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Probing double hadron resonances by the complex scaling method
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Many newly discovered excited states are interpreted as bound states of hadrons. Can these hadrons also form
resonant states? In this paper, we extend the complex scaling method to calculate the bound state and resonant
state consistently for the �cD(D̄) and �c�c(�̄c ) systems. For these systems, the π, η, ρ meson exchange
contributions are suppressed, the contributions of intermediate- and short-range forces from σ/ω exchange are
dominant. Our results indicate that �cD system can not form bound state and resonant state. There exist resonant
states in a wide range of parameters for �cD̄ and �c�c(�̄c ) systems. For these systems, the larger the bound
state energy, the easier to form resonant states. Among all the resonant states, the energies and widths of the
P wave resonant states are smaller and more stable, which is possible to be observed in the experiments. The
energies of D and F wave resonant states can reach dozens of MeV and the widths can reach hundreds of MeV.
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I. INTRODUCTION

Since the observations of the charmonium-like state
X (3872) [1], many new type hadrons have been discovered.
The quantum numbers of these states are different from the
traditional qq̄ mesons and qqq baryons, so they are called the
exotic hadrons, such as X (3872) [1], Y (4260)/Y (4360) [2,3],
Zb(10610)/Zb(10650) [4], Pc(4380)/Pc(4450) [5]. Since
many of these exotic states X/Y/Z/Pc are close to the
thresholds of two hadrons, they are naturally considered as
candidates of the hadronic molecules. The nonrelativistic ef-
fective field theories and lattice QCD are the suitable to study
the structure of these hadronic molecules.

Among various explanations, hadronic molecules gain
more attention, especially for the hadrons containing one or
two heavy quark(s). Deuteron is the only stable molecule
state of hadrons, which can be well explained by the one-
boson-exchange model [6,7]. Along this way, we suppose
that the deuteronlike hadron states have similar structures
and interaction potentials. The one-boson-exchange model is
a reasonable theoretical method for explaining the hadronic
molecular states. According to the mass of exchanged mesons,
the mesons π , η, σ , ρ, and ω exchange contribute to the
long-, medium-, and short-range interaction, respectively. In
the last decade, the molecular states of hadrons have been ex-
tensively explored for the discovered charmonium-like X/Y/Z
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and Pc(4380)/Pc(4450) states [8–13]. In the framework of
one-boson-exchange model, these hadrons can not only bind
to hadron molecular states, but also form resonant states with
high angular momentum, which is less studied in hadron
physics.

The resonance is one of most striking phenomena in
the scattering experiment, which exists widely in atoms,
molecules, nuclei, and chemical reactions. Therefore, re-
searchers have developed many methods to study resonances,
including: R-matrix method [14,15], K-matrix method [16],
scattering phase shift method, continuous spectrum theory,
J-matrix method [17], coupling channel method, real stabi-
lization method (RSM) [18], analytic continuation method of
coupling constant (ACCC) [19], and complex scaling method
(CSM) [20,21], etc. Among them, RSM, ACCC, and CSM are
bound-state-type methods, which can be conveniently dealt
with in the boundlike state. In the framework of nonrelativistic
theory, these methods have obtained dramatic improvements.
For example, RSM has been able to effectively determine the
parameters of the resonant state through improved calculation
methods. In combination with the cluster model, the ACCC
has been used to calculate the energy and lifetime of some
light nuclear resonant states, as well as the wave function of
the resonant states. The complex scaling method can describe
the bound state, resonant state and continuum in a consistent
way, which is widely used to explore the resonance in atomic,
molecular, and nuclear physics. The CSM have been extended
from nonrelativistic to the relativistic framework [22–26] and
from spherical nuclei to deformed nuclei [26,27], which have
been applied in halo nuclei.

