μ and p(′)μ are momenta and λM,B are helicities of the
meson and baryon, respectively. Since I consider scatterings
in the center-of-mass frame, I can write the three-momenta as
q ≡ k = −p and q′ ≡ k′ = −p′. Without loss of generality, I
can choose the coordinates such that

q = (0, 0, q), q′ = (q′ sin θ, 0, q′ cos θ ), (B1)

with the scattering angle θ . The masses of the meson M (′)
and baryon B(′) are expressed as mM (′) and mB(′) , respectively.
Throughout this study, I fix the energies of the four-momenta

TABLE VI. Isospin factors for the interactions.

I = 1/2 I = 3/2

τ jτ i 3 0
τ iτ j −1 2
δi j 1 1
iε jikτ

k 2 −1
T iT † j 4/3 1/3
τ i −√

3 0
τ j −√

3 0
T † jτ i

√
6 0

T †iτ j
√

8/3 −√
5/3

T † j −√
2 0

T † jT i 2 0

kμ and pμ to their on-shell values as

k0 =
√

m2
M + q2, p0 =

√
m2

B + q2, (B2)

and similarly for k′0 and p′0.

2. Partial-wave projections

I calculate the partial-wave matrix elements of the interac-
tion Vα by following the Jacob-Wick formulation [60], where
α specifies the quantum numbers of the system. In the πN
coupled-channels scattering case, I take α = (JP, I ) with the
total angular momentum J , parity P, and isospin I .

First, according to Feynman diagrams, I calculate the inter-
actions in terms of the helicity eigenstates

VMB→M ′B′ = VMB→M ′B′ (q′, λM ′ , λB′ , q, λM, λB). (B3)

Then, the interactions are projected to the total angular
momentum J as

V J (q′, λM ′ , λB′ , q, λM , λB)

= 2π

∫ 1

−1
d cos θ dJ

λM−λB λM′−λB′ (θ )

× V (q′, λM ′ , λB′ , q, λM , λB), (B4)

where I omitted the subscript MB → M ′B′ of V , and d j
m′ m is

the Wigner d matrix.
The interaction of the total angular momentum J is pro-

jected to the states with definite orbital angular momenta and
spins for the meson-baryon channels as

Vα (q′, q) = κ (q′, q)
∑

λM ,λB,λM′ ,λB′

√
(2L + 1)(2L′ + 1)

2J + 1

× 〈 jM ′ jB′ λM ′ − λB′ |S′ S′
z〉〈L′ S′ 0 S′

z|J S′
z〉

× 〈 jM jB λM − λB|SSz〉〈L S 0 Sz|J Sz〉
× V J (q′, λM ′ , λB′ , q, λM , λB), (B5)

where jM (′) and jB(′) are the spins of the meson M (′) and
baryon B(′), respectively, L(′) and S(′) are the orbital angular
momentum and spin in the initial (final) state, respectively,
Sz ≡ λM − λB, and S′

z ≡ λM ′ − λB′ . 〈 jM jB λM − λB|S Sz〉 is
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the Clebsch-Gordan coefficient. The factor κ (q′, q), which is
defined as

κ (q′, q) ≡ 1

(2π )3

√
mBmB′

4ωM (q)EB(q)ωM ′ (q′)EB′ (q′)
, (B6)

with ωM (′) (q) ≡
√

q2 + m2
M (′) and EB(′) (q) ≡

√
q2 + m2

B(′) , was

introduced so as to satisfy the optical theorem with the cor-
rect coefficients. The interaction (B5) is applicable to the
Lippmann-Schwinger equation (1).

APPENDIX C: EXPLICIT FORMS OF THE MESON-BARYON INTERACTIONS

In this Appendix, I show the explicit forms of the interactions M(kμ, λM )B(pμ, λB) → M ′(k′μ, λM ′ )B′(p′μ, λB′ ) used in the
present study. The interactions are written in terms of the helicity eigenstates, i.e., those in Eq. (B3), except for the s-channel
contributions of the bare N∗ and �∗ states in Appendix C 16.

For the incoming and outgoing nucleons, I express the helicity eigenstates by the the Dirac spinors uN (−q, λN ) and
ūN (−q′, λN ′ ), respectively. The spinors for the incoming and outgoing ρ meson are eμ

ρ (q, λM ) and eμ∗
ρ (q′, λM ′ ), respectively.

