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Phase transitions and critical behavior in hadronic transport with a relativistic
density functional equation of state
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We develop a flexible, relativistically covariant parametrization of the dense nuclear matter equation of state
suited for inclusion in computationally demanding hadronic transport simulations. Within an implementation in
the hadronic transport code SMASH, we show that effects due to bulk thermodynamic behavior are reproduced in
dynamic hadronic systems, demonstrating that hadronic transport can be used to study critical behavior in dense
nuclear matter, both at and away from equilibrium. We also show that two-particle correlations calculated from
hadronic transport simulation data follow theoretical expectations based on the second-order cumulant ratio, and
constitute a clear signature of the crossover region above the critical point.
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I. INTRODUCTION

Uncovering the phase diagram of QCD matter is one of the
major goals of heavy-ion collision research, and the founding
reason behind the ongoing Beam Energy Scan (BES) program
at the BNL Relativistic Heavy Ion Collider (RHIC). Current
understanding of the evolution that QCD matter undergoes
at extreme conditions is facilitated by numerous experimen-
tal and theoretical advancements to date. The importance of
quark and gluon degrees of freedom for the dynamics of very
high-energy collisions is strongly supported by comparisons
of experiment to theoretical models [1,2], and suggests that
the quark-gluon plasma (QGP) is produced in these events.
Collective behavior of matter created in such collisions has
been measured [3] and reproduced in hydrodynamics simu-
lations [4,5], indicating that, for a considerable fraction of
a heavy-ion collision’s evolution, it can be thought of as a
thermal system described by an equation of state (EOS). The
exact nature of the transition between the QGP and a hadron
gas is studied within a number of approaches. At finite temper-
ature and negligible baryon chemical potential, first-principle
calculations in lattice QCD (LQCD) predict a transition of
the crossover type [6]. This result has been further supported
with a Bayesian inference approach [7], where the range of
equations of state most consistent with experimental data at
high energies has been identified and shown to include the
LQCD EOS. On the other hand, numerous chiral effective
field theory models predict that at finite baryon number den-
sity the transition between hadronic and quark-gluon matter is
of the first order [8]. If this is the case, the phase diagram of
QCD matter contains a QGP-hadron coexistence line, ending
in a critical point.

*agnieszka.sorensen@gmail.com

The search for signatures of the QCD critical point is
premised on the ability to experimentally uncover a num-
ber of effects born out in systems of immense complexity.
Some of these predicted signatures involve light nuclei pro-
duction [9,10], enhanced multiplicity fluctuations of produced
hadrons [11–13], the slope of the directed flow [14,15], or
Hanbury-Brown–Twiss (HBT) interferometry measurements
[16], and their dependence on the beam energy. Often, the
magnitudes of these effects and their interaction with various
other experimental signals, as well as the influence of the finite
time of the collision or baryon number conservation remain
elusive to purely theoretical predictions. In consequence, a
clear interpretation of the experimental data will have to be
supported by comparisons with results of dynamical simula-
tions of heavy-ion collisions, developed to correctly account
for the complex evolution of relevant observables.

Modern heavy-ion collision simulations consist of multiple
stages, starting with an initial state model, through relativistic
viscous hydrodynamics utilizing a chosen EOS to describe the
bulk behavior of QGP from thermalization until particlization,
and ending with a hadronic transport code [17,18]. Notably,
with a few exceptions (see, e.g., [19]), hadronic afterburners
typically neglect hadronic potentials, which means that the
role of many-body interactions in the hadronic stage is largely
unexplored. This raises the possibility that transport simula-
tions may be missing effects likely to become increasingly
important at higher baryon densities, where both the mean-
field effects and the time that the system spends in a hadronic
state are substantial. In particular, mean-field hadronic inter-
actions may significantly influence the system’s evolution,
including the diffusion dynamics which is a relevant factor
in the propagation of signals for the existence of the critical
point [20].

Furthermore, since the correct QCD EOS at finite chemical
potential is not known from first principles, it needs to be
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inferred from systematic model comparisons with experimen-
tal data. A consistent treatment of the entire span of a hybrid
heavy-ion collision simulation requires employing hadronic
interactions that reproduce properties of a particular EOS
used in the hydrodynamic stage, such as the position of the
QCD critical point. While there is a strong theoretical effort
to model different variants of the QCD EOS with criticality
[21,22], intended for use in hydrodynamic simulations, often
the hadronic part of a heavy-ion collision simulation, if it at all
takes hadronic potentials into account, includes only mean-
field interactions corresponding to the behavior of ordinary
nuclear matter without the possible QGP phase transition [19].
As a result, there is a need for a flexible hadronic EOS that on
one hand can be easily parameterized to reflect a desired set
of properties of the modeled QCD phase transition, and on
the other identifies corresponding relativistic single-particle
dynamics that can be feasibly implemented in an afterburner.

Here we propose an approach to this problem in which the
EOS of nuclear matter and the corresponding single-particle
equations of motion are both obtained from a relativistic
density functional with fully parametrizable vector-current
interactions. Besides the obvious requirements of Lorentz
covariance and thermodynamic consistency, the constructed
model is constrained to agree with the known behavior of
ordinary nuclear matter. Therefore each of the obtained EOSs
includes the nuclear liquid-gas phase transition with its ex-
perimentally observed properties, in addition to a possible
phase transition at high baryon density. The flexibility of the
constructed family of EOSs enables systematic studies (e.g.,
using Bayesian analysis) of effects of different dense nuclear
matter EOS on final state observables, facilitating meaningful
comparisons of simulation results with experimental data.

Furthermore, we implement our mean-field model in the
hadronic transport code SMASH [23], and verify that the ob-
tained single-particle equations of motion reproduce bulk
behavior expected from the underlying EOS. In particular,
we study the evolution of systems undergoing spontaneous
separation inside the spinodal region of the phase transition
and in the vicinity of the critical point, and we investigate
observables carrying signals of collective behavior as well
as the effect of finite number statistics on particle number
distributions.

This paper is organized as follows: Sections II and III
give a pedagogical presentation of the model and the corre-
sponding theoretical results. Section IV briefly reviews the
implementation of the model in the hadronic transport code
SMASH, while Sec. V discusses the analysis methods used.
Section VI presents and discusses results of simulations under
various conditions. Finally, Sec. VII provides a summary and
an outlook to future developments.

II. FORMALISM

A. Background

Studying nuclear matter requires knowledge of nucleon-
nucleon and, more generally, hadronic interactions, which
currently cannot be obtained from first principle calculations.
In view of this, phenomenological approaches are employed,

in which the behavior of nuclear matter is described in
terms of effective degrees of freedom. A large class of these
approaches uses self-consistent models based on density func-
tional theory (DFT). Such models are a starting point for
numerous Skyrme-like potentials of varying degree of com-
plexity which are successfully applied in low-energy nuclear
physics [24].

Alternatively, one can employ Landau Fermi-liquid theory
[25], which can be shown to lead to the same results as
various phenomenological models at the mean-field level (see,
e.g., [26,27]), and which combines certain desirable features
of other approaches. On one hand, similarly as in DFTs, in
Landau Fermi-liquid theory the relevant physics is entirely
encoded in the postulated energy density of the system. The
theory then allows one to describe the system’s deviations
from equilibrium (such as energy of an excitation or particle-
particle interactions) as well as corresponding bulk properties,
encoded in phenomenological parameters. On the other hand,
as in many Lagrangian-based, self-consistent approaches at
the mean-field level, the main degrees of freedom of the theory
are quasiparticles. This means that the role of interactions
is embedded in the properties of quasiparticles (which can
be thought of as dressed nucleons) and in the quasiparticle
distribution function (for a definition of the quasiparticle dis-
tribution function as well as its limitations, see Appendix A).