We will apply CSM to hadron physics for searching the
resonant states. In the system of heavy molecular states, we
need consider the interaction of π , η, ρ, σ , ω mesons. Un-
usually, the effect of one-π meson exchange is dominant, and
obscures the contribution of other mesons. In Ref. [28], the

2469-9985/2021/104(3)/035201(7) 035201-1 Published by the American Physical Society

https://orcid.org/0000-0001-6426-1689
https://orcid.org/0000-0003-3951-305X
https://orcid.org/0000-0001-9415-8252
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.104.035201&domain=pdf&date_stamp=2021-09-08
https://doi.org/10.1103/PhysRevC.104.035201
https://creativecommons.org/licenses/by/4.0/


YU, SONG, GUO, ZHANG, AND LI PHYSICAL REVIEW C 104, 035201 (2021)

TABLE I. The scattering amplitudes for all investigated systems.
Here, H(q, m) is defined as H(q, m) = 1/(q2 + m2).

h1h2 → h3h4 M(h1h2 → h3h4)

DD → DD 4M2
D[g2

σH(q, mσ ) − g2
ωH(q, mω )]

DD̄ → DD̄ 4M2
D[g2

σH(q, mσ ) + g2
ωH(q, mω )]

�cD̄ → �cD̄ 8MDM�cχ
†
3 χ1[gσ g′

σH(q, mσ ) − gωg′
ωH(q, mω )]

�cD → �cD 8MDM�cχ
†
3 χ1[gσ g′

σH(q, mσ ) + gωg′
ωH(q, mω )]

�c�c → �c�c 16M2
�c

χ †
3 χ †

4 χ1χ2[gσ g′
σH(q, mσ ) − gωg′

ωH(q, mω )]
�c�̄c → �c�̄c 16M2

�c
χ †

3 χ †
4 χ1χ2[gσ g′

σH(q, mσ ) + gωg′
ωH(q, mω )]

authors have discussed the bound states of DD(D̄), �cD(D̄),
and �c�c(�̄c) through one-σ -exchange (OSE) and one-ω-
exchange (OOE). Based on the spin and isospin conservation,
there is no coupling π�c�c and πDD, and the contribution
of π , η, ρ meson exchanges are forbidden or suppressed
heavily. The �c�̄c system has been investigated in several
previous works [29–31]. In this paper, we will further investi-
gate whether two hadrons are possible to form resonant states
by exchanging σ and ω mesons for DD(D̄), �cD(D̄), and
�c�c(�̄c) systems.

This paper is organized as follows. After the introduction,
we present the theoretical framework and calculation method
in Sec. II. The numerical results and discussion are given in
Sec. III. A short summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

Under the heavy-quark symmetry, the effective La-
grangians for one-σ -exchange and one-ω-exchange are ex-
pressed,

LDDσ/ω = −2gσ D†Dσ + 2gωD†Dυ · ω, (1)

L�c�cσ/ω = −2g′
σ �̄c�cσ − 2g′

ω�̄c�cυ · ω. (2)

Here, υ is the four velocity of the heavy meson, which has the
form of υ = (1, 0).

The coupling strengths can be estimated by using the quark
model, where the σ and ω mesons couple to light quarks in
heavy hadrons. Since the σ and ω mesons couple dominantly
to the light quarks, the Lagrangian of the light quarks (q =
u, d ) and σ/ω can be written as

Lqqσ/ω = −gq
σ ψ̄qσψq − gq

ωψ̄qγ
μωμψq. (3)

Compared with the vertices of D†Dσ/ω, �̄c�cσ/ω, and
q̄qσ/ω in Eqs. (1)– (3), the coupling constants can be related,
i.e.,

gσ = g′
σ = gq

σ , gω = g′
ω = gq

ω. (4)

In a σ model [32], the value of gq
σ is taken as gq

σ = 3.65.
For the ω coupling gq

ω, in the Nijmegen model, gq
ω = 3.45,

whereas it is equal to 5.28 in the Bonn model [33]. In
Ref. [34], gq

ω was roughly assumed to be 3.00. In the following
calculation, all the possible choices will be considered.

According to the effective Lagrangians in Eqs. (1) and (2),
all the relevant OBE scattering amplitudes can be collected in
Table I.

TABLE II. The effective potentials in coordinate space for
all investigated systems. The function Y (�, m, r) is defined as
Y (�, m, r) = (e−mr − e−�r )/4πr − (�2 − m2)e−�r/8π�.

