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Analytic formulas to calculate statistical uncertainties of vn{2k} harmonics extracted from the Q cumulants
are presented. The Q cumulants are multivariate polynomial functions of the weighted means of 2m-particle
azimuthal correlations, 〈〈2m〉〉. Variances and covariances of the 〈〈2m〉〉 are included in the analytic formulas
of the uncertainties that can be calculated simultaneously with the calculations of the vn{2k} harmonics. The
calculations are performed using a simple toy model, which roughly simulates elliptic flow azimuthal anisotropy
with magnitudes around 0.05. The results are compared with the results obtained by the many data subsets,
and by the bootstrapping method. The first one is a common way of estimation of the statistical uncertainties
of the vn{2k} harmonics in a real experiment. In order to increase precision in the measurement of the vn{2k}
harmonics, a large number of 15 000 subsets and the same number of the resampling in the bootstrap method
is used. Unlike the other ways of the analytic calculation of the vn{2k} statistical uncertainties, our proposal
that includes the use of squared weights in the calculation of both the variances and covariances, gives the best
agreement with the results obtained from the subsets and bootstrap method. Additionally, a recurrence equation
between Q cumulants of any order is also presented.
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I. INTRODUCTION

In high-energy nucleus-nucleus collisions, the
Quark-Gluon-Plasma (QGP) [1–4], a state of matter formed
from a large number of deconfined quarks and gluons has been
created and studied. The collective anisotropic expansion of
the QGP is one of important phenomena used to such studies
[5–16]. Many methods have been developed [17–19]. The
first historical references [20,21] in which the method of
cumulants have been introduced in flow analyses enabled
suppression of the short-range correlations arising from jets
and resonance decays and thus revealed the collective nature
of the QGP. An improved method of cumulants is proposed
in [22]. This method is referred to as Q cumulants. The
magnitude of the nth order of the azimuthal anisotropy vn

(n = 1, 2, 3, ...) is denoted as vn{2k} (k = 1, 2, 3...) for the Q
cumulant of the order 2k.

The Q cumulants cn{2k} are multivariate polynomial func-
tions of the weighted means of 2m-particle azimuthal angle
(φ) correlations [22]

〈〈2m〉〉 =
∑events

i (W〈2m〉)i〈2m〉i∑events
i (W〈2m〉)i

, m = 1, ..., k (1)

*Corresponding author: jovan.milosevic@cern.ch

where the 2m-particle azimuthal correlation is defined as

〈2m〉 = 〈ein(φ1+...+φm−φm+1−...−φ2m )〉

= (M − 2m)!

M!

M∑
i1 �=...�=i2m=1

ein(φi1 +...+φim −φim+1 −...−φi2m ), (2)

with M denoting the multiplicity, the number of used charged
tracks of the event, and

∑
goes over all particle indices that

have to be different. The inner brackets 〈...〉 denote averaging
over all unique 2m-particle multiplets of interest, while the
outer brackets 〈〈...〉〉 denotes averaging over all events from
the given class. W〈2m〉 are the event weights, which are used
to minimize the effect of multiplicity variations in the event
sample on the estimates of 2m-particle correlations [22]. In-
stead of using unit or multiplicity itself as a weight, Bilandzic
[23] showed an obvious advantage of choosing the number
of distinct 2m particle combinations that one can form for an
event with multiplicity M as the corresponding weight:

W〈2m〉 =
2m−1∏

j=0

(M − j) = M!

(M − 2m)!
. (3)

As suggested in Ref. [22], instead of calculating all possi-
ble particle multiplets, one can express cumulants through the
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corresponding flow vector Qn defined as

Qn =
M∑

i=1

einφi . (4)

The calculations of the flow vector Qn take little amount of
time in comparison to the time needed for the calculations
of the 2m-particle azimuthal correlations 〈2m〉. Reference
[22] gives relations between the flow vectors Qn and the
2m-particle azimuthal correlations 〈2m〉. The corresponding
Q cumulants cn{2k} (up to the 8th order) are given as [22]

cn{2} = 〈〈2〉〉,
cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2,

cn{6} = 〈〈6〉〉 − 9〈〈4〉〉〈〈2〉〉 + 12〈〈2〉〉3,

cn{8} = 〈〈8〉〉 − 16〈〈2〉〉〈〈6〉〉 − 18〈〈4〉〉2

+ 144〈〈4〉〉〈〈2〉〉2 − 144〈〈2〉〉4. (5)

