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High energy collisions are the laboratories within our reach to study strongly interacting matter under
extreme temperatures. In the present study, we use a quarkonia suppression scheme to explain the bottomonium
production at the two energies available at the CERN Large Hadron Collider. We employ ECHO-QGP to model
the (3+1)-dimensional relativistic viscous hydrodynamic evolution of the medium. Bottomonia produced in
the early stage dissociates due to color screening, gluonic dissociation, and collisional damping in addition to
shadowing as an initial state effect. In the color screening mechanism, the temperature from hydrodynamics
is used to find the screening radii at each centrality and rapidity. The shadowing effect utilizes the parton
distribution functions obtained from the CT14 global analysis and shadowing factors from EPPS16. A lattice
QCD based equation of state from the Wuppertal-Budapest Collaboration has been used. The experimental
values of pion (π+) spectra were used to constrain the initial conditions of the dynamics. The bottomonium
suppression is determined as a function of centrality, transverse momentum, and rapidity for ϒ(1S) and ϒ(2S)
states at the LHC energies of 2.76 and 5.02 TeV. We find a fairly good agreement between our theoretically
calculated survival probability and the measured nuclear modification factor (RAA) at the two energies.
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I. INTRODUCTION

We have made considerable progress in our understand-
ing of the strong interaction since the advent of heavy-ion
collision experiments, especially at the BNL Relativistic
Heavy-ion Collider (RHIC) and at the CERN Large Hadron
Collider (LHC). Quantum chromodynamics (QCD), the the-
ory of strong interaction, predicts that a thermalized medium
of quark-gluon plasma (QGP) should form as a transient stage
of heavy-ion collisions when the temperature and/or matter
density of the fireball exceeds a certain threshold value. The
largest portion of the speculative phase diagram of the QCD is
occupied by this QGP [1,2]. It is pertinent for us to investigate
the nature of this medium in order to make advancement in
our understanding of QCD and its limits. And with consensus
that QGP does exist in ultrarelativistic energy nucleus-nucleus
collisions, the focus is now shifting towards characterizing
this medium with the help of the probes which acted as its
signatures. A good starting point is to use the wide range of
available experimental data from different systems of colli-
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sions and energies to constrain the input parameters of the
dynamics at work.

So far, the experimental findings indicate the formation of
an inviscid medium [3,4]. A theoretical lower limit for the
shear viscosity to entropy density ratio (η/s) of strongly inter-
acting matter has been know for a while [5]. But the estimation
of such low η/s for quark matter in heavy-ion collisions has
become possible only recently using lattice QCD [6] and
Bayesian parameter estimation methods [7]. Hydrodynamics
has been widely applied to simulated heavy-ion collisions
of various systems and energies. Phenomenological models
based on hydrodynamics better explain the observables from
high energy collisions with thermalization starting early, τ <

1 fm/c [8,9]. What makes this problem of characterizing QGP
so difficult is the sheer complexity of the system. In high
energy collisions, the only variables in our control are particle
species and the energy of collision. All the rest has to be in-
ferred indirectly from the observables. Predicting the transport
and thermodynamic properties of a medium formed in the
collision by analyzing patterns in the produced particle yields
is a scrupulous task. Hence, modeling of such a complex
system can only be dealt phenomenologically [10]. Right after
the collision, we get a fireball where the medium consisting of
quarks and gluons expands against the surrounding vacuum
and cools down rapidly. We assume that this system thermal-
izes quickly after the collision and we mark the time required
for the system to thermalize as QGP formation time. Hydro-
dynamics is switched off when the system temperature falls
below the pseudocritical temperature (Tc) of the QGP. The
recently agreed upon value of Tc for QGP computed by lattice
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QCD collaborations is 156 MeV [11–13]. One way of testing a
given model is by calculating a physical quantity which could
act as a theoretical counterpart of an observable measured by
detectors. If QGP does exist as a transient stage of heavy-ion
collisions, then we should be able to notice an agreement
between these two quantities [14]. Among many such sig-
natures of QGP, one is quarkonia suppression, on which we
are concentrating in the current work. Quarkonia are mesonic
bound states of heavy quarks and heavy antiquarks, which are
produced in the early stage of collision. They could dissociate
due to various types of interactions with the partons in the
medium and would be detected in comparatively lesser num-
ber than in collision systems where we do not expect QGP, like
at low energies and in p-p collisions [15]. In order to quantify
this suppressed production of quarkonium, experimentalists
measure a physical quantity called the nuclear modification
factor (RAA). It is the quarkonia yield in heavy-ion collision
divided by the yield of the quarkonium in p-p collision scaled
by Ncoll. Its value less than 1, greater than 1, and equal to 1
indicates suppression, enhancement, and no medium effect,
respectively. Surprisingly, there are cases which contribute to
suppression in collision systems where we do not expect a
thermalized medium. These non-QGP effects arise due to con-
ditions before collision (initial state effects where the system
is said to be cold) and, even though small, need to be modeled
into the total suppression scheme [16]. These non-QGP effects
are called cold nuclear matter (CNM) effects. The RAA is
measured over a wide range of collision energies as a function
of centrality Npart, transverse momentum pT , and rapidity, y.
Various phenomenological models have tried to consistently
explain the measured values of the suppression over a wide
range of beam center-of-mass energies and collision systems
[17]. Few of them attempted explaining centrality and pT

dependencies of suppression [18,19]. And even fewer predict
all the three dependencies of the suppression over a wide
range of available center-of-mass energies [20]. In our earlier
work [22], we explained the pT and Npart dependence of RAA

over a range of LHC energies. It was based on the suppression
due to color screening, gluonic dissociation, and collisional
damping under (1+1)-dimensional Bjorken’s expansion of the
thermalized medium. The net quarkonium yield was deter-
mined using a rate equation which combines suppression and
recombination due to correlated quark-antiquark pairs.

In the current study, we start with the initially produced
bottomonia yield which evolves in (3+1)-dimensional hy-
drodynamic medium. This initial yield is influenced by a
CNM effect used here called “shadowing,” which has been
updated for the newly available parton distribution functions
and shadowing factors. The bottomonium bound state while
drifting through QGP could dissociate due to gluonic disso-
ciation, collisional damping, and color screening, which are
adapted to the (3+1)-dimensional hydrodynamic expansion.
Color screening has been streamlined by eliminating the need
of assuming a pressure profile of collision. A lattice QCD
based equation of state (EOS) from the Wuppertal-Budapest
Collaboration has been utilized. The input parameters for the
hydrodynamics are constrained using the transverse momenta
and rapidity spectra for pions from the ALICE experiment.
And lastly, after considering the possibility of recombination

of a correlated bottom quark and antiquark pair, we find
the final number of bottomonia for ground state and excited
states [21]. We then find a quantity called survival probability
(Sp) which is theoretically equivalent to the experimentally
measured RAA. We determine this as a function of transverse
momentum, centrality, and rapidity at 2.76 and 5.02 TeV ener-
gies and then compare with the corresponding RAA values for
ϒ(1S) and ϒ(2S) states. On comparison, we find a reasonably
good agreement between Sp and RAA at two LHC energies.

The arrangement of the topics in the current paper is
as follows. Section I describes the general introduction
of the proposed work. In Sec. II, we briefly describe the
(3+1)-dimensional hydrodynamics used to model the bulk
of medium using ECHO-QGP. It is followed by the quarkonia
suppression formalism and the various effects incorporated
into the scheme. Sec. III presents the results and discussions
on the suppression of two bottomonium states, (1S) and (2S),
versus Npart, pT , and rapidity y at the two LHC energies.
Finally in Sec. IV we summarize our results obtained and
conclude the work.

II. FORMALISM

Here we describe the formalism in brief. The suppression
formalism which was developed in our previous work [22] has
been adapted for the (3+1)-dimensional viscous hydrodynam-
ics. More details about individual medium effects used can be
found in [23–25].

A. (3+1)-dimensional hydrodynamical expansion of the medium

Hydrodynamics has been quite successful in explaining
bulk observables from ultrarelativistic heavy-ion collisions for
a wide range of system and energies [26–29]. The agreement
of hydrodynamical predictions with experimental results has
been taken as indirect evidence for the correctness of dy-
namics. Bjorken’s hydrodynamics assumes that the fireball
expands only along the longitudinal direction and is restricted
to the plateau region of rapidity spectra (dN/dy vs y). This
leads to the key variables of dynamics—e.g., temperature,
pressure, energy density, and entropy density—to become
explicit functions of proper time [30]. Thus, although models
based on Bjorken’s evolution are adequate to estimate the ob-
servables at midrapidity, they are ineffective in providing the
complete spacetime evolution of the system. In order to sim-
ulate the true dynamics of a collision that holds up expansion
along the transverse directions and larger rapidities, one has
to switch to the complete (3+1)-dimensional hydrodynamics.
ECHO-QGP is a Fortran based code to find the solutions of the
conservation equations, dμNμ = 0 and dμT μν = 0, where dμ

is the covariant derivative, Nμ is the four-current, and T μν

is the energy momentum tensor. To solve these equations
numerically in (3+1)-dimensions with relativistic speeds and
viscous conditions, Israel-Stewart’s second-order formalism
has been used in ECHO-QGP [31]. A Cooper-Frye prescription
handles the freeze-out stage, where the produced particles are
assigned their momenta at the constant temperature hypersur-
face. We vary the input parameters of ECHO-QGP so that the
particle momentum spectra calculated here matches with the
measured spectra from experiments as explained below. We
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mark the end of the QGP phase at the value of proper time
when the maximum temperature of the system drops below
pseudocritical temperature Tc.

The equation of state (EOS) from the Wuppertal-Budapest
(WB) Collaboration [32] replaces the earlier quasiparticle
EOS [33]. WB EOS is spline interpolation with the hadron
resonance gas (HRG) EOS [34] for the hot and dense
hadronic matter after hadronization. WB EOS computed
from lattice QCD is a better choice, as the pseudocriti-
cal temperature range of QGP predicted by their analysis
lies close to the presently agreed upon value [35]. We ran
the hydrodynamics code for 11 values of the impact pa-
rameter covering 0–100% centrality range. We chose the
geometric Glauber initialization in ECHO-QGP [36]. A ra-
pidity profile of p-p collisions is also employed as an
input. The two parameters characterizing this profile are
�s, which is the extension of the rapidity plateau, and ση,
which is the width of the Gaussian falloff of the profile.
Values for both of these parameters are varied until the
shape of pion (π+) rapidity spectra matches with that from
the experimental pion rapidity spectra for the two mentioned
LHC energies as shown in Fig. 1 [37,38]. The values of the re-
laxation time coefficient for viscosity of second order, τπ , and
the shear viscosity to entropy density ratio, η/s, are taken from
[39,40]. The thermalization time in the code is set for both
the energies, viz., 2.76 and 5.02 TeV at 0.20 fm/c [26,39,41].
The inelastic nucleon-nucleon cross section is taken to be 61.8
and 70 mb for 2.76 and 5.02 TeV, respectively [36]. Lattice
QCD predicts formation of a thermalized medium at energy
density above 1.0 GeV/fm3 [42]. Initial energy density which
goes as an input in ECHO-QGP was at first calculated roughly
using an approximate relation ε0 = 1

AT τ0
J (y, η) dET

dy involving
overlap area, initial thermalization time, and the differential
transverse energy [30,43]. But the peak values of the pion pT

spectra for these values fall short of the experimental values.
Hence, we varied the initial energy density at each centrality
such that the pion pT spectrum from ECHO-QGP matches with
that from experiment values [44,45]. The comparison of the
pion spectra at a few of these centralities is shown in Fig. 2.
The key parameters used in the ECHO-QGP hydrodynamics are
summarized in Table I.

The suppression formalism, described in the next section,
requires temperature of the medium at different centralities
and rapidities as a function of proper time in the transverse
plane, which are obtained from ECHO-QGP. Calculation of
suppression at all transverse (x, y) points is computationally
infeasible. Hence, temperatures are integrated over the trans-
verse plane at all centrality, rapidity, and proper time values
with a Gaussian weight factor and are taken as an input in
the suppression formalism. The standard deviation of this
Gaussian profile is varied within a specific range which is
explained in the Results and Discussions section.

B. Suppression formalism

Bottom quark-antiquarks pair produced in the hard scat-
tering of colliding nuclei in the early stage of a collision
combine to form the bottomonia mesons. These heavy flavor
mesons will drift in the medium and their decay products are

FIG. 1. Pion (π+) rapidity spectra for the two mentioned LHC
energies from ALICE, normalized to their respective maxima for the
most central collision (with impact parameter, b) compared with the
those obtained from ECHO-QGP.

eventually detected. During their time in the medium, these
meson bound states are affected by various medium depen-
dant dissociation mechanisms like color screening, collisional
damping, and gluonic dissociation, which are individually
explained below along with the possible recombination due to
correlated b-b̄ pairs and the nonmedium effect of shadowing.

a. Gluonic dissociation

Gluonic dissociation is referred to the process where a
bottomonium color singlet state absorbs a soft gluon in the
medium and gets excited to a color octet state. The cross
section for this process is calculated as [46]

σdiss,nl (Eg)

= π2αu
s Eg

N2
c

√
mq

Eg + Enl

(l + 1)
∣∣Jq,l+1

nl

∣∣2 + l
∣∣Jq,l−1

nl

∣∣2

2l + 1
, (1)
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FIG. 2. Pion (π+) pT spectra for the two mentioned LHC ener-
gies and centralities compared with those obtained from ECHO-QGP.

TABLE I. The key parameters used as input in ECHO-QGP.

Parameter Value

Initialization Geometric Glauber
Equation of state WB EoS spline interpolated with HRG
Grid size (fm) 30×30×30
Grid points 125
Relaxation time for
viscosity, τπ 3.0
η/s 0.1 ≈ 1.25×(1/4π )

For 2.76 TeV For 5.02 TeV

Extension of the rapidity
plateau in p-p collision, �s 4 3.4
Width of the Gaussian
falloff in p-p collision, ση 1.5 1.7
tstart (fm/c) 0.2 0.2
σNN (mb) 61.8 70

where Eg is the soft gluon energy, Enl is the eigenvalues
corresponding to the bottomonium wave function [gnl (r)], mq

is the bottom quark mass in GeV, Nc is the number of color
charges, and αu

s = αs(mqα
2
s /2) ≈ 0.59.

The probability density is

Jq,l ′
nl =

∫ ∞

0
r g∗

nl (r) hqi′ (r) dr, (2)

where g∗
nl and hqi′ (r) are the singlet and octet wave func-

tions of bottomonium respectively, obtained after numerically
solving the 3-dimensional Schrödinger’s equation. We inte-
grate the cross section in Eq. (1), with the Bose-Einstein
distribution as a weight factor, over gluon momentum to
calculate the dissociation width due to gluonic dissociation,
i.e., �gd,nl . The validity of the above cross section assumes
T � 1/r, where T is the medium temperature and r is the
distance between quark and antiquark [47]. This regime is
different than the one for which collisional damping holds,
due to which our final results for T � 1/r may have less
accuracy.

b. Collisional damping

We expect bottomonium to dissociate while it traverses
through the plasma, due to the momentum transfer arising out
of collision. To account for this effect, we use a potential non-
relativistic QCD (pNRQCD) formalism which depends on the
imaginary part of the color potential between quark-antiquark
pairs. The complex potential between quark-antiquark pairs
located inside the QGP medium as determined by Laine et al.
[48], using effective field theory, is given as

V (r, mD) = σ

mD
(1 − e−mDr ) − αeff

(
mD + e−mDr

r

)

− iαeff T
∫ ∞

0

dz 2z

(1 + z2)2

(
1 − sin(mDrz)

mDrz

)
, (3)

where αeff = 4αs
s/3, σ is the string tension, whose value is

0.192 GeV2, and mD is the Debye mass which is expressed as

mD = T

√
4παT

s

(
Nc

3
+ Nf

6

)
.

Here, Nc and Nf are the number of color charges and number
of flavors, respectively.

This potential is valid in the regime T � 1/r � mD [49].
We take the expectation value of the imaginary part of this
potential to get the dissociation width corresponding to colli-
sional damping [50] as

�damp,nl (τ, pT , b) =
∫

gnl (r)† Im(V ) gnl (r) dr, (4)

where gnl (r) is the singlet wave function of the bottomonium.
In our previous work [22], the explicit τ dependence of

gluonic dissociation widths and collisional damping widths
(4) arose from the analytical expression for temperature, T (τ ),
obtained by solving Bjorken’s dynamics. We have now re-
placed it by the tabulated temperature values from ECHO-QGP

at each centrality and rapidity integrated over the transverse
plane for each of the bottomonium states.
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c. Color screening

Due to the presence of free color charges in QGP medium,
the bottom quark and antiquark (b and b̄) experiences a short
range Yukawa-type color charge potential dependent on the
medium temperature. As a consequence of this the formation
of bound states in the medium is suppressed if the medium
temperature goes beyond a certain temperature (dissociation
temperature). This phenomenon is called the color screening
[15] in an analogous way to the Debye charge screening
in the quantum electrodynamics plasma. Different bottomo-
nia species take different times, after collision, to form the
corresponding bottom-antibottom bound states, termed their
respective formation times (τ f ). Consider a screening region
in the fireball as a sphere with a screening radius (rs) defined
for a bottomonium state depending on its dissociation temper-
ature (TD). Suppose a bb̄ quark pair forms at the position �rQ;
then it will likely form a bound state if it escapes the screening
region in time equal to its formation time. The condition
for this could be given by |�rQ + �vT τF | � rs, where �vT is the
transverse drift velocity of the heavy quark in the medium.
Here τF is the vacuum formation time of bottomonium.

Considering the transverse motion of this bottomonium
state, we can simplify the above condition as

cos(φ) � Y, where Y =
(
r2

s − r2
Q

)
mQ − τ f p2

T /mQ

2rQτ f pT
. (5)

Here, mQ is the mass of the bottomonium state under con-
sideration. Let us now consider a transverse radial distribution
of bb̄ produced after the hard scattering as

h(r) =
(

1 − r2

R2
T

)
θ (RT − r). (6)

Where RT is the maximum fireball radius obtained for
different centralities from modified Glauber analysis [51].

The color screening survival probability is given by

Scs(pT ) = 4

πR2
T

∫ RT

0
dr r φmax(r)

(
1 − r2

R2
T

)
, (7)

where φmax(r) is the maximum positive azimuthal angle al-
lowed by the condition in Eq. (5).

In our previous work [22], we equated an assumed pres-
sure profile in the transverse plane with the cooling law to
obtain the screening time (time to drop initial pressure to
the pressure corresponding to the dissociation temperature).
Screening time is then equated to the bound state formation
time (at the boundary of the screening region) to obtain the
screening radii [25]. Here we eliminated the need of this as-
sumption of pressure profile in the transverse plane by directly
finding the screening radii from the transverse temperature
evolution using ECHO-QGP. We take the minimum radius of
the oval shaped contour shown in the Fig. 3 as the screening
radius at the evolution time equal to the formation time for
a given bottomonium species. The temperature contours are
marked for the dissociation temperature of all the bottomo-
nium states at all centralities. The dissociation temperatures
(TD) of different bottomonium states are borrowed from the
analysis given in [52].

FIG. 3. The transverse temperature profile for 2.76 TeV colli-
sional energy in ECHO-QGP at Npart = 130, rapidity = 1.44 at τ = 3.1
fm/c which is taken as the formation time of ϒ(3S). The region
inside the contour of TD = 236 MeV for ϒ(3S) state depicts the
screening region. As it is not for the most central collision, the fireball
cross section is oval shaped.

d. Shadowing

The shadowing correction to RAA applied in our formalism
is a modified version of the similar work by Vogt [53]. We
have replaced the shadowing factors used for gluons from
EPS09 [54] with those from the more recent EPPS16 [55].
The central fit set is selected out of various available error
sets in EPPS16. The parton distribution functions of gluons
have been updated to CT14 [56] from the earlier PDFs of
CTEQ6 [57]. The contribution of suppression arising due to
the shadowing effect is expressed as [58]

Ssh(pT , b) = dσAA/dy

TAAdσpp/dy
. (8)

The shadowing effect influences the number of initially pro-
duced bottomonia (NQ). Hence, the shadowing corrected
initial number of bottomonia is calculated as Ni

Q(τ0, b) =
NQ(τ0, b)Ssh(pT , b).

C. Recombination mechanisms

We have incorporated the possibility of recombination of
bb̄ due to deexcitation from octet to singlet state with a gluon
emission, even though it will be negligible for the case of bot-
tomonium. We find the recombination cross section in QGP
using detailed balance from the gluonic dissociation cross
section as [59]

σ f ,nl = 48

36
σd,nl

(
s − M2

nl

)2

s(s − 4mqmq̄)
, (9)

where s is the Mandelstan variable, Mnl , mq, and mq̄ are the
masses of bottomonia states, bottom quark, and bottom anti-
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quark, respectively. We then define a recombination factor as
the thermal average of the product of the above cross section
and relative velocity between b and b̄ as �F,nl = 〈σ f ,nl vrel〉k .

D. Final number of bottomonia

Due to all of the above effects, the bottomonia can dis-
sociate or the correlated bb̄ pair can recombine again into
bound states. We assume that this interplay of dissociation and
recombination is governed by a simple first-order differential
equation given as [60]

dNQ(τ )

dτ
= �F,nl NqNq̄

V (τ )
− �D,nl NQ. (10)

Here, NQ is the bottomonia yield at a given value of proper
time (τ ). The first and second terms on the right-hand side of
this equation correspond to the recombination and dissocia-
tion terms, respectively. �F,nl and �D,nl are the corresponding
recombination and dissociation rates. Nq and Nq̄ are the
numbers of heavy quarks and antiquarks produced in p-p
collisions. V (τ ) is the instantaneous volume of the expanding
fireball.

The solution for the above first-order differential equation,
under the approximation that NQ < Nq, Nq̄, is given by

NQ(τQGP, pT )

= ε(τQGP, pT )

[
NQ(τ0) + NqNq̄

∫ τQGP

τ0

�F,nl (τ, pT )

V (τ ) ε(τ, pT )
dτ

]
,

(11)

where τQGP is the QGP lifetime and τ0 is the initial time
at which we start hydrodynamics and which also marks the
beginning of the QGP stage.

The first term inside the square brackets on the right hand
side in Eq. (11) is the bottomonia produced at the initial hard
scattering stage. NQ(τ0) is calculated as [61]

NQ(τ0, b) = σ NN
Q TAA(b), (12)

where σ NN
Q is the production cross section of the bottomonium

at a given collisional energy. TAA(b) is the nuclear overlap
function. V (τ ) in Eq. (11) is the volume of the fireball, given
by the formula

V (τ ) = τ0πR2
T

(
τ0

τ

) 1
R −1

, (13)

where RT denotes the transverse fireball radius and R is the
Reynolds number.

ε(τ, pT ) in Eq. (11) is a suppression factor integrated cu-
mulatively in τ values and is given by

ε(τ, pT ) = exp

(
−

∫ τ

τ ′
nl

�D,nl (τ
′, pT )dτ ′

)
. (14)

Equation (11) also has a multiplicative suppression factor
which is integrated for the complete QGP lifetime and is
calculated as

ε(τQGP, pT ) = exp

(
−

∫ τQGP

τ ′
nl

�D,nl (τ, pT )dτ

)
. (15)

In the above equation, τ ′
nl is the time required for the forma-

tion of a given bottomonium state within QGP.
We then calculate the ratio S′

p = NQ/Ni
Q referred to

as the survival probability. The color screening has been
considered as an independent effect and hence the total
survival probability is calculated as Sp = S′

p×Scs. We find
this survival probability for five bottomonia states, which
are ϒ(1S), ϒ(2S), χb0(1P), χb0(2P), and ϒ(3S). A feed-
down scheme dictates the total yield after all possible decays
from higher excited states [23]. The survival probability
(Sp) obtained after feed down for ϒ(1S) and ϒ(2S) is plot-
ted and compared with the respective RAA obtained from
experiments.

III. RESULTS AND DISCUSSIONS

Results have been generated for centrality range of
0–100%, transverse momentum range of 1–30 GeV/c, and

FIG. 4. Centrality dependence of suppression for ϒ compared with measured RAA at
√

sNN = 2.76 TeV.
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FIG. 5. Transverse momentum dependence of suppression for ϒ compared with measured RAA at
√

sNN = 2.76 TeV.

rapidity range of |y| < 3.6 which covers the ranges of exper-
imentally available data from CMS and ALICE at both 2.76
and 5.02 TeV [62–65].

ALICE suppression data at forward rapidity complements
well the broader rapidity range of CMS data especially for
pT and Npart dependence of ϒ(2S) at

√
sNN = 5.02 TeV. The

standard deviation (σT ) of the Gaussian weight factor used
for integrating temperatures from ECHO-QGP as mentioned
in Sec. II A has been varied to obtain an uncertainty patch
in the theoretically calculated suppression results as shown
in the figures. For 2.76 TeV the standard deviation value lies
in 0.7 < σT < 2.8 and for 5.02 TeV it spans 1.4 < σT < 3.9.
Selecting σT greater than the upper limits for the two energies
makes the QGP lifetime, in peripheral collisions at extreme
rapidity values, smaller than the formation time of ϒ(1S)
and ϒ(2S) states. Selecting σT smaller than the lower limits
undermines the temperatures at large x-y, values rendering the
purpose of integration futile.

Figure 4 depicts the centrality dependence of suppression
for ϒ(1S) and ϒ(2S) states at 2.76 TeV as calculated by our
present model. The corresponding experimental suppression
data are shown for comparison. Our calculated values of the
survival probability for ϒ(1S) lie very close to the CMS data
and follow the trend of ALICE data. For ϒ(2S), our predicted
values are slightly less suppressed but mostly follow the CMS
data.

Figure 5 shows the variation of our predicted values of
suppression for ϒ(1S) and ϒ(2S) with respect to the trans-
verse momentum at the 2.76 TeV center-of-mass energy. We
find that the agreements among our calculated and measured
values for ϒ(1S) are reasonably good. However, for ϒ(2S),
calculated suppression is slightly less than the values from
available data from CMS.

In Fig. 6, we have plotted our theoretical results of rapidity
dependence of ϒ(1S) and ϒ(2S) suppression along with the
corresponding experimental data. We find a quite reasonable

FIG. 6. Rapidity dependence of suppression for ϒ compared with RAA at
√

sNN = 2.76 TeV.
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FIG. 7. Centrality dependence of suppression for ϒ compared with RAA at
√

sNN = 5.02 TeV.

agreement in the case of ϒ(1S) compared to ϒ(2S) within the
uncertainty limit. Our predicted values show less suppression
for ϒ(2S) as compared with the corresponding experimental
data. This rapidity dependence of suppression has become
possible due to the interfacing of our earlier model with
ECHO-QGP’s hydrodynamic expansion. Overall, for 2.76 TeV
LHC center-of-mass energy, we find good agreement between
our calculated bottomonium suppression values and the corre-
sponding experimentally available data under the theoretical
and measured uncertainty limit.

Figure 7 depicts the variation of survival probability for
both the bottomonium states with respect to the centrality
at 5.02 TeV center-of-mass energy. The measured values of
suppression from ALICE and CMS data shown on the same
plot for comparison for ϒ(1S) associated with the centrality
dependence are quite close to each other. We clearly see a
quite good agreement in Fig. 7 between our predicted values
and the measured ones for both the bottomonium states over
the whole range of centrality, at 5.02 TeV LHC energy.

Transverse momentum dependence of the survival prob-
ability values are plotted in Fig. 8 along with the measured
values of RAA for both the bottomonium states at 5.02 TeV
center-of-mass energy. The agreement for the ϒ(1S) state is
reasonably good, especially for low pT values, whereas for
ϒ(2S) the predicted values are slightly less suppressed as
compared to the CMS data.

Finally, rapidity dependent survival probability at 5.02 TeV
energy is shown in Fig. 9 for both the bottomonium states.
In comparison with the corresponding experimental data,
our results are close to the measured values for ϒ(2S). For
ϒ(1S), our calculated suppression is not following the trend
of ALICE and CMS data. We saw similar disagreement for
the corresponding rapidity results at 2.76 TeV energy. These
results might improve with further refining of the input pa-
rameters taken in ECHO-QGP.

Thus a complete dependence of bottomonium suppression
for both the states spanning over two LHC energies has shown
a convincing agreement with the measured values.

FIG. 8. Transverse momentum dependence of suppression for ϒ compared with RAA at
√

sNN = 5.02 TeV.
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FIG. 9. Rapidity dependence of suppression for ϒ compared with RAA at
√

sNN = 5.02 TeV.

IV. SUMMARY AND CONCLUSION

To summarize, we have used a quarkonia suppression
formalism to explain bottomonium suppression data at 2.76
and 5.02 TeV LHC energies. ECHO-QGP has allowed us to
find (3+1)-dimensional evolution of the relevant physical
quantities associated with the medium formed just after the
collisions. The temperatures at different centralities and ra-
pidities have been extracted from ECHO-QGP and fed into
the suppression formalism. This facilitated us to include the
rapidity dependence of suppression in the formalism. The
experimental data on transverse momentum (pT ) and rapidity
(y) spectra have been utilized to fix the input parameters of
the hydrodynamics. We have used here the EOS from the
Wuppertal-Budapest Collaboration, which is computed from
first-principle lattice QCD. The modified color screening for-
malism has been used with the newer dynamics eliminating
the need to assume a pressure profile for collisions in the
transverse plane. The shadowing effect has been updated with
the recent gluon PDFs and shadowing factors.

The uncertainty in temperature integration from ECHO-QGP

has been translated into an uncertainty patch in the final sup-

pression results. This formalism has adequately explained the
centrality and transverse momentum dependent suppression
of ϒ(1S) and ϒ(2S) at both the LHC energies under con-
sideration. Although the calculated rapidity dependence of
suppression does not follow the trend of data for ϒ(1S), it is
quite satisfactory for the ϒ(2S) state at both energies. Look-
ing ahead, it will be interesting to do an open heavy flavor
mesons evolution study in the QGP medium with a formalism
suited well for such heavy-light mesons. A simultaneous study
of open and hidden heavy flavor will give a more reliable
constraint on the model parameters since it will account for
suppression for all heavy quarks bound states produced in the
collisions.
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