Systems Quarks V (r)

DD (cq̄)(cq̄) −g2
σY (�, mσ , r) + g2

ωY (�, mω, r)
DD̄ (cq̄)(c̄q) −g2

σY (�, mσ , r) − g2
ωY (�, mω, r)

�cD̄ (cqq)(c̄q) −2gσ g′
σY (�, mσ , r) + 2gωg′

ωY (�, mω, r)
�cD (cqq)(cq̄) −2gσ g′

σY (�, mσ , r) − 2gωg′
ωY (�, mω, r)

�c�c (cqq)(cqq) −4g′2
σ Y (�, mσ , r) + 4g′2

ωY (�, mω, r)
�c�̄c (cqq)(c̄q̄q̄) −4g′2

σ Y (�, mσ , r) − 4g′2
ωY (�, mω, r)

According to the G-parity rule [35], the OSE and OOE
effective potentials for the DD̄, �cD̄, and �c�̄c systems are
related to the potentials for the DD, �cD, and �c�c systems.
The interactions from the σ exchange are same, and from the
ω exchange are contrary for DD̄ and DD, �cD̄, and �cD,
�c�̄c, and �c�c systems.

With the Breit approximation, one can get the relation
between the effective potentials in momentum space V f i and
the scattering amplitude M f i in the momentum space, i.e.,

V f i(q) = −M f i(h1h2 → h3h4)√∏
i 2mi

∏
f 2m f

. (5)

Here, M(h1h2 → h3h4) is the scattering amplitude for the
process h1h2 → h3h4. mi, and m f are the masses of the initial
(h1, h2) and final particles (h3, h4), respectively. The effective
potential in the coordinate space V (r) is obtained by perform-
ing the Fourier transformation as

V (r) =
∫

d3q
(2π )3

eiq·rV (q)F2(q2). (6)

In order to regularize the off shell effect of the exchanged
mesons and the structure effect of the hadrons, a monopole
form factor F (q2) is introduced at every vertex,

F (q2) = �2 − m2

�2 − q2
, (7)

where � is the cutoff parameter, m and q correspond to the
mass and momentum of the exchanged meson, respectively.
In Refs. [6,7], � is related to the root-mean-square radius of
the source hadron, which propagates the interaction through
the intermediate boson (σ or ω). According to the previous
experience of the deuteron, the cutoff � is taken around
1.0 GeV.

After adding the monopole form factor F (q2), the effective
potentials in coordinate space are obtained in Table II.

In Table II, we can find that the interactions of one-σ -
exchange are always attractive for these systems. The depth
of the one-σ -exchange effective potentials depend on the
number of the light quarks and/or antiquark combinations
(qq, qq̄, q̄q̄), where the light quark or antiquark is reserved in
different hadrons of the hadron-hadron systems, respectively.

The one-σ -exchange and one-ω-exchange interactions
are corresponding intermediate- and short-range forces, and
therefore they are suppressed when the radius r reaches 1.0 fm
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or larger. Since the force of the one-σ -exchange is the dom-
inant, the total effective potentials for all the systems are
attractive. The one-σ -exchange can always provide an at-
tractive force. However, the one-ω-exchange is repulsive for
the system including the same light quarks or antiquarks in
its components of the investigated systems. The interaction
strengths for the one-σ -exchange and one-ω-exchange depend
on the light-quark combination numbers.

We extend the CSM to describe the resonance of �cD(D̄)
and �c�c(�̄c) systems. The advantage of this approach is that
both bound and resonant states can be treated consistently,
since the complex scaled functions of the resonant states are
square integrable same as the bound state. The Hamiltonian
can be written as:

H = T + V, (8)

where T is the kinetic energy, and V is the effective potential
of the system, which are obtained from the double hadron
scattering. In the CSM, the relative coordinate r in Hamilto-
nian H and wave function ψ is complex scaled as

U (θ ) : r → reiθ . (9)