The helicity eigenstates of the � baryon as the Rarita-Schwinger spinor are uμ
�(−q, λ�) for the incoming and ūμ

�(−q′, λ�′ ) for
the outgoing states. The explicit forms of the spinors are given in Ref. [61].

In this study, I multiply a factor i for the incoming σ and ρ mesons and accordingly a factor −i for the outgoing σ and ρ

mesons to obtain a real-valued interaction.

1. πN → πN

The π iN → π jN interactions, where the isospin indices for mesons i, j = 1, 2, 3 correspond to those in Eq. (30), are given
as

VπN→πN = ūN (−q′, λN ′ )(V̄1a + V̄1b + V̄1c + V̄1d + V̄1e)uN (−q, λN ), (C1)

with

V̄1a = (τ jτ i )

(
D + F

2 fπ

)2

/k′
γ5

SN (p + k) + SN (p′ + k′)
2

/kγ5F (�πNN , q′)F (�πNN , q), (C2)

V̄1b = (τ iτ j )

(
D + F

2 fπ

)2

/kγ5
SN (p − k′) + SN (p′ − k)

2
/k′

γ5F (�πNN , q′)F (�πNN , q), (C3)

V̄1c = (T iT † j )

(
fπN�

mπ

)2

kμ

[
Sμν

� (p − k′) + Sμν
� (p′ − k)

2

]
k′
νF (�πN�, q′)F (�πN�, q), (C4)

V̄1d = (iε jikτ
k )

gππρgρNN

2

[
Sρ (k − k′) + Sρ (p′ − p)

2

]

×{/k + /k′ + κρ

4mN
[(/k + /k′)(/p − /p′) − (/p − /p′)(/k + /k′)]}F (�ππρ, |q − q′|)F (�ρNN , |q − q′|), (C5)

V̄1e = (δi j )

(
−gππσ gσNN

mπ

)
kμk′

μ

[
Sσ (k − k′) + Sσ (p′ − p)

2

]
F (�ππσ , |q − q′|)F (�σNN , |q − q′|). (C6)

The explicit values of the isospin factors are listed in Table VI. Propagators SN , S�, Sρ , and Sσ are respectively

SN (p) = /p + mN

(pμ)2 − m2
N

, Sμν
� (p) = /p + m�

(pμ)2 − m2
�

[
−gμν + 1

3
γ μγ ν + 2pμ pν

3m2
�

− pμγ ν − pνγ μ

3m�

]
,

Sρ (p) = 1

(pμ)2 − m2
ρ

, Sσ (p) = 1

(pμ)2 − m2
σ0

,

(C7)

where the physical masses mN , m�, and mρ are used for the N , �, and ρ exchanges, while the bare mass mσ0 is used for the
σ exchange. The dipole form factor F was defined in Eq. (36). I note that I use an idea of the unitary transformation method
[56,62] to calculate denominators of the propagators. Owing to the treatment of the energies of the four-momenta in Eq. (B2),
these interaction terms are independent of the center-of-mass energy E .

2. πN → ηN

The π iN → ηN interactions, where the ηN state is purely isospin I = 1/2, are given as

VπN→ηN = ūN (−q′, λN ′ )(V̄2a + V̄2b)uN (−q, λN ), (C8)
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with

V̄2a = (τ i )

[
− (D + F )(D − 3F )

4
√

3 fπ fη

]
/k′

γ5
SN (p + k) + SN (p′ + k′)

2
/kγ5F (�ηNN , q′)F (�πNN , q), (C9)

V̄2b = (τ i )

[
− (D + F )(D − 3F )

4
√

3 fπ fη

]
/kγ5

SN (p − k′) + SN (p′ − k)

2
/k′

γ5F (�ηNN , q′)F (�πNN , q). (C10)

3. ηN → ηN

The ηN → ηN interactions are given as

VηN→ηN = ūN (−q′, λN ′ )(V̄3a + V̄3b)uN (−q, λN ), (C11)

with

V̄3a =
(

D − 3F

2
√

3 fη

)2

/k′
γ5

SN (p + k) + SN (p′ + k′)
2

/kγ5F (�ηNN , q′)F (�ηNN , q), (C12)

V̄3b =
(

D − 3F

2
√

3 fη

)2

/kγ5
SN (p − k′) + SN (p′ − k)

2
/k′

γ5F (�ηNN , q′)F (�ηNN , q). (C13)

4. πN → σN

The π iN → σN interactions, where the σN state is purely I = 1/2, are given as

VπN→σN = ūN (−q′, λN ′ )(V̄4a + V̄4b + V̄4c)uN (−q, λN ), (C14)

with

V̄4a = (τ i)
gσNN (D + F )

2 fπ

SN (p + k) + SN (p′ + k′)
2

/kγ5F (�σNN , q′)F (�πNN , q), (C15)

V̄4b = (τ i)
gσNN (D + F )

2 fπ
/kγ5

SN (p − k′) + SN (p′ − k)

2
F (�σNN , q′)F (�πNN , q), (C16)

V̄4c = (τ i)

[
−gππσ (D + F )

2mπ fπ

]
kμ(k − k′)μ(/k − /k′)γ5Sπ (p′ − p)F (�ππσ , |q − q′|)F (�πNN , |q − q′|). (C17)

The π propagator is

Sπ (p) = 1

(pμ)2 − m2
π

, (C18)

with the physical pion mass mπ . I do not include the pion propagator of Sπ (k − k′) for V̄4c because the ππσ vertex interaction
is “real” and hence it causes divergence. Similarly, I will omit propagators of momenta associated with the “real” vertex
interactions.

5. ηN → σN

The ηN → σN interactions are given as

VηN→σN = ūN (−q′, λN ′ )(V̄5a + V̄5b)uN (−q, λN ), (C19)

with

V̄5a = −gσNN (D − 3F )

2
√

3 fη

SN (p + k) + SN (p′ + k′)
2

/kγ5F (�σNN , q′)F (�ηNN , q), (C20)

V̄5b = −gσNN (D − 3F )

2
√

3 fη
/kγ5

SN (p − k′) + SN (p′ − k)

2
F (�σNN , q′)F (�ηNN , q). (C21)

6. σN → σN

The σN → σN interactions are given as

VσN→σN = ūN (−q′, λN ′ )(V̄6a + V̄6b)uN (−q, λN ), (C22)
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with

V̄6a = g2
σNN

SN (p + k) + SN (p′ + k′)
2

F (�σNN , q′)F (�σNN , q), (C23)

V̄6b = g2
σNN

SN (p − k′) + SN (p′ − k)

2
F (�σNN , q′)F (�σNN , q). (C24)

7. πN → ρN

The π iN → ρ jN interactions are given as

VπN→ρN = e∗
ρμ(q′, λM ′ )ūN (−q′, λN ′ )

(
V̄ μ

7a + V̄ μ

7b + V̄ μ
7c + V̄ μ

7d

)
uN (−q, λN ), (C25)

with

V̄ μ
7a = (τ jτ i )

gρNN (D + F )

4 fπ

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]SN (p + k) + SN (p′ + k′)

2
/kγ5F (�ρNN , q′)F (�πNN , q), (C26)

V̄ μ

7b = (τ iτ j )
gρNN (D + F )

4 fπ
/kγ5

SN (p − k′) + SN (p′ − k)

2

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]
F (�ρNN , q′)F (�πNN , q), (C27)

V̄ μ
7c = (iε jikτ

k )
gππρ (D + F )

2 fπ
(2kμ − k′μ)(/k − /k′)γ5Sπ (p′ − p)F (�ππρ, |q − q′|)F (�πNN , |q − q′|), (C28)

V̄ μ

7d = (iε jikτ
k )

[
−gρNN (D + F )

2 fπ

]
γ μγ5F (�ρNN , q′)F (�πNN , q). (C29)

8. ηN → ρN

The ηN → ρ jN interactions are given as

VηN→ρN = e∗
ρμ(q′, λM ′ )ūN (−q′, λN ′ )

(
V̄ μ

8a + V̄ μ

8b

)
uN (−q, λN ), (C30)

with

V̄ μ

8a = (τ j )

[
−gρNN (D − 3F )

4
√

3 fη

][
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]SN (p + k) + SN (p′ + k′)

2
/kγ5F (�ρNN , q′)F (�ηNN , q), (C31)

V̄ μ

8b = (τ j )

[
−gρNN (D − 3F )

4
√

3 fη

]
/kγ5

SN (p − k′) + SN (p′ − k)

2

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]
F (�ρNN , q′)F (�ηNN , q). (C32)

9. σN → ρN

The σN → ρ jN interactions are given as

VσN→ρN = e∗
ρμ(q′, λM ′ )ūN (−q′, λN ′ )

(
V̄ μ

9a + V̄ μ

9b

)
uN (−q, λN ), (C33)

with

V̄ μ

9a = (τ j )
gρNN gσNN

2

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]SN (p + k) + SN (p′ + k′)

2
F (�ρNN , q′)F (�σNN , q), (C34)

V̄ μ

9b = (τ j )
gρNN gσNN

2

SN (p − k′) + SN (p′ − k)

2

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]
F (�ρNN , q′)F (�σNN , q). (C35)

10. ρN → ρN

The ρ iN → ρ jN interactions are given as

VρN→ρN = e∗
ρμ(q′, λM ′ )ūN (−q′, λN ′ )

(
V̄ μν

10a + V̄ μν

10b + V̄ μν

10c

)
eρν (q, λM )uN (−q, λN ), (C36)

with

V̄ μν

10a = (τ jτ i )
g2

ρNN

4

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]SN (p + k) + SN (p′ + k′)

2

[
γ ν − κρ

4mN
(γ ν/k − /kγ ν )

]

×F (�ρNN , q′)F (�ρNN , q), (C37)
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V̄ μν

10b = (τ iτ j )
g2

ρNN

4

[
γ ν − κρ

4mN
(γ ν/k − /kγ ν )

]SN (p − k′) + SN (p′ − k)

2

[
γ μ + κρ

4mN
(γ μ/k′ − /k′

γ μ)
]

×F (�ρNN , q′)F (�ρNN , q), (C38)

V̄ μν

10c = (iε jikτ
k )

g2
ρNNκρ

8mN
(γ νγ μ − γ μγ ν )F (�ρNN , q′)F (�ρNN , q). (C39)

11. πN → π�

The π iN → π j� interaction is given as

VπN→π� = ū�μ(−q′, λ�′ )
(
V̄ μ

11a + V̄ μ

11b

)
uN (−q, λN ), (C40)

with

V̄ μ

11a = (T † jτ i )
fπN�(D + F )

2mπ fπ
k′μ SN (p + k) + SN (p′ + k′)

2
/kγ5F (�πN�, q′)F (�πNN , q), (C41)

V̄ μ

11b = (T †iτ j )
fπN�(D + F )

2mπ fπ
kμSN (p − k′)/k′

γ5F (�πNN , q′)F (�πN�, q). (C42)

12. ηN → π�

The ηN → π j� interaction is given as

VηN→π� = ū�μ(−q′, λ�′ )V̄ μ

12uN (−q, λN ), (C43)

with

V̄ μ

12 = (T † j )

[
− fπN�(D − 3F )

2
√

3mπ fη

]
k′μ SN (p + k) + SN (p′ + k′)

2
/kγ5F (�πN�, q′)F (�ηNN , q). (C44)

13. σN → π�

The σN → π j� interaction is given as

VσN→π� = ū�μ(−q′, λ�′ )V̄ μ

13uN (−q, λN ), (C45)

with

V̄ μ

13 = (T † j )
gσNN fπN�

mπ

k′μ SN (p + k) + SN (p′ + k′)
2

F (�πN�, q′)F (�σNN , q). (C46)

14. ρN → π�

The ρ iN → π j� interaction is given as

VρN→π� = ū�μ(−q′, λ�′ )V̄ μν

14 eρν (q, λM )uN (−q, λN ), (C47)

with

V̄ μν

14 = (T † jτ i )
gρNN fπN�

2mπ

k′μ SN (p + k) + SN (p′ + k′)
2

[
γ ν − κρ

4mN
(γ ν/k − /kγ ν )

]
F (�πN�, q′)F (�ρNN , q). (C48)

15. π� → π�

The π i� → π j� interaction is given as

Vπ�→π� = ū�μ(−q′, λ�′ )V̄ μν

15 u�ν (−q, λ�), (C49)

with

V̄ μν

15 = (T † jT i )

(
fπN�

mπ

)2

k′μ SN (p + k) + SN (p′ + k′)
2

kνF (�πN�, q′)F (�πN�, q). (C50)
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16. s-channel exchange of bare N∗ and �∗ states

To take into account the bare N∗ and �∗ states for the meson-baryon scattering in s channel, I add

V bare
jk (E ; q′, q) = g jgk

2mπ (E − M0)

(
q′

mπ

)L′(
q

mπ

)L

F (�, q′)F (�, q), (C51)

to the corresponding partial-wave components Vα, jk in Eq. (1). Here, M0 is the bare mass of the N∗ and �∗ states, g j is the
coupling constant for the bare state to the jth meson-baryon channel, and � is the cutoff. I note that only this bare-state
contribution depends on the center-of-mass energy E among the meson-baryon interaction terms.
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