Finally, the magnitudes of the azimuthal anisotropies vn are
related to the above defined multiparticle Q cumulants through
the following equations:

vn{2} =
√

cn{2},
vn{4} = 4

√
−cn{4},

vn{6} = 6

√
1

4
cn{6},

vn{8} = 8

√
− 1

33
cn{8}. (6)

In order to obtain the statistical uncertainties of the vn{2k}
harmonics, one commonly divides experimental data into
many subsets and determines the statistical dispersion of the
results or applies the bootstrapping method [24,25] using to-
day’s readily available computational power. In the case when
one uses a small number of data sub-sets or resampling, the
estimated statistical uncertainty could be unstable, while the
analytic calculation can reveal the real uncertainty. Thus, it
is challenging to obtain all the statistical uncertainties of the
Q cumulants by calculating them from the data. The first
attempt to calculate the statistical uncertainties within the
method of cumulants has been performed in Ref. [20]. As the
weighted means of 2m-particle azimuthal correlations given
by Eq. (1) are not mutually independent, knowledge of their
variances and all their mutual covariances is needed. Several
approaches of calculating these variances and covariances
have been proposed. It will be shown that the best approach
must include squared weights in the calculation of both the
variances and covariances.

In this paper, we present analytical formulas to calculate
statistical uncertainties of the vn magnitudes obtained from
the Q cumulants of different orders. Section II gives a re-
currence equation that relates Q cumulants of an arbitrary
order. Section III A gives a short overview of finding variances
and covariances of the weighted means. Section III B gives
formulas for the statistical uncertainties of the vn{2k} harmon-
ics. Section IV verifies the results using a simple toy model

simulation of elliptic flow azimuthal anisotropy. A summary
is given in Sec. V.

II. RECURRENCE RELATION BETWEEN
Q CUMULANTS OF ANY ORDER

The Q cumulant generating function is a logarithm of the
weighted means of 2m-particle azimuthal correlations gen-
erating functions [20]. A systematic procedure for analyzing
cumulants of an arbitrary order has been presented in [26]. In
Ref. [27], Smith gave a recurrence relation between cumulants
and moments. The explicit expression for the 2kth order of
the Q cumulant cn{2k} in terms of the weighted means of 2m-
particle azimuthal correlations 〈〈2m〉〉 can be obtained by using
Faà di Bruno’s formula for higher derivatives of composite
functions:

cn{2k} = (k! )2

(2k! )

k∑
m=1

(−1)m−1(m − 1)!

· B2k,m(0, μ2, 0, ..., μ2k−m+1),

(7)

where B2k,m are the incomplete (or partial) Bell polynomials
with the following central moments:

μ2k = (2k! )

(k! )2
〈〈2k〉〉, μ2k−1 = 0, k ∈ N. (8)

Using the above two Eqs. (7) and (8) establishes the following
recurrence equation that relates Q cumulants of an arbitrary
order with the weighted means of 2m-particle azimuthal cor-
relations:

cn{2k} = 〈〈2k〉〉 −
k−1∑
m=1

(
k

m

)(
k − 1

m

)
〈〈2m〉〉cn{2k − 2m}. (9)

This provides an efficient way to calculate the Q cumulants.

III. THE vn{2k} STATISTICAL UNCERTAINTIES

A. The variances and covariances

The variance of the ordinary arithmetic mean is easily
calculated from the variance of the variable itself,

σ 2
x̄ = σ 2

x

N
=

∑N
i=1[xi − x̄]2

N (N − 1)
, (10)

while the covariance is defined as

σx̄ȳ =
∑N

i=1[xi − x̄][yi − ȳ]

N (N − 1)
, (11)

where N denotes the number of single measurements.
However, if one deals with the weighted means, the prob-

lem of finding their variances and covariances is getting much
more complicated. Gatz and Smith [28] in 1995 described
this in the following way: “Although the weighted mean is
a very useful concept (in precipitation chemistry), it has one
notable drawback: there is no readily derivable, generally
applicable, analog of standard error of the mean to express the
uncertainty of the (precipitation) weighted mean. A theoreti-
cal mathematical-statistical development of a formula for the
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standard error of the weighted mean would require knowledge
of the statistical distributions”.