We can get the transformed Hamiltonian and the wave
function Hθ = U (θ )HU −1(θ ) and ψθ = U (θ )ψ , where ψθ is
square integrable. Then, the corresponding complex scaled
equation is obtained,

Hθψθ = Eθψθ . (10)

Based on the Aguilar-Balslev-Combes (ABC) theorem [36],
the energy spectrum is a set of poles of the Green’s function
in the complex energy plane, which consists of three parts: (i)
the bound states are discrete set of real points on the negative
energy axis; (ii) the resonant states correspond to the discrete
set of points in the lower half of complex energy plane; and
(iii) the continuous spectrum is rotated around the origin of
the complex energy plane by an angle 2θ .

To solve the complex scaled equation, the basis expansion
method is applied. The total wave function ψθ can be ex-
panded as

ψθ =
∑

i

ci(θ )φi , (11)

where φi = Rnl (r)Ylml (ϑ, ϕ) and the index i sum over all the
quantum numbers n, l, ml . Rnl (r) is the radial function of a
spherical harmonic oscillator potential,

Rnl (r) = 1

b3/2
0

√
2(n − 1)!

�(n + l + 1/2)
xlLl+1/2

n−1 (x2)e−x2/2,

n = 1, 2, 3, . . . (12)

Here, x = r/b0 is the radius measured in units of the oscillator
length b0. Ylml (ϑ, ϕ) is the spherical harmonics, and describes
the angular distribution of particles. Inserting the wave func-
tion (11) into the complex scaled equation (10) and applying
the orthogonality of wave functions φi, we get a symmetric
matrix diagonalization,∑

i

[Ti′,i + Vi′,i]ci = Eθci′ , (13)

TABLE III. The related parameters are used in this work [37].

Hadron I (JP ) Mass (MeV) Hadron I (JP ) Mass (MeV)

D 1
2 (0−) 1867.24 �c 0( 1

2

+
) 2286.46

σ 0(0+) 600 ω 0(1−) 782.65

where Ti′,i and Vi′,i are presented as

Ti′,i = e−i2θ

∫
φi′

(
− h̄2

2M

(
d2

dr2
+ 2

r

d

dr

)
+ �l2

2Mr2

)
φid�r ,

Vi′,i =
∫

φi′V (�reiθ )φid�r . (14)

Here, M = m1m2/(m1 + m2) is the reduced mass of particle 1
and particle 2 system. Substituting φi into the above equation,
the matrix elements Ti′,i are obtained as

Ti′,i = e−i2θ h̄2

2Mb2
0

[
√

n(n + l + 1/2)δn′,n+1

+ (2n + l − 1/2)δn′,n

+
√

(n − 1)(n + l − 1/2)δn′,n−1]δl ′lδm′
l ml . (15)

Similarly, the matrix elements Vi′,i are obtained as

Vi′,i = 〈n′l ′|V (reiθ )|nl〉δl ′lδm′
l ml ,

=
N∑

n=1

�nk�n′k[εkU (εk/ω)]. (16)

εk and �nk are the eigenvalues and eigenvectors of
the matrix JK with elements JKn,n = 2(n + l ); JKn,n+1 =
−√

n(n + 2l + 1). With the matrix elements Ti′,i and Vi′,i, the
solutions of the complex scaled equation (10) can be obtained
by diagonalizing the matrix Hθ . The eigenvalues of Hθ rep-
resenting bound states or resonant states do not change with
θ , while the eigenvalues representing the continuous spectrum
rotate with θ . The former are associated with resonance com-
plex energies E − i�/2, where E is the resonance position and
� is its width.

III. NUMERICAL RESULTS

Our purpose is to extend the CSM to describe the reso-
nances of two hadrons. In this section, we discuss and analyze
the effects of the OSE and OOE interactions for the systems
of �cD(D̄) and �c�c(�̄c) by solving the Schrödinger equa-
tion in the CSM. The related parameters are summarized in
Table III.

The information about the resonant state is obtained after
we diagonalize the Hamiltonian. We take �-D system as an
example to describe how to find out the resonant state by
complex rotation. The process is shown in Figs. 1 and 2.