The Landau Fermi-liquid theory is a very convenient start-
ing point for a phenomenological approach to the nuclear
matter EOS, and in particular for applications to hadronic
transport simulations, where we want to develop a model
that is at the same time flexible and numerically efficient.
In constructing our framework, we are additionally guided
by the following requirements: First, we need a formalism
in which the baryon number density, a natural variable for
hadronic transport simulations, is a dynamical variable of the
theory (as opposed to theories in which the baryon chem-
ical potential is evolved in time). Moreover, we are guided
by the fact that vector-type interactions are more convenient
for numerical evaluation of mean-field potentials than, for
example, scalar-type interactions, which require solving a
self-consistent equation at each point where mean-fields are
calculated. Finally, we want to obtain a family of EOSs that
on the one hand reproduces the known properties of ordinary
nuclear matter, and on the other allows one to postulate and
explore critical behavior in dense nuclear matter over vast
regions of the phase diagram. The former will ensure that
the model takes into the account the known experimental
behavior of nuclear matter, while the latter will allow us to
meaningfully compare the influence of different EOSs on
observables. Such comparisons can be made, among others,
through Bayesian analysis [28,29].

B. Relativistic vector density functional (VDF) model

With the aforementioned goals in mind, we adopt the
relativistic Landau Fermi-liquid theory [30] with vector-
density-dependent interactions as the basis for constructing
a vector density functional (VDF) model of the dense nu-
clear matter EOS. Starting from a postulated energy density
of the system, we will derive the single-particle equations
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of motion, the energy-stress tensor, and the corresponding
thermodynamic relations. To simplify the notation, we will in-
troduce a VDF model with a single number-current-dependent
interaction term; however, it is straightforward to generalize
to a model with multiple interaction terms of the same kind,
which we do at the end of this subsection. Some of the details
of the derivation can be found in Appendix B.

We introduce the energy density E(1)(x) of a system com-
posed of one species of fermions, interacting through a single
mean-field vector interaction term,

E(1)(x) = g
∫

d3 p

(2π )3
εkin fp + C1( jμ jμ)

b1
2 −1( j0)2

− g00 C1

(
b1 − 1

b1

)
( jμ jμ)

b1
2 , (1)

where g is the degeneracy, εkin is the kinetic energy of a single
particle,

εkin =
√

(p − C1( jμ jμ)
b1
2 −1 j)2 + m2, (2)

j and j0 are the spatial and temporal component of the number
current jμ, given by

j(x) = g
∫

d3 p

(2π )3

p − C1( jμ jμ)
b1
2 −1 j

εkin
fp (3)

and

j0(x) = g
∫

d3 p

(2π )3
fp, (4)

respectively, m is the particle mass, fp is the quasiparticle
distribution function, and finally C1 and b1 are constants spec-
ifying the interaction, as of yet undetermined. The energy
density, Eq. (1), is constructed as the 00 component of the
energy-momentum tensor and transforms accordingly. The in-
teraction terms depend both on the local frame number density
j0 and the relativistic invariant jμ jμ = n2, where n denotes the
rest frame number density. The quasiparticle energy, defined
in the Landau Fermi-liquid theory as the functional derivative
of the energy density, is given by (see Appendix B 1)

εp ≡ δE(1)

δ fp
= εkin + C1( jμ jμ)

b1
2 −1 j0. (5)

Note that the quasiparticle energy is equivalent to the single-
particle Hamiltonian, εp = H(1).

To simplify the notation, we introduce a vector field,

Aλ(x;C1, b1) ≡ C1( jμ jμ)
b1
2 −1 jλ. (6)

In the following derivation we will suppress the dependence
on C1 and b1 and refer to this variable simply as Aλ(x), which
allows us to concisely write

εp =
√

(p − A)2 + m2 + A0 (7)

and

E(1)(x) = g
∫

d3 p

(2π )3
εp fp − g00

(
b1 − 1

b1

)
Aλ jλ. (8)

Given Eq. (7), the equations of motion follow immediately
from Hamilton’s equations,

dxi

dt
≡ −∂H(1)

∂ pi
= −∂εp

∂ pi
= pi − Ai

εkin
, (9)

d pi

dt
≡ ∂H(1)

∂xi
= ∂εp

∂xi
= (pk − Ak )

εkin

∂Ak

∂xi
+ ∂A0

∂xi
. (10)

Inserting Eqs. (9) and (10) into the Boltzmann equation gives

∂ fp

∂t
− ∂εp

∂ pi

∂ fp

∂xi
+ ∂εp

∂xi

∂ fp

∂ pi
= Icoll, (11)

where Icoll is the collision term. Multiplying both sides of
Eq. (11) by X = {1, εp, pj} and integrating over g

∫ d3 p
(2π )3

yields the conservation laws for particle number (X = 1),
energy (X = εp), and momentum (X = pj). In particular, one
notices that the particle number conservation,

∂

∂t
g
∫

d3 p

(2π )3
fp + ∂i g

∫
d3 p

(2π )3

pi − Ai

εkin
fp = 0, (12)

confirms that the baryon number current and density, Eqs. (3)
and (4), are correctly defined. The obtained conservation laws
for energy and momentum allow us to identify the energy-
momentum tensor, whose components are density and flux of
energy and momentum in spacetime,

T 00 = E(1), (13)

T 0i = g
∫

d3 p

(2π )3
εp

pi − Ai

εkin
fp, (14)

T i0 = g
∫

d3 p

(2π )3
pi fp, (15)

T i j = g
∫

d3 p

(2π )3
pi pj − Aj

εkin
fp

+ gi j

(
E(1) − g

∫
d3 p

(2π )3
εp fp

)
. (16)

One can show that T μν has the correct transformation prop-
erties under a Lorentz boost (details of this calculation, for
a general case of the relativistic Landau Fermi-liquid theory
without a specified form of the interactions, can be found in
Ref. [30]). Additionally, energy and momentum conservation,
∂νT μν = 0, is ensured by construction. Using Eq. (3), it can
be readily verified that T 0i = T i0.

Having derived the properties of the VDF model with one
interaction term, we can easily extend the formalism to an
arbitrary number of interaction terms. Here, we are dealing
with multiple vector fields labeled by the index n,

Aλ
n (x;Cn, bn) ≡ Cn( jμ jμ)

bn
2 −1 jλ, (17)

in terms of which the energy density is given by

E(N )(x) = g
∫

d3 p

(2π )3
ε(N )

p fp − g00
N∑

n=1

(
bn − 1

bn

)
Aλ

n jλ.

(18)

We note that taking N = 1, b1 = 2 leads to the form of the
vector interaction known well, e.g., from the Walecka model

034904-3



AGNIESZKA SORENSEN AND VOLKER KOCH PHYSICAL REVIEW C 104, 034904 (2021)

[31,32], corresponding to the mean-field approximation of a
two-particle interaction mediated by a vector meson. (In fact,
an alternative description of the mean-field approximation
to the Walecka model in terms of the relativistic Landau
Fermi-liquid theory is given in Ref. [26].) Similarly, evalu-
ating (18) in the rest frame and taking N = 2, b1 = 2, and
b2 = 3 (b2 = 13

6 ) results in the interaction of the same form as
a commonly used stiff (soft) parametrization of the Skyrme
model (see, e.g., [33]). Indeed, in postulating the form of
the energy density, Eq. (1) or Eq. (18), we took inspiration
from the form of the energy density in models mentioned
above, and we made sure that our expression reproduces the
terms appearing in these models when particular coefficients
and powers of the interaction terms are used. In contrast to
these approaches, however, our model allows for arbitrary
interaction parameters, including the number of interaction
terms as well as powers of number density characterizing the
interactions, that remain unspecified until a later time when
we fit them to match chosen properties of nuclear matter.

The generalization of the remaining parts of the VDF
model is straightforward, and in particular we arrive at the
quasiparticle energy,

ε(N )
p =

√√√√(
p −

N∑
n=1

An

)2

+ m2 +
N∑

n=1

A0
n, (19)

and the equations of motion,

dxi

dt
= pi − ∑N

n=1(An)i

ε
(N )
kin

, (20)

d pi

dt
=

(
pk − ∑N

n=1(An)k
)

ε
(N )
kin

(
N∑

n=1

∂ (An)k

∂xi

)
+

N∑
n=1

∂A0
n

∂xi
.

(21)

We stress that the generalization to N interaction terms pre-
serves the conservation laws and the relativistic covariance of
the T μν tensor.

Finally, the equations of motion, Eqs. (20) and (21), can
be rewritten in a manifestly covariant way. First, we rewrite
Eq. (19) as

εp −
N∑

n=1

A0
n = p0 − A0 =

√√√√(
p −

N∑
n=1

An

)2

+ m2. (22)

It is then natural to define a quantity known as the kinetic
momentum 	μ [34],

	μ ≡ pμ −
N∑

n=1

Aμ
n , (23)

which by construction satisfies

	0 =
√

�2 + m2. (24)

Using the kinetic momentum, one can rewrite the equations of
motion as (see Appendix B 2 for details)

dxμ

dt
= 	μ

	0
, (25)

d	μ

dt
=

∑
ν

	ν

	0

N∑
n=1

(
∂μ(An)ν − ∂ν (An)μ

)
. (26)

We note that the force term in Eq. (26) has a form analogous to
that known from the covariantly formulated electrodynamics,
except that in our case there are multiple vector fields.

C. Thermodynamics and thermodynamic consistency

Let us consider the thermodynamic properties of the VDF
model. Taking the entropy density to have the same functional
dependence on the distribution function, fp, as in the case of
the ideal Fermi gas leads to fp having the Fermi-Dirac form
(for details, see Appendix B 3),

fp = 1

eβ(εp−μ) + 1
, (27)

where β = 1/T and μ is the chemical potential, with T de-
noting the temperature.

In the rest frame the energy-momentum tensor has the
form T μν = diag(E, P, P, P), and the spatial components of
the current vanish, ji = 0, while jμ jμ = n2. Then the pressure
is given by

P(N ) = 1

3

∑
k

T kk

∣∣∣∣ rest
frame

(28)

= g
∫

d3 p

(2π )3
T ln

[
1 + e−β(εp−μ)] +

N∑
i=1

Ci
bi − 1

bi
nbi .

(29)

We note that in an equilibrated system, vector-density-
dependent interactions can be described in terms of a shift
of the chemical potential μB. Using Eq. (19), we can always
write

εp − μB =
√

p2 + m2 − μ∗ = εkin − μ∗, (30)

where we have introduced the effective chemical potential,
μ∗ = μB − ∑N

i=1 A0
n. Consequently, the dependence of the

thermal part of the pressure, Eq. (29), on temperature T and
effective chemical potential μ∗ is just like that of an ideal
Fermi gas.

The grand canonical potential is related to the pressure
through �(T, μ,V ) = −PV , and we can immediately calcu-
late the entropy density,

s ≡ − 1

V

(
d�

dT

)
V,μ

(31)

= g
∫

d3 p

(2π )3

(
ln

[
1 + e−β(εp−μ)] + εp − μ

T
fp

)
, (32)
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and the number density,

n ≡ − 1

V

(
d�

dμ

)
V,T

= g
∫

d3 p

(2π )3
fp, (33)

where the latter equation proves the correct normalization
of our distribution function. Calculating the energy density
using E ≡ sT − P + μn yields Eq. (18) evaluated in the rest
frame, thus confirming that the model is thermodynamically
consistent.

III. THEORETICAL RESULTS

A. Parameterization

To apply the VDF model to studies of heavy-ion collisions,
it needs to describe hadronic matter whose phase diagram
contains two first-order phase transitions. The first of these
is the experimentally observed low-temperature, low-density
phase transition in nuclear matter, sometimes known as the
nuclear liquid-gas transition. The second is a postulated high-
temperature, high-density phase transition that is intended to
correspond to the QCD phase transition.

We want to stress that while the latter may, in principle,
coincide with the location of the phase transition in the real
QCD phase diagram, its nature is fundamentally different.
This is because within Landau Fermi-liquid theory, unlike in
QCD, the degrees of freedom do not change across the phase
transition. This is also the case in some other approaches to the
QCD EOS, for example in models based on quarkyonic matter
[35], where the active degrees of freedom at the Fermi surface
remain hadronic even after quark degrees of freedom appear;
however, to which extent such dynamics may be captured in
the VDF model remains to be seen. The nature of the phase
transition that we can simulate in the VDF model is that of
going from a less organized to a more organized state. This
is easily visualized in the case of the transition from gas
to liquid (nucleon gas to nuclear drop). In the case of the
high-temperature, high-density phase transition, we may think
of it as a transition from a fluid to an even more dense, and
more organized, fluid (nuclear matter to quark matter). This
interpretation is supported by the functional dependence of
entropy per particle on the order parameter, which decreases
across the phase transition from a less dense to a more dense
state (for an extended discussion, see [36]).

For brevity, in the following we will refer to the high-
temperature, high-density phase transition within the VDF
model as “QGP-like” or “quark-hadron” phase transition, with
the expectation that it is understood as a useful moniker rather
than a statement on the nature of the described transformation.
In addition, we emphasize that the degrees of freedom present
in the VDF model agree with those expected after hadroniza-
tion. Since ultimately we intend to use the VDF model in the
hadronic afterburner stage of a heavy-ion collision simulation,
the issue of hadronic degrees of freedom present above the
QGP-like phase transition will never arise in realistic calcula-
tions. At the same time, in parts of the phase diagram close to
the critical region, the hadronic systems studied will display
behavior typical for systems approaching a phase transition.

In the present, rather simplified version of the VDF model,
we chose the degrees of freedom to be those of isospin sym-
metric nuclear matter, that is nucleons with nucleon mass
mN = 938 MeV and degeneracy factor gN = 4. In the case
where thermally induced � resonances are included as well
(which can be easily done through a substitution gfp →
gN f (N )

p + g� f (�)
p , where gN , g�, f (N )

p , and f (�)
p are the de-

generacy factors and distribution functions corresponding to
the nucleons and Delta resonances, respectively), their mass
is taken to be m� = 1232 MeV and the degeneracy factor is
g� = 16. We note that the model can be easily extended to
arbitrarily many baryon resonances; however, we leave the
study of the corresponding effects for a future work. In a
system that undergoes two first-order phase transitions, the
pressure exhibits two mechanically unstable regions (known
as spinodal regions), defined by the condition that the first
derivative of the pressure with respect to the order parameter is
negative [37,38]. In a minimal model realizing such behavior,
the pressure needs to be a four-term polynomial in the order
parameter, and thus we adopt a version of the VDF model
in which we utilize four interaction terms. (We note that to
describe only one of the phase transitions mentioned above, it
is enough to adopt a model with two interaction terms. In the
case of the nuclear liquid-gas phase transition, the resulting
model will be not unlike many Skyrme-based parametriza-
tions of the EOS.)

The energy density, Eq. (18), is easily adapted to include
N = 4 interaction terms. In the rest frame,

E | rest
frame

= g
∫

d3 p

(2π )3
εkin fp +

4∑
i=1

Ci

bi
nbi

B , (34)

where nB ≡ √
jμ jμ is the rest frame baryon number den-

sity. As mentioned in the introduction to the VDF model
(Sec. II A), our goal is to construct an EOS with a general
QGP-like phase transition properties while ensuring that the
known properties of ordinary nuclear matter are well repro-
duced. To that end, we choose the following constraints to fix
the eight free parameters {b1, b2, b3, b4,C1,C2,C3,C4} in the
VDF model:

(1) the position of the minimum of the binding energy
of nuclear matter at the saturation density nB = n0,

d
(E(4)

nB
− mN

)
dnB

∣∣∣∣ T =0
nB=n0

= 0; (35)

(2) the value of the binding energy at the minimum,

E(4)

nB

∣∣∣∣ T =0
nB=n0

− mN = E0; (36)

(3,4) the position of the critical point (T (N )
c , n(N )

c ) for the
nuclear liquid-gas phase transition,

dP

dnB

(
T = T (N )

c , nB = n(N )
c

) = 0, (37)

d2P

dn2
B

(
T = T (N )

c , nB = n(N )
c

) = 0; (38)
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TABLE I. Example characteristics (T (Q)
c , n(Q)

c , ηL, ηR) of the QGP-like phase transition: critical temperature T (Q)
c , critical baryon number

density n(Q)
c , and the boundaries of the spinodal region at T = 0, ηL and ηR. The corresponding parameter sets can be found in Appendix C.

Characteristics in sets I–V are obtained based on systems composed only of nucleons, while in set VI we consider a system composed of
nucleons and thermally produced � resonances. We also show the incompressibility at saturation density and zero temperature, K0, calculated
for the parametrized EOSs.

Set T (Q)
c (MeV) n(Q)

c (n0 ) ηL (n0) ηR (n0 ) Species K0 (MeV)

I 50 3.0 2.70 3.22 N 260
II 50 3.0 2.85 3.12 N 279
III 50 4.0 3.90 4.08 N 280
IV 100 3.0 2.50 3.32 N 261
V 100 4.0 3.60 4.28 N 271
VI 125 4.0 3.60 4.28 N + � 277

(5, 6) the position of the critical point (T (Q)
c , n(Q)

c ) for the
quark-hadron phase transition,

dP

dnB

(
T = T (Q)

c , nB = n(Q)
c

) = 0, (39)

d2P

dn2
B

(
T = T (Q)

c , nB = n(Q)
c

) = 0; (40)

(7, 8) the position of the lower (left) and upper (right)
boundaries of the spinodal region, ηL and ηR, for the
quark-hadron phase transition at T = 0,

dP

dnB
(T = 0, nB = ηL ) = 0, (41)

dP

dnB
(T = 0, nB = ηR) = 0. (42)

The set of quantities (n0, E0, T (N )
c , n(N )

c , T (Q)
c , n(Q)

c , ηL, ηR)
is referred to as the characteristics of an EOS.

We choose the properties of the ordinary nuclear matter,
encoded in conditions (35)–(38), based on experimentally de-
termined values [39,40]:

n0 = 0.160 fm−3, E0 = −16.3 MeV, (43)

T (N )
c = 18 MeV, n(N )

c = 0.06 fm−3. (44)

On the other hand, the properties of dense nuclear matter,
nB � n0, are only weakly constrained by experiment at this
time. We are then in a position to create a family of possible
EOSs based on a number of different postulated characteris-
tics (39)–(42), while ensuring that nuclear matter properties
are preserved. The resulting family of EOSs encompasses
QGP-like phase transition characteristics spanning vast re-
gions of the dense nuclear matter phase diagram. This allows
for a systematic comparison with experimental data, with the
goal of constraining the number of allowed EOSs to a small
subfamily with qualitatively similar properties.

In the remainder of this paper, we illustrate properties
of the VDF model by discussing key results for a few
representative EOSs which reproduce sets of the QGP-like
phase transition characteristics (T (Q)

c , n(Q)
c , ηL, ηR) listed in

Table I. The corresponding parameter sets can be found in
Appendix C.

B. Results: Pressure, the speed of sound, and energy per particle

The left panel in Fig. 1 shows pressure versus baryon num-
ber density at three significant temperatures (T = 0, nuclear
critical temperature T (N )

c , and quark-hadron critical temper-
ature T (Q)

c ) for an EOS with characteristics from set I (see
Table I). On the same plot, we also indicate the location of
key points that determine the fit parameters. At temperature
T = 0, conditions (35) and (36) are applied at the saturation
density of nuclear matter, denoted with a blue circle. Also at
T = 0, conditions (41) and (42) fix the positions of the lower
(left) and upper (right) boundary of the high density spinodal
region, ηL and ηR; these are denoted with blue diamonds. At
the critical point of nuclear matter, T = T (N )

c and nB = n(N )
c ,

denoted with a green square, conditions (37) and (38) are en-
forced. Finally, conditions (39) and (40) are applied to set the
position of the QGP-like critical point (T (Q)

c , n(Q)
c ), denoted

with a red star.
The right panel in Fig. 1 shows pressure versus baryon

number density at zero temperature, where the curves cor-
respond to all sets of characteristics listed in Table I. While
most of the results are calculated in the presence of nucleons
only, the thin dotted red line shows pressure for a system with
both nucleons (protons and neutrons) and thermally excited �

resonances. As already emphasized, all of the EOSs display
the same behavior for baryon number densities corresponding
to ordinary nuclear matter, and only start differing from each
other in regions currently not constrained by experimental
data, nB � 1.5n0.

A few regularities are apparent in the behavior of the pres-
sure curves at zero temperature in regions corresponding to
the QGP-like phase transition. Let us focus on the value of the
pressure at the lower boundary of the spinonal region P(ηL )
(which is directly related to the average value of the pressure
across the transition region), and compare its values for sets
of characteristics between which only one property of the
QGP-like phase transition changes substantially. First, P(ηL )
increases with critical baryon number density n(Q)

c , which
can be seen by comparing the pressure curves for the sec-
ond and third sets of characteristics (delineated with medium
dashed green and thin dashed magenta lines, respectively).
Second, P(ηL ) decreases with critical temperature T (Q)

c , as
evidenced by pressure curves for the first and fourth sets
of characteristics (delineated with thick dashed orange and
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FIG. 1. Pressure versus baryon number density. In the legend, the critical temperature of the QGP-like phase transition T (Q)
c is given in

MeV, while the critical density, n(Q)
c , and the boundaries of the spinodal region at T = 0, ηL and ηR, are given in units of saturation density,

n0 = 0.160 fm−3. Left panel: Illustration of the fitting procedure. Pressure is plotted at three significant temperatures (T = 0, nuclear critical
temperature T (N )

c , and quark-hadron critical temperature T (Q)
c ) for an EOS with characteristics from set I, see Table I. Specific points at which

the parameters of the EOS are fixed are indicated on the plot as follows: a blue dot represents the equilibrium point of ordinary nuclear matter;
blue diamonds denote the left and right boundary of the QGP-like spinodal region; a green square denotes the critical point of the nuclear
phase transition; a red star denotes the critical point of the QGP-like phase transition. Right panel: Pressure is plotted at temperature T = 0
for all sets of characteristics listed in Table I. All obtained EOSs describe the same physics in the region nB � 1.5n0, where the behavior of
nuclear matter is relatively well known. The hardness of the EOSs is noticeable for densities above the quark-hadron transition regions, and is
a consequence of employing interaction terms with high powers (bi > 2) of baryon number density nB (see text for details).

solid purple lines, respectively). Third, P(ηL ) decreases with
the width of the spinodal region, �η = ηR − ηL, which can
be seen by comparing pressure curves for the first and sec-
ond sets of characteristics (thick dashed orange and medium
dashed green lines, respectively). Furthermore, the magni-
tude of the drop in the pressure across the spinodal region,
�P = P(ηR) − P(ηL ), increases with the critical temperature,
as seen by comparing curves for the first and fourth set of
characteristics (thick dashed orange and solid purple lines,
respectively). These features, in fact, create a physical bound
on which QGP-like transitions are allowed in the VDF model.
A transition with a wide spinodal region, with a critical point
at a relatively low baryon number density but a relatively
high critical temperature can often be excluded, as it leads
to such a significant drop in the pressure across the spinodal
region that the pressure becomes negative in some parts of the
quark-hadron coexistence region, which would correspond to
an unphysical “QGP bound state.” This is because at T = 0
the pressure is given by

P ≡ n2
B

d

dnB

( E
nB

)
, (45)

and locally negative pressure implies that there exists a baryon
density for which d

dnB
( E

nB
) = 0 and d2

dn2
B

( E
nB

) > 0, correspond-

ing to a local minimum in energy per particle, E
nB

. While such
a minimum is in fact expected in the region of the phase
diagram corresponding to ordinary nuclear matter, where

d
dnB

( E
nB

) = 0 at the nuclear saturation density, it is forbidden
for large baryon number densities, where it would correspond
to a metastable or even stable state of QGP. For example,
most obtained phase transitions with n(Q)

c = 2.5n0 and T (Q)
c �

125 MeV are rejected based on this argument.
Next, it is easy to notice that the pressure rises rapidly after

leaving the quark-hadron transition region. This hardness of
the EOS is a general feature of models based on high powers
of baryon number density (specifically, with exponents higher
than 2), and is ubiquitous among various Skyrme-type models
(see, e.g., [41]). In fact, it can be shown that any relativis-
tic Lagrangian with vector-type interactions leading, in the
mean-field approximation, to terms of the form nα

B, where
α > 2, results in acausal phenomena at high baryon number
densities [42]. Indeed, Fig. 2 shows the isothermal speed of
sound squared ( cT

c )2 at T = 0 for the chosen sets of phase
transition characteristics (Table I). (We note that at T = 0 the
isothermal and isentropic speeds of sound are identical.) The
speed of sound squared is negative within the spinodal region,
as expected for a first-order phase transition [38], while for
large baryon number densities above the quark-hadron phase
transition it eventually becomes acausal. Although this be-
havior is nonideal, it is entirely to be expected that a fitted
function will behave pathologically outside of the region in
which it is constrained. Moreover, because we intend to use
the VDF model in a hadronic afterburner, its main application
is for matter at densities below the quark-hadron coexistence
region, where this problem does not arise (though in some of
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FIG. 2. The isothermal speed of sound squared at T = 0 versus
baryon number density, plotted for all sets of characteristics listed in
Table I. In the legend, the critical temperature of the QGP-like phase
transition T (Q)

c is given in MeV, while the critical density, n(Q)
c , and

the boundaries of the spinodal region at T = 0, ηL and ηR, are given
in units of saturation density, n0 = 0.160 fm−3. It is apparent that the
speed of sound becomes acausal for relatively large baryon number
densities above the quark-hadron transition region, which is a con-
sequence of the hardness of the equation of state in the same region
(see the right panel on Fig. 1). This pathological behavior of the EOS
is expected outside of the region in which its parameters are fitted,
and it does not pose an issue for uses in afterburner simulations: by
construction, these deal with systems below the quark-hadron phase
transition, where the behavior of the speed of sound is typical (for
more details, see text).

the studied phase transitions the conformal bound of ( cT
c )2 �

1
3 can still be violated; it is presently unclear if this bound
is satisfied in dense nuclear matter; see for example [35,43–
45]). With this issue in mind, in creating parameter sets we
make sure that the speed of sound preserves causality for all
baryon number densities below the upper boundary of the
quark-hadron coexistence region.

Finally, in Fig. 3 we show the binding energy at T = 0,
which is the energy per particle minus the rest mass E(4)/nB −
mN , versus baryon number density, obtained for EOSs cor-
responding to all sets of characteristics listed in Table I. As
expected, all curves reproduce the value of the chosen binding
energy at nuclear matter saturation as well as the location of
the saturation density, Eq. (43). On the other hand, at high
densities the binding energy displays a softening related to
the postulated QGP-like phase transition, which is different
for each considered EOS. We note that the extent of this
softening is directly related to the width of the spinodal region
of a given EOS. This can again be seen from the fact that
at zero temperature the pressure is given by Eq. (45), from
which it immediately follows that the curvature of the energy
density, ( d2E

dn2
B

), must be negative in the spinodal region; conse-

quently, the region over which (d2E/dn2
B) < 0 holds is related

to (ηL, ηR).
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FIG. 3. The binding energy at T = 0 versus baryon number den-
sity, plotted for all sets of characteristics listed in Table I. In the
legend, the critical temperature of the QGP-like phase transition T (Q)

c

is given in MeV, while the critical density, n(Q)
c , and the boundaries

of the spinodal region at T = 0, ηL and ηR, are given in units
of saturation density, n0 = 0.160 fm−3. As shown also in previous
figures, all obtained EOSs describe the same physics in the region
nB � 1.5n0, where the behavior of nuclear matter is relatively well
known; in particular, all curves reproduce the value of the chosen
binding energy at nuclear matter saturation as well as the location
of the saturation density. The degree of the softening in energy per
particle at high baryon number density is directly related to the width
of the spinodal region of a given EOS (see text for more details).

Although we have only shown results corresponding to
a few possible QGP-like phase transitions, arbitrarily many
versions of the dense nuclear matter EOS can be obtained in
the VDF model. While they vary widely in the high baryon
density region, by construction they all reproduce the same
physics in the range of baryon number densities correspond-
ing to ordinary nuclear matter. In fact, fitting the VDF model
to reproduce the experimental values of the saturation den-
sity, the binding energy, and the nuclear critical point gives
a remarkably good prediction for the value of pressure at the
nuclear critical point, Pc, and the value of incompressibility,
K0, as compared with experiment and against other models
(summarized in Table II). This is partially expected, as the
value of the incompressibility K0 depends strongly on critical
temperature [46]. Nevertheless, it is noteworthy that the min-
imal VDF model, based on a few characteristics taken at their
experimentally established values (here n0, E0, T (N )

c , n(N )
c ),

leads to predictions for other properties of nuclear matter
agreeing remarkably with experimental data. Apparently, con-
straining four properties of the EOS is enough to reproduce
the thermodynamic behavior of nuclear matter in the fitted
region. The same could be true in the case of nuclear matter at
high baryon number density. We may be hopeful that postu-
lating QGP-like phase transition characteristics that happen to
lay close to their true QCD values will lead to a VDF model
parametrization correctly describing other properties of dense
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TABLE II. Comparison of values of the nuclear phase transi-
tion critical temperature T (N )

c (MeV), the critical baryon number
density n(N )

c (fm−3), pressure at the critical point Pc (MeV fm−3),
and incompressibility K0 (MeV) as obtained in experiment [40] and
in various models, where “W” denotes the Walecka model [31],
“QVdW” denotes the quantum Van der Waals model [47], “VDF
N” denotes the VDF model with nuclear phase transition only (two
interaction terms), and “VDF N+Q” denotes the VDF model with
both nuclear and “quark-hadron” phase transitions (four interaction
terms). For the last case, the values of Pc and K0 are given as averages
calculated across all obtained EOSs for quark-hadron critical tem-
peratures T (Q)

c ∈ {50, 100, 125} (MeV) and critical baryon number
densities n(Q)

c ∈ {3.0, 4.0, 5.0} (n0). Values marked with an asterisk
are input parameters of the models.

Experiment W QVdW VDF N VDF N+Q

T (N )
c 17.9 ± 0.4 18.9 19.7 18* 18*

n(N )
c 0.06 ± 0.01 0.070 0.072 0.06* 0.06*

Pc 0.31 ± 0.07 0.48 0.52 0.311 0.3066 ± 0.0014
K0 230-315 553 763 282 273.5 ± 5.1

nuclear matter in the transition region. We expect that this
correct description would manifest itself through agreement
of simulation results with experimental data.

C. Results: Phase diagrams

The phase diagrams for the EOSs corresponding to the
characteristics listed in Table I are shown in Fig. 4. Solid and
dashed lines represent the boundaries of the coexistence and
spinodal regions, respectively. The coexistence and spinodal

regions of the nuclear phase transition, depicted with black
lines, are common for all used EOSs by construction.

It is immediately apparent that the QGP-like coexistence
curves on the phase diagrams all look alike. This is a conse-
quence of our choice to employ only interactions depending
on vector baryon number density, as in this case the depen-
dence of the thermal part of the pressure on temperature T
and effective chemical potential μ∗ is just like that of an
ideal Fermi gas, as can be seen from Eq. (30). Consequently,
all VDF EOSs display similar behavior with increasing tem-
perature T . This can be especially easily seen on the T -μB

phase diagram (right panel of Fig. 4), where the coexistence
lines exhibit the exact same curvature. An exception from
this behavior shown on the plot is the curve calculated for
a system with both nucleons and thermally produced � reso-
nances (denoted with a red line), which bends more forcefully
towards the μB = 0 axis as the temperature increases. This
is to be expected as including an additional baryon species
lowers the value of the baryon chemical potential for a given
baryon number density. Including more baryon species would
strengthen this effect.

Another feature, easily discerned on the T -nB phase dia-
gram (left panel of Fig. 4), is that the spinodal regions [ηL, ηR]
(and likewise the coexistence regions [nL, nR]) are always
approximately centered around the critical baryon number
density, n(Q)

c . This is again an effect related to having only
the ideal-gas-like contribution to the thermal pressure in case
of vector-like interactions (for details see Appendix D). As a
result, the critical baryon number density, n(Q)

c , and the bound-
aries of the spinodal region, ηL and ηR, are not independent. In
consequence, we have effectively one less free parameter. For
example, once we set the ordinary nuclear matter properties,
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FIG. 4. Phase diagram in the T -nB (left panel) and T -μB (right panel) planes for sets of characteristics listed in Table I. Solid and dashed
lines represent the boundaries of the coexistence and spinodal regions, respectively. In the legend, the critical temperature of the QGP-like
phase transition T (Q)

c is given in MeV, while the critical baryon number density n(Q)
c and the boundaries of the spinodal region, ηL and ηR, are

given in units of saturation density, n0 = 0.160 fm−3. The coexistence and spinodal regions of the nuclear phase transition, depicted with solid
black and dashed black lines, respectively, are common to all sets of characteristics. Also shown are chemical freeze-out points obtained in
experiment and a parametrization of the freeze-out line from [48].
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the critical point of the quark-hadron phase transition, and
the lower spinodal boundary at T = 0, ηL, the upper spinodal
boundary at T = 0, ηR, is practically fixed.

We expect that all these regularities in the behavior of
the spinodal and coexistence lines would not be as promi-
nent if other types of interactions were included, rendering
the thermal part of the pressure nontrivial. In particular, we
expect that adding scalar-type interactions would allow us to
obtain coexistence regions bending towards the nB = 0 axis in
the T -nB plane, which would correspond to an even stronger
tendency to bend towards the μB = 0 axis in the T -μB plane.
This expectation is based on the fact that, typically, scalar
interactions result in a small effective mass, which in addition
decreases with temperature, and that in turn produces a rela-
tively larger thermal contribution to the pressure for a given
nB and T . As a result, such phase transitions would more
significantly affect the region of the phase diagram covered
by the BES program. Extensions of the VDF model leading to
such effects are planned for the near future.

D. Results: Cumulants of baryon number

In analyses of heavy-ion collision experiments, consid-
erable attention has been paid to cumulants of the baryon
number distribution. In the grand canonical ensemble, the jth
cumulant of the baryon number, κ j , can be calculated from

κ j = T j d j

dμ
j
B

lnZ (T,V, μB), (46)

where Z (T,V, μB) is the grand canonical partition function.
Because the logarithm of the partition function is related to
the pressure P through

lnZ (T,V, μB) = PV

T
, (47)

we can also write Eq. (46) as

κ j = V T j−1 d jP

dμ
j
B

. (48)

The explicit volume dependence of the cumulants, which is
typically divided out in theoretical calculations, is difficult to
control in experiment. Therefore, it is customary to consider
ratios of cumulants, most commonly

σ 2

μ
= κ2

κ1
, Sσ = κ3

κ2
, κσ 2 = κ4

κ2
, (49)

where μ denotes the mean, σ 2 denotes variance, S denotes
skewness, and κ denotes excess kurtosis.

The values of cumulants are expected to be influenced by
enhanced fluctuations of conserved charges in the vicinity of
the critical point, rendering them a signal for the existence
of the critical point and a first-order phase transition in QCD
[11–13]. In particular it is argued that, for systems crossing
the phase diagram close to and above the critical point, the
sign of the third-order cumulant, κ3, will change [49], while
the fourth-order cumulant, κ4, will exhibit a nonmonotonic
behavior [50]. Because cumulants of the baryon number dis-
tribution can be measured in experiment, they provide one of

the strongest links between theoretical predictions and exper-
imental data. Preliminary results from the Beam Energy Scan
indeed suggest that the fourth-order cumulant ratio, κ4

κ2
, ex-

hibits nonmonotonic behavior with the collision energy [51].
In this as well as in the following sections, we will focus

on results for the fourth (IV) set of characteristics listed in
Table I. The choice of this set is arbitrary and does not reflect
any preference for the location of the QCD critical point, but
simply serves as an illustration of the properties of the VDF
model which are qualitatively comparable for all obtained
EOSs. In Fig. 5, we plot the cumulant ratios (49) in the
T -nB and T -μB planes. Dramatic increase in magnitudes of
cumulant ratios as well as sudden changes in sign, observed
in regions close to and above the critical point, agree with the
expectations mentioned above. Interestingly, the effects of the
nuclear phase transition are clearly present even at very high
temperatures (as has been also observed in Ref. [52]). This
raises the question to what extent the presence of the nuclear
phase transition affects the interpretation of experimental data,
either by damping the signal originating at the QGP phase
transition, or by acting as an imposter. Such questions could
be answered by comparing outcomes of simulations utilizing
a VDF EOS with either nuclear phase transition only, or both
nuclear and quark-hadron phase transitions. Studies of this
type are planned for future research.

IV. IMPLEMENTATION IN SMASH

We implemented the VDF equations of motion, Eqs. (25)
and (26), in the hadronic transport code SMASH [23], version
1.8 [53], where simulating hadronic non-equilibrium dynam-
ics is achieved through numerically solving the Boltzmann
equation, in this context often also called the Vlasov equation,
the Boltzmann-Uehling-Uhlenbeck (BUU) equation, or the
Vlasov-Uehling-Uhlenbeck (VUU) equation. The specifica-
tion comes from solving the Boltzmann equation for the time
evolution of the phase-space density f (t, x, p) in the presence
of the mean-field U (x, p),[

∂

∂t
+ ∂H(1)

∂ p
∇p − ∂H(1)

∂x
∇p

]
f (t, x, p) = Icoll, (50)

where the single-particle Hamiltonian is given by H(1) =√
p2 + m2 + U (x, p), and Icoll denotes the collision integral.

Usually, the term Vlasov equation is reserved for the case with
no collisions, Icoll = 0.

The time evolution in hadronic transport is realized within
a numerical approach known as the method of test parti-
cles [54], where the continuous phase-space distribution of
a system of A particles, f (t, x, p), is approximated by the
distribution of a large number N of discrete test particles with
phase space coordinates (xi(t ), pi(t )):

f (t, x, p) ≈ 1

NT

N∑
i=1

δ
(
x − xi(t )

)
δ
(
p − pi(t )

)
. (51)

Here, NT is the number of test particles per nucleon and
N = NT A. Each test particle carries a charge of the corre-
sponding real particle divided by NT (for example, the baryon
number of a “nucleon test particle” is 1

NT
), so that the total
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FIG. 5. Contour plots of cumulant ratios κ2/κ1 (upper row), κ3/κ2 (middle row), and κ4/κ2 (lower row) in both T -nB and T -μB plane (left
and right column, respectively), for the EOS identified by the fourth (IV) set of characteristics listed in Table I. Black lines denote coexistence
regions, while yellow lines denote spinodal regions; critical points are indicated with yellow dots. White regions correspond to values of
cumulant ratios close to the Poissonian limit, κi/κ j = 1 ± 0.03. Grey color signifies regions of the phase diagram in which either the cumulant
calculation is invalid (left column: inside the spinodal region, which is unstable), or where data has not been produced (right column: regions
with extremely small values of the baryon number density nB). The legend entries denote upper (lower) boundaries of ranges of positive
(negative) values of cumulant ratios.
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charge in the simulation equals that of a system of A particles.
Propagating the test particles according to equations of mo-
tion governing the system, together with performing decays
and particle-particle collisions, effectively solves Eq. (50). In
SMASH, the equations of motion propagate the kinetic mo-
mentum of particles; see Eq. (23). An alternative approach, in
which the canonical momenta are propagated, is possible [55].
For more technical details on the method of test particles, see
Appendix E.

In practice, there exist two ways of realizing the method of
test particles in hadronic transport. Within the first approach,
one initializes a system with NT A test particles, which are then
propagated according to the equations of motion. Scatterings
are performed according to cross sections that are scaled as
σ/NT , where σ is the physical cross section, which ensures
that an average number of scatterings is the same as in a
system of A particles. Because each test particle carries a
fraction 1/NT of the charge of a corresponding real particle,
the resulting mean field will be a smoothed out version of
the mean field corresponding to A particles. This approach is
sometimes referred to as the “full ensemble.”

An alternative approach is known as “parallel ensembles”
[56]. In this paradigm, NT instances of a system of A particles
are created. Particles in each instance are propagated accord-
ing to the equations of motion, and scatterings are performed
using the physical cross section σ . Each test particle carries a
fraction 1/NT of the charge of a corresponding real particle,
and the test-particle densities (and consequently the mean
fields) are calculated by summing contributions from all NT

instances of the system. Evolving the NT systems with mean
fields calculated in this fashion means that the systems are not
in fact independent, and their evolution due to the mean fields
is shared. At the same time, this approach is computationally
much more efficient, as collision searches are performed only
within individual instances of the system, thus reducing the
numerical cost by a factor of N2

T .
It can be checked that these two simulation paradigms lead

to the same results in typical cases [57]. In this study we
utilized the full ensemble approach to the test-particle method.

V. ANALYSIS

In this paper we investigate simulations of nuclear mat-
ter in SMASH [23] realized in a box with periodic boundary
conditions. Such studies are best suited for testing the thermo-
dynamic behavior following from equations of motion with
mean-field interactions, as well as for exploring observables
sensitive to critical phenomena in a scenario in which matter is
allowed to equilibrate. While admittedly systems considered
here cannot be reproduced in the laboratory, insights gained in
this study will provide a useful stepping stone to understand-
ing results of simulations of heavy-ion collisions utilizing the
VDF EOS, planned for future work.

In contrast to heavy-ion collision experiments, semiclas-
sical hadronic transport simulations have an access to the
positions of individual particles. Consequently, observables
that can be used as a measure of the collective behavior of
the system include the spatial pair correlation function and

the distribution of particles in coordinate space. We describe
the details of extracting these observables below.

A. Pair distribution function

The radial distribution function g(r) gives the probability
of finding a particle at a distance r from a reference particle.
While in select simple cases it can be calculated analytically,
in practice, given a distribution of particles, g(r) is obtained
by determining the distance between the reference particle
and all other particles and constructing a corresponding his-
togram. Thus for finding the radial distribution about the ith
(reference) particle at a given distance r, we count all particles
within an interval �r around r, which can be written as

gi(r,�r) =
N∑

j = 1
j �= i

θ (r + �r − Ri j )θ (Ri j − (r − �r)).

(52)

Here, the sum is performed over all particles (with the ex-
ception of the ith particle), which we index by j, N is the
total number of particles, θ is the Heaviside theta function,
and Ri j = |ri − r j |, where ri is the position of the reference
particle and r j is the position of the jth particle. The role
of the Heaviside theta functions is to only allow contribu-
tions from particles whose positions are within a distance
Ri j ∈ (r − �r, r + �r) from the reference particle. The ob-
tained histogram is then normalized with respect to an ideal
gas, whose radial distribution histogram is that of completely
uncorrelated particles, g0(r) ∝ n 4πr2 dr, where n denotes
density.

We can also define the radial distribution function of all
distinct pairs in the system (which we also call the pair distri-
bution function),

g(r,�r) = N
N∑

i=1

gi(r,�r)

= N
2

N∑
i=1

N∑
j = 1
j �= i

θ (r + �r − Ri j )θ (Ri j − (r − �r)),

(53)

where the factor of 1/2 appears to avoid counting any of the
particle pairs twice, and where N is a normalization factor, so
far unspecified (as already mentioned above, in practice the
radial distribution function is compared to that of an ideal gas,
in which case the normalization factors cancel out). The pair
distribution function in an ideal gas, g̃0(r), is related to g0(r)
through g̃0(r) ≈ (N/2)g0(r), where N is the total number of
particles in the system, which stems directly from the fact
that the total number of distinct pairs in the system is equal
N (N − 1)/2. For simulations in a box with periodic boundary
conditions, however, this relationship becomes more compli-
cated for distances r > L/2, where L is the side length of the
box, due to geometry effects (see below). For this reason and
because in simulations presented in this work we initialize the
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systems uniformly, in our analysis we use the t = 0 histogram
as the reference pair distribution function, g̃0 = g̃(t = 0).

We stress that taking the pair distribution function of a
uniform system as the reference ensures that the normalized
pair distribution function, g̃/̃g0, is sensitive to density fluctua-
tions in the system. A prominent example here is the spinodal
breakup, where a spontaneous separation into two coexistent
phases with different densities occurs. If the system is con-
fined to some constant volume V , then the average density of
the system is the same before and after the spinodal decompo-
sition takes place. However, local fluctuations in the number
of particles will be visible in the pair distribution function,
as more particle pairs reside inside a high density region as
compared to a low density region.

While the spinodal decomposition is the most obvious
example of a situation where g̃/̃g0 �= 1, the normalized pair
distribution function deviates from unity for any system in
which the interactions between the particles affect their col-
lective behavior. In particular, at small r, the normalized pair
distribution function satisfies g̃/̃g0 > 1 for correlated particles
and g̃/̃g0 < 1 for anticorrelated particles (see Appendix F for
details), which corresponds to attractive and repulsive interac-
tions between the particles, respectively. Since the number of
particles and thus the number of pairs is conserved, one sees
an opposite trend at intermediate to large distances.

We note that in our simulations the range of r over which
g̃(r)/̃g0(r) deviates from 1 significantly is related to the range
of the interaction, which is determined by the smearing range
in the density calculation (for more details see Appendix E).

Importantly, for a system with periodic boundary con-
ditions the radial distance between two particles R is not
uniquely defined. This is because for any reference particle
the distance to any other particle can be calculated using the
position of that other particle in the original box or in any of
its 26 equivalent images. We adopt a prescription in which
the smallest distance between particles is used in calculating
the pair distribution function g̃ (known as the minimum image
criterion). This smallest distance can range from Rmin = 0
to Rmax =

√
3L
2 , where L is the side length of the box. That

said, even for a uniform and uncorrelated system the geometry
of the problem affects the number of particles that can be
encountered at the maximal distance Rmax. Specifically, the
only points for which it is possible to have R = Rmax are
points on the diagonal of the box; for any points separated
by Rmax that are not on the diagonal, there exists a smaller
R obtained by using the position of the second particle from
one of the equivalent box images. This problem also affects,
to a proportionally lesser extent, interparticle distances R in
the range L

2 < R < Rmax. Only in the case of particles which
are L

2 or less apart the geometry of the box never affects the
pair distribution function.

This influence of finite size effects can be clearly seen in
the left panel of Fig. 7, which shows the pair distribution
function for a box of side length L = 10 fm at initialization
(t = 0), when the system is uniform and the particles are
uncorrelated. In infinite matter, the pair distribution function
of uncorrelated particles grows like r2. However, finite ge-
ometry effects described above introduce an effective cut on

the distribution starting at L
2 = 5 fm, explaining the shape of

the presented distribution. Similarly, geometry and periodic
boundary conditions play a role in the shape of the normalized
pair distribution function for r > L

2 at t > 0. In our simula-
tions, nuclear spinodal decomposition at T = 1 MeV results
in a nuclear drop surrounded by a nearly perfect vacuum.
(Here we note that the number of drops that form during spin-
odal decomposition depends on the size of the box, and the
size of a drop depends on the smearing range used in density
calculation; for more details on the latter, see Appendix E.)
The diameter of the nuclear drop turns out to satisfy D > L

2 ,
which means that for some of the particles belonging to that
drop, the smallest distance to some of the other particles
in that same drop will be “across the vacuum,” to one of
the equivalent mirror images of these particles. This explains
the rise in the normalized distribution function for r > L

2 on
the right panel in Fig. 7. The magnitude of this effect depends
on the drop diameter D.

The artifacts produced by the geometry of the problem
and periodic boundary conditions do not present a significant
complication in analyzing critical behavior if we resolve to
only probe the system at length scales L

2 or smaller.
One may ask whether calculating a pair distribution func-

tion in hadronic transport is justified in view of the fact that
the BUU equation explicitly evolves a one-body distribution
function which does not carry any information about the
two-body distribution, usually employed in the description of
two-particle correlations. While this may appear to be prob-
lematic, a closer look reveals that such analysis is correct.
First, one needs to note that hadronic transport simulations
only solve the Boltzmann equation exactly in the limit of an
infinite number of test particles per particle NT . The finite
number of test particles employed in simulations leads to
intrinsic numerical fluctuations. These numerical fluctuations
are of statistical nature, similarly to variances of microscopic
observables, and likewise, through both scattering and mean
fields, they can become a seed for collective behavior such as
spontaneous spinodal decomposition. Such effects have been
described, e.g., in Ref. [58] (see also [59,60]), where fluctua-
tion observables calculated using hadronic transport with the
method of test particles agree with both theoretical predictions
and experimental results. Additionally, it was established that
for large enough NT (which the authors of that particular
study found to be NT � 40) the numerical noise intrinsic to
the method of test particles is negligible, while the correct
statistical fluctuations are preserved.

It is possible to construct a Boltzmann-Langevin exten-
sion of the standard BUU equation, which ensures that the
simulated fluctuations are physically correct (see, e.g., [61]).
However, it has been found that, for example, in the case of the
nuclear spinodal fragmentation the source of the noise seeding
the spinodal decomposition is not essential, and it is possible
to develop good approximations to the Boltzmann-Langevin
equation that are numerically favorable, including the method
of test particles [38].

We note here that a particular problem that arises in the
method of test particles is that the fluctuations in the events,
simulating the evolution of NT NB test particles, are suppressed
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by a factor of NT . The authors of [58] dealt with this is-
sue by employing the method of parallel ensembles at final
simulation times, that is a posteriori, which allows one to
obtain events with the number of test particles corresponding
to the physical baryon number NB (we briefly describe this
method in Sec. IV, while Appendix G explains the a posteriori
application of the method).

Based on the above it is apparent that the distribution
function obtained through hadronic transport simulations, and
in particular through the method of test particles, contains in-
formation not only about the mean of the distribution function
〈 fp〉, but also about its fluctuations. Consequently, calculating
fluctuation observables such as the pair distribution function is
well defined in hadronic transport. Some questions regarding
the quantitative behavior of fluctuation observables obtained
in simulations using the number of test particles NT > 1 re-
main, in particular regarding the specific methods used to
connect fluctuations in systems evolving NT NB particles as
compared to systems evolving NB particles. For that reason
we refrain from making quantitative statements at this time,
and focus on the qualitative behavior of the pair distribution
functions. Future work will be devoted to a quantitative analy-
sis of this problem, and in Sec. VI C we give a short overview
of the effects due to this issue.

B. Number distribution functions

A complementary method of analyzing the collective be-
havior in a simulation utilizes coordinate space number
distribution functions. To calculate number distribution func-
tions, we divide the simulation box into C cells of side length
�l (also referred to as cell width), and construct a histogram
of the number of cells in which the number of particles lies in
a given interval Ni ± �N , where Ni is the central value of the
ith bin. We note that we scale the entries by the total number of
cells C so that the resulting histogram is a properly normalized
representation of the corresponding probability distribution.
We also note that in the subsequent parts of the paper we scale
the histogram entries by the volume of the cells (�l )3 in order
to obtain the histogram as a function of number density.

The test-particle evolution in SMASH is governed by the
mean field, which depends on the underlying continuous
baryon number density for a given baryon number NB,

nB(x; NB) = g
∫

d3 p

(2π )3
f (x, p). (54)

Formally, hadronic transport can give access to nB(x; NB)
through solving the Boltzmann equation, Eq. (50), in the limit
of infinitely many test particles per particle, and substitut-
ing the obtained quasiparticle distribution function f (x, p) in
Eq. (54). Below, we present three number distribution func-
tions accessible in practice given the finite number of test
particles used.

1. Test-particle-number distribution function

Hadronic transport simulations of nuclear matter are real-
ized through evolving N = NBNT test particles in space and
time (where NB is the baryon number in the simulation and
NT is the number of test particles per particle), giving a direct

access to a discrete test-particle-number distribution function.
This distribution can be written as a probability of obtaining a
cell contributing to the ith bin of the histogram with a center
value Ni [that is, a cell with N ∈ (Ni − �N, Ni + �N ) test
particles],

PN (Ni ) = P(Ni, N (NB, NT ),�l ) (55)

= N (i)
c (N (NB, NT ),�l )

C
. (56)

Here, C is the total number of cells used and N (i)
c is the number

of cells containing a number of test particles N within the
range Ni ± �N . We note that the number of test particles in
any given cell depends both on the baryon number evolved
in the simulation, NB, and the number of test particles per
particle, NT . We also stress that the distribution PN depends
on the scale (chosen cell