Several expressions for the standard error of the mean have
been proposed and used in the literature. Miller in Ref. [29]
suggested the following equation:

σ 2
x̄w

=
∑N

i=1 wi[xi − x̄w]2

N
∑N

i=1 wi

(12)

that was also used by Liljestrand and Morgan in Ref. [30]
and by Topol et al. in Ref. [31]. Here, the weighted mean
x̄w is defined as x̄w = ∑N

i=1 wixi/
∑N

i=1 wi. Although Eq. (12)
might be seen as the weighted case of Eq. (10), the proposed
expression on the right side of Eq. (12) was unaccompanied
by any discussion or justification of the assumptions required
in their derivation.

Galloway et al. [32] used a somewhat different equation:

σ 2
x̄w

= N
∑N

i=1 w2
i x2

i − (∑N
i=1 wixi

)2

(N − 1)
( ∑N

i=1 wi
)2 . (13)

The equation for the corresponding covariance is then
given as

σx̄w,ȳw
= N

∑N
i=1 wx

i w
y
i xiyi − ∑N

i=1 wx
i xi

∑N
i=1 w

y
i yi

(N − 1)
∑N

i=1 wx
i

∑N
i=1 w

y
i

. (14)

Bilandzic [23] proposed the following variances and co-
variances to be used in the calculations of the vn{2k} statistical
uncertainties:

σ 2
x̄w

=
∑N

i=1 w2
i( ∑N

i=1 wi
)2

∑N
i=1 wi[xi − x̄w]2∑N

i=1 wi

1

1 −
∑N

i=1 w2
i

(
∑N

i=1 wi )2

, (15)

and

σx̄w,ȳw
= BF

∑N
i=1 wx

i w
y
i∑N

i=1 wx
i

∑N
i=1 w

y
i

·
[∑N

i=1 wx
i w

y
i xiyi∑N

i=1 wx
i w

y
i

−
∑N

i=1 wx
i xi∑N

i=1 wx
i

∑N
i=1 w

y
i yi∑N

i=1 w
y
i

]
, (16)

where BF = 1/(1 −
∑N

i=1 wx
i w

y
i∑N

i=1 wx
i

∑N
i=1 w

y
i
).

Cochran in his book [33] has analyzed a problem of finding
the variance of the ratio of two random variables. By recogniz-
ing the usefulness of that result, Endlich et al. [34] expressed
the variance of the weighted mean as an approximate ratio

variance given by Cochran [33]:

σ 2
x̄w

= N

N − 1

∑N
i=1 w2

i [xi − x̄w]2( ∑N
i=1 wi

)2 , (17)

Gatz and Smith [28] have shown by bootstrapping methods
[24,25] that the expression on the right side of Eq. (17) gives
an accurate estimation for the variance of the weighted mean.
Cochran [33] has also given an approximate expression of the
covariance between two ratios. By following the example of
Endlich et al. [34] we are proposing to express the covariance
between weighted means as

σx̄w,ȳw
= N

N − 1

∑N
i=1 wx

i w
y
i [xi − x̄w][yi − ȳw]∑N

i=1 wx
i

∑N
i=1 w

y
i

, (18)

where wx and wy are weights of the corresponding variables.
This expression is probably not unknown in the literature.
Namely, in a recently published article [35] the author used
formulas for the weighted variance and covariance of a dis-
crete variable. Dealing with the uncorrelated observations
with all equal variances there is a known relation between
the variance of a weighted variable and the variance of the
weighted means:

σ 2
x̄ = σ 2

x

∑N
i=1 w2

i(∑N
i=1 wi

)2 , (19)

and the corresponding relation between the covariances:

σx̄,ȳ = σ 2
x,y

∑N
i=1 wx

i w
y
i∑N

i=1 wx
i

∑N
i=1 w

y
i

. (20)

It is easy to recognize the connection between the expressions
on the right side of Eqs. (17) and (18) and the corresponding
expressions in Eqs. (19) and (20), which are used in [35]. The
Bessel’s correction factors, N

N−1 in Eq. (17) and Eq. (18), and
1

1−
∑N

i=1 w2
i

(
∑N

i=1 wi )2

in Eq. (15) and 1

1−
∑N

i=1 wx
i w

y
i∑N

i=1 wx
i

∑N
i=1 w

y
i

in Eq. (16) are very

close to one.