As shown in Fig. 1, all the eigenvalues of Hθ are di-
vided into three parts: the bound state, the resonant state, and
the continuum, respectively, labeled as black squares, orange
solid dots, and gray triangles. The bound state locates on
the negative energy axis, while the continuous spectrum of
Hθ rotates clockwise with the angle 2θ and resonant state
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FIG. 1. The resonant state is presented with θ = 50◦. Here, the
cutoff parameter � = 1.2 GeV, and the ω coupling constant gω =
5.28. The result is performed by expending the basis function with
N = 80.

locates in the lower half of the complex energy plane, which is
bounded by the rotated continuum line and the positive energy
axis and become isolated.

In order to clarify how the resonant states isolate from
continuum by complex rotation, we present the variation of
resonant states with the complex scale angle θ , and the other
parameters are fixed same as in Fig. 1. In Fig. 2(a), when
θ = 30◦, all dots are nearly in one straight line, and it is hard
to distinguish resonant state in the continuous spectrum. In
Fig. 2(b), when θ = 40◦, the resonant state begins to separate
from the continuous spectrum. When complex scale angle
θ reaches 50◦ in Fig. 2(c), the resonant state is completely
separated from the continuous spectrum. Then, with the angle
θ increasing, the continuum spectra rotate, with the position of

FIG. 2. The resonant and continuous spectra varying with the
complex rotation angle in the complex energy plane. Except for the
complex rotation angle, the other parameters are set same as those in
Fig. 1.

FIG. 3. The θ trajectories corresponding to the several different
numbers of oscillator shells of the basis for the resonant state, where
N is the quantum number of the main shell of the oscillator basis and
θ varies from 50◦ to 85◦ by steps of 2.5◦.

the resonant state in the complex plane is almost not moving
as shown in Fig. 2(d).

In the complex scaling method, the resonance energy
should not depend on the choice of angle θ . In practice,
the number of the basis chosen is finite for basis expansion
method, the position of resonance state is not completely
independent on θ . In order to get a reasonable value for the
number of basis N , we plot the trajectories of the resonant
energies for different values of N with angle θ in Fig. 3. We
can see that as the number of basis increases from 30–80, and
the angle θ increase from 50◦–85◦, these trajectories tend to
converge to the same location. This means that the numerical
results are insensitive to the number of basis N , and for any
number N between 30–80, we can obtain the sufficient preci-
sion numerical value.

In each θ trajectory, there is a point corresponding to the
minimal rate of change with the rotation angle θ , which in-
dicates the optimal value for the resonance parameters. From
Fig. 3, we know that the resonant state is a function of θ , and
the existence of minimal rate of change point indicates that the
energy of the resonant state has the optimal value for the rate
of change θ . In order to better determine this point, we show
the θ trajectory of N = 80 in Fig. 4, with the other parameters
the same as in Fig. 3. The optimal energy value of the resonant
state appears at around θ = 85◦, which is almost independent
of θ , i.e., dE

dθ
= 0.

In Table IV, we present the numerical results of bound
and resonant states for the �cD(D̄) and �c�c(�̄c) systems
with � = 1.1 GeV. By solving the Schrödinger equation with
CSM, the solutions are divided into two parts: one is the bound
state solution with negative energy; others are resonant states,
and have the form E − i�/2, where E is the resonance energy
and � is its width. In the table, we list the energies of the
bound states, the energies and widths of the resonant states for
different angular momentum L. We find that there are neither
bound states nor resonant states for DD and DD̄ systems. The
total interaction of the �cD̄ system includes the σ exchange
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TABLE IV. The energy and width of bound and resonant states for the �cD(D̄) and �c�c(�̄c ) systems. Er and � represent the energy and
width of resonant states in units of MeV, respectively. The cutoff � is set as 1.1 GeV. The value of coupling constant gq

ω are set as gq
ω = 3.00

in Ref. [34], 3.45 in the Nijmegen model, and 5.28 in the Bonn model [33], respectively. The notation . . . stands for no bound or resonant state
solutions.