B. The vn{2k} statistical uncertainties

Propagating back to the 〈〈2m〉〉 azimuthal correlations, the
statistical uncertainties of the vn{2k} expressed by Eq. (6) are
given as

s2[vn{2}] · 4(vn{2})2 = σ 2
〈〈2〉〉,

s2[vn{4}] · 16(vn{4})6 = 16〈〈2〉〉2σ 2
〈〈2〉〉 − 8〈〈2〉〉σ〈〈2〉〉,〈〈4〉〉 + σ 2

〈〈4〉〉,

s2[vn{6}] · 576(vn{2})10 = A2σ 2
〈〈2〉〉 + 2ABσ〈〈2〉〉,〈〈4〉〉 + B2σ 2

〈〈4〉〉 + 2Aσ〈〈2〉〉,〈〈6〉〉 + 2Bσ〈〈4〉〉,〈〈6〉〉 + σ 2
〈〈6〉〉,

s2[vn{8}] · 2642(vn{2})14 = C2σ 2
〈〈2〉〉 + D2σ 2

〈〈4〉〉 + E2σ 2
〈〈6〉〉 + σ 2

〈〈8〉〉 + 2CDσ〈〈2〉〉,〈〈4〉〉 + 2CEσ〈〈2〉〉,〈〈6〉〉 + 2Cσ〈〈2〉〉,〈〈8〉〉
+ 2DEσ〈〈4〉〉,〈〈6〉〉 + 2Dσ〈〈4〉〉,〈〈8〉〉 + 2Eσ〈〈6〉〉,〈〈8〉〉, (21)

where A, B, C, D, and E are defined as

A = 36〈〈2〉〉2 − 9〈〈4〉〉,
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B = −9〈〈2〉〉,
C = 288〈〈2〉〉〈〈4〉〉 − 576〈〈2〉〉3 − 16〈〈6〉〉,
D = 144〈〈2〉〉2 − 36〈〈4〉〉,
E = −16〈〈2〉〉. (22)

In Eqs. (21) and (22), instead of use a general notation of x̄
we used a more common notation of 〈〈...〉〉 to denote weighted
means of 2m-particle azimuthal angle correlations.

Bilandzic [23] gave formulas for the calculations of the
statistical uncertainties that are equal to the above formulas
presented by the Eqs. (21) and (22).

IV. RESULTS

Via the Eqs. (21) and (22) one can calculate the statis-
tical uncertainties of the vn{2k} harmonics using different
expressions for the variances and covariances presented in
Sec. III A. The validity of these equations have been tested
by simulating various experimental conditions. Beside a uni-
form multiplicity distribution, a Gauss distribution has been
checked. The (1 + 2v2 cos(2φ)) distribution is used to gener-
ate particle azimuthal angle. Also, the v2 magnitude has been
varied according to both Bessel-Gaussian (BG),

f (v2) = v2

σ 2
v

e
− v2

2+μ2

2σ2
v I0

(
v2μ

σ 2
v

)
, (23)

where the flow fluctuation σv is taken to be 3μ/4.4, and
Gaussian (normal) distribution

f (v2) = 1

σv

√
2π

e− 1
2 ( v2−μ

σv
)2
, (24)

where the σv is taken to be 1μ/4.4. In order to show robust-
ness of the proposed method for the analytic calculations of
the statistical uncertainties of the vn{2k} magnitudes we per-
formed analyses in which we used small fixed multiplicities
(50 and 150), or fixed v2 magnitude, or inclusion of the v1

harmonic into the simulation of the data. Additionally, the
analysis has been repeated several times with the following
mean μ (mean v2) values: 5% and 15% in the case of the BG
distribution, and with 0%, 2%, 5%, 10%, 20%, and 40% in
the case of the Gaussian distribution. In all of these analyses,
qualitatively the same conclusion is reached concerning the
consistencies between the calculated statistical uncertainties
and those estimated by the data subsets and the bootstrapping
method. For the sake of brevity, in the analysis presented in
this paper, uniform multiplicity distribution and v2 magnitude
of 5% varied by BG distribution is used.

Presented in Fig. 1 are the results of calculations of the
two- and four-particle azimuthal correlations, 〈〈2〉〉 and 〈〈4〉〉,
obtained by 15 000 simulations of 10 000 events each with
elliptic flow v2 magnitude that varies according to the BG
distribution with μ = 0.05 and σ = 3μ/4.4 from event to
event. The multiplicity of the events has been varied uni-
formly from 300 to 900. This is chosen in order to roughly
simulate experimental conditions in lower energies nucleus-
nucleus collisions, which will be experimentally available at

the NICA collider. At higher collision energies, due to the
greater multiplicity M and greater vn magnitudes, the fea-
sibility of the Q cumulant method is anyhow better. When
multiplicity becomes small enough (M < 300) the feasibil-
ity of the Q cumulant method deteriorates. The deterioration
becomes worse with further decrease of the multiplicity. In
addition, the statistical uncertainties increase enormously.

By repeating the simulations under the same experimental
conditions one gets a population of the simulated values of
those 2m-particle azimuthal correlations that serves one to
compare the dispersions of the obtained distributions with
the dispersions (variances) predicted by equations given in
Sec. III A. Each pair of the simulated values {〈〈2〉〉, 〈〈4〉〉} is
presented by a green filled circle in the lower-left panel of
the Fig. 1. We have applied a two-dimensional (2D) binning
in that panel and built up the frequency count distributions
presented by corresponding column graphs (upper-left and
lower-right panels). The normality of the distributions of both
of the populations, 〈〈2〉〉 and 〈〈4〉〉, is checked by Anderson-
Darling test. It is found that only the population of 〈〈2〉〉 have
passed it at the confidence level of 5%. Both populations
have passed the Kolmogorov-Smirnov normality test at the
same confidence level and we fitted both frequency distri-
butions by Gauss functions presented by red color lines in
Fig. 1. Distributions 〈〈2〉〉 and 〈〈4〉〉 yield the v2 results with the
corresponding statistical uncertainties as 0.069456±0.000004
and 0.04994±0.00002, respectively. The similar analysis is
presented in Fig. 2 for the 6- and 8-particle azimuthal cor-
relations. Neither of the two distributions could pass any

<<2>>

<<2>>

<<4>>

<
<

4>
>

FIG. 1. Two- and four-particle azimuthal correlations obtained
by 15 000 simulations of 10 000 events each with elliptic flow v2

magnitude that varies according to the Bessel-Gaussian distribution
from event to event, with the mean v2 magnitude of 5% and σv =
3μ/4.4.

034906-4



STATISTICAL UNCERTAINTIES OF THE … PHYSICAL REVIEW C 104, 034906 (2021)

<<6>>

<<6>>

<<8>>

<
<

8>
>

FIG. 2. Six- and eight-particle azimuthal correlations obtained
by 15 000 simulations of 10 000 events each with elliptic flow v2

magnitude that varies according to the Bessel-Gaussian distribution
from event to event, with the mean v2 magnitude of 5% and σv =
3μ/4.4.

normality test at the level of confidence of 5%. Both distri-
butions have vivid right tailings and they are fitted by the
exponentially modified Gaussians. The non-normality of the
distributions of the higher number particle correlations calls
for caution in the interpretation of the confidence intervals;
they are certainly not corresponding to the standard ones.
The conditions for the Central Limit Theorem are not ful-
filled completely. The 〈〈6〉〉 and 〈〈8〉〉 distributions yield the
v2 results as 0.04980±0.00002 and 0.04980±0.00002 respec-
tively. Figure 3 displays the distributions of the Q cumulants
c2{2k}, k = 1, ...4 values reconstructed using Eq. (5). In con-
trast to the pronounced skewness of the 〈〈2m〉〉 distributions,
that is clearly visible especially for the m = 3, 4 (see Fig. 2),
in the distributions of the Q cumulants cn{2k} it is not the case.

Shown in Fig. 4 are the v2{2k} values reconstructed from
the corresponding c2{2k} Q cumulants. A clear separation
between the v2{2} from one side, and the v2{2k} (k = 2, 3, 4)

FIG. 3. Frequency counts of the Q cumulants c2{2k}, k = 1, ...4.
The red curves represent corresponding Gaussians.

0.048 0.052 0.068 0.069 0.070 0.071
0

1000

2000

3000
Frequency count of v2{2}
Frequency count of v2{4}
Frequency count of v2{6}
Frequency count of v2{8}

C
ou
nt

v2{2k}

FIG. 4. The v2{2k} values reconstructed from the corresponding
c2{2k} Q cumulants.

on the other side is visible. When the non-flow effects are
negligible, by using the Taylor expansion up to the first order,
it has been proven in Ref. [23,36] that due to statistical flow
fluctuations the v2{2} and higher cumulant order v2{2k} are
connected via

v2
2{2} ≈ v2

2{2k} + 2σ 2
v , k = 2, 3, 4 (25)

where σv is the flow fluctuations. The obtained results shown
in Fig. 4 nicely reproduce the input σv of 3 · 0.05/4.4.

As en example, Fig. 5 shows the distributions of the
variances of the azimuthal correlations 〈〈2〉〉 calculated by
using different expressions presented in Sec. III A divided
by the variances obtained by the data subsets method. The
calculations obtained using the right sides of the equations
given in Sec. III A are shortly called “calculated” and marked
as “calc”, while those obtained from dispersions of the re-

<<2>> <<2>>

FIG. 5. Distributions of the variances of the azimuthal cor-
relations 〈〈2〉〉 calculated using different expressions presented in
Sec. III A over the variances obtained by simulations. Shown with
yellow stars is distribution of the corresponding ratio of the boot-
strapping results over the results obtained by simulations.
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10-19 10-16 10-13 10-10 10-7
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Bootstrapping
Miller

<�
2 <<
2k
>>
(c
al
c)
>/
�2 <<

2k
>>
(s
im
)

�2<<2k>>(sim)

k=4 k=3 k=2 k=1

FIG. 6. The mean values of the variances of the azimuthal cor-
relations 〈〈2k〉〉, k = 1, ..., 4 calculated using different expressions
presented in Sec. III A over the mean values of the variances obtained
by simulations. Shown with yellow stars are the corresponding mean
values from the bootstrapping method.

sults from data subsets are called “simulated” and marked as
‘sim”. Additionally, Fig. 5 also shows the distribution of the
corresponding ratio of the bootstrapping results over the re-
sults obtained by simulations. As expected, the bootstrap
results are in an excellent agreement with the simulation re-
sults. The same is valid for the results analytically obtained
using Eq. (17), too. The variances predicted by Eq. (12) are
smaller, while those obtained by Eq.(13) and Eq. (15) are
greater with respect to the simulation results.

Presented in Fig. 6 are the ratios of the mean values of the
variances of the azimuthal correlations 〈〈2k〉〉, k = 1, ..., 4 cal-
culated by using different expressions presented in Sec. III A,
over mean variances obtained from simulations. The same ra-
tio is calculated for the results from the bootstrapping method,
too. The results obtained by Eq. (12) shows great deviations
from the simulated variances. The deviations become larger
with an increase of k. Equation (13) gives a fair estima-
tion of the variances for the higher orders of the azimuthal
correlation, while it starts to deviate for the lower orders
k = 1, 2. Also, results obtained by Eq. (15) deviate for all
order of k. However, the results obtained by Eq. (17) are in
an extraordinary accordance with the simulated results for all
orders of k. The same is true for the results obtained using the
bootstrapping method.

Figure 7 shows the ratio of the mutual covariances of
the azimuthal correlations 〈〈2k〉〉, k = 1, ..., 4 calculated us-
ing different expressions presented in Sec. III A over the
covariances obtained by simulations. Additionally, the cor-
responding mean covariance values from the bootstrapping
method are also presented. As there is no an analogous co-
variance equation for the variance in Eq. (12), so these values
are omitted in Fig. 7. Similarly to Fig. 6, Eq. (14) for the
covariances that is associated to the variance expressed by
Eq. (13) gives a fair estimation of the covariances for the
higher orders of the azimuthal correlation k while deviates for
the lowest order. In contrast to the results for the variances,
the corresponding results for the covariances obtained by us-
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FIG. 7. The ratio of the mutual covariances between azimuthal
correlations 〈〈2k〉〉, k = 1, ..., 4 calculated using different expressions
presented in Sec. III A over the covariances obtained by simulations.
With yellow stars are shown the corresponding mean values from the
bootstrapping method.

ing Eq. (16) are in an excellent agreement with the results
obtained from the simulations. The reason is that naturally, a
product of the weights had to be introduced into the right side
of Eq. (16). Again, the same as in the case of the variances,
the results for covariances obtained by using Eq. (18) are in
extraordinary accordance with the simulated results in the en-
tire checking region. The same is valid for the results obtained
using the bootstrapping method, too.

Finally, Fig. 8 shows distributions of the ratio of the sta-
tistical uncertainties of the v2{2k}, k = 1, ..., 4 calculated by
Eq. (21) using different expressions presented in subsection
III A over the statistical uncertainties of the v2{2k} obtained by
simulations. Additionally, the corresponding results obtained
from the bootstrapping method are shown too. As expected,

FIG. 8. The distributions of the ratio of the statistical uncertain-
ties of the v2{2k}, k = 1, ..., 4 calculated by Eq. (21) using different
expressions presented in Sec. III A over the statistical uncertainties of
the v2{2k} obtained by simulations. Shown with yellow stars are the
corresponding distributions obtained from the bootstrapping method.
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FIG. 9. The ratio of the mean statistical uncertainties of the
v2{2k}, k = 1, ..., 4 calculated by Eq. (21) using different expres-
sions presented in Sec. III A over the statistical uncertainties of the
v2{2k} obtained by simulations. Shown with yellow stars are the
corresponding results obtained from the bootstrapping method.

they are in an excellent agreement with the simulation results.
The same conclusion is valid when one use Eq. (17) and
Eq. (18) to calculate the v2{2k} statistical uncertainties. The
v2{2k} statistical uncertainties obtained using Eq. (13) and
Eq. (14) for variances and covariances respectively are greater
than they should be, but the deviation becomes somewhat
smaller going to higher cumulant order. In the case of using
Eqs. (15) and (16) the deviation is big and becomes greater
with an increase of the cumulant order. For the k = 4, the
v2{2k} statistical uncertainty becomes nearly four times larger
than it should be. The source of the deviation is entirely in the
use of Eq. (15) to calculate the variance where the weights are
introduced linearly, instead of quadratically. Thus, although
the weights used in this paper are the same as those introduced
in [22,23], the way how they are implemented in the formula
for the variance makes a significant difference.

Figure 9 summarize the results by plotting the mean values
of the corresponding distributions shown in Fig. 8. The results
show an excellent agreement with the results obtained by sim-

ulations when one use the bootstrapping method or analytical
calculation of the v2{2k} statistical uncertainties based on use
of Cohran’s Eq. (17) and Eq. (18). The use of Galoway’s
Eq. (13) and Eq. (14) for variances and covariances results
in somewhat greater v2{2k} statistical uncertainties than they
should be, while the use of Eq. (15) produce much larger
statistical uncertainties.

V. CONCLUSIONS

In this paper we presented analytic expressions for cal-
culating the statistical uncertainties of vn{2k} harmonics
extracted using the Q cumulants method. The analysis is
performed using a simple toy model, which simulates elliptic
flow azimuthal anisotropy with magnitudes around 0.05. The
estimation of the statistical uncertainties of vn{2k} is based
on the calculation of the variances and covariances of the
〈〈2m〉〉, m = 1, ..., k azimuthal anisotropies expressed by dif-
ferent equations given in Sec. III A. When one use Cohran’s
Eq. (17) and Eq. (18), for all orders of k, an extraordinary
accordance is achieved for both variances and covariances
between the calculated and those obtained from the dispersion
of the results from many data subsets. The same is true for
the final vn{2k} statistical uncertainties. Additionally, the re-
sults obtained by the bootstrapping method gives an excellent
agreement with the results from data subsets. The proposed
way of the analytic calculations of the statistical uncertainties
of the vn{2k} magnitudes is robust to the change of the multi-
plicity, the vn magnitude and inclusion of the other Fourier
harmonics. In addition, a recurrence relation between the
Q cumulants of any order is also presented.
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