�cD̄ �cD �c�c �c�̄c

gq
ω L E � L E � L E � L E �

3.0 S ... ... S −11.09 ... S −31.69 ... S −110.39 ...
P ... ... P ... ... P 7.74 55.57 P 10.30 19.27
D ... ... D ... ... D ... ... D 28.67 196.22
F ... ... F ... ... F ... ... F 2.06 438.05

3.45 S ... ... S −14.40 ... S −22.74 ... S −126.02 ...
P ... ... P 0.27 93.03 P 5.58 60.43 P 9.07 14.09
D ... ... D ... ... D ... ... D 32.93 190.20
F ... ... F ... ... F ... ... F 10.81 437.80

5.28 S ... S −38.66 ... S ... ... S −222.57 ...
P ... ... P 9.64 75.53 P ... ... P ... ...
D ... ... D ... ... D ... ... D 49.22 149.69
F ... ... F ... ... F ... ... F 52.46 417.68

attraction and the ω exchange repulsion. As the cutoff param-
eter � is increased, the σ meson exchange becomes more
prominent. Due to the stronger ω exchange repulsion, they
can not form bound state, much less to resonant states.

Compared to the �cD̄ system, both the σ and ω meson
provide attractive contribution in the �cD system, and it is
strong enough to form a shallow S wave bound state. For cases
gq

ω = 3.45 and 5.28, this system can form a P wave resonant
state, the energy is about several MeV, the width arrive dozens
of MeV.

For the �c�c(�̄c) systems, the interaction strength is two
times stronger than that in the �cD̄ and �cD systems. There-
fore, it is easier to form bound and resonant states for �c�c

and �c�̄c systems. When the cutoff � = 1.1 GeV, the binding

FIG. 4. The parameters are same in Fig. 3, but a closeup of the θ

trajectory in Fig. 4 for N = 80, where the arrow point to the position
of the resonant state.

energies can reach from several to dozens MeV. For �c�c

system, they can form a P wave resonant state; For �c�̄c

system, they can form more high angular momentum resonant
states.

The cutoff parameter � has a great effect on the energy and
width of the resonant states. In Fig. 5 and Fig. 6, we present
the energy and width curves as a function of �. From Fig. 5
and Fig. 6, we can see that the energy of the P wave resonant
state is only a few to a dozen MeV, and the corresponding
width is dozens of MeV with � changing from 0.9–1.5 GeV.
With the variation of �, the change of energy and width was
not very dramatic. For the D and F wave resonant states of
�c�̄c system, with the increasing of �, the resonant energy
can reach dozens or even a hundred MeV, the corresponding
widths can reach about 200 MeV and 480 MeV. The resonance
width increases with the increasing of angular momentum L

FIG. 5. The energy of the resonant state as a function of the
cutoff parameter � for these systems with gq

ω = 3.45.
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FIG. 6. The width of the resonant state as a function of the cutoff
parameter � for these systems with gq

ω = 3.45.

for �c�̄c system, which means the D and F wave resonant
states become even more unstable.

IV. SUMMARY

A large number of new excited hadronic states have been
found in experiments, and many excited states are explained

by the hadronic molecular states. We extend the complex
scaling method (CSM) to describe bound and resonant states.
For �cD(D̄) and �c�c(�̄c) systems, under the heavy quark
symmetry, the contributions of π, η, ρ meson exchanges are
greatly suppressed, and the contribution of the σ and ω

mesons exchange are dominant in these processes. Our re-
sults indicate that there may exist resonant states for �cD(D̄)
and �c�c(�̄c) systems. The resonant states position in the
complex energy plane remains almost unchanged with the
variation of θ . We also check the independence of basis num-
bers N with θ trajectories. The results show that the numerical
precision is insensitive to the basis numbers. Our results in-
dicate that there may be form resonant states for �cD and
�c�c(�̄c) systems. In these resonant states, the P waves have
relative smaller energies and widths, which are more stable
and easy to search in the experiments. In general, for these
systems, the resonant states are possible to form in a wide
range of parameters, and may be observed in experiments in
the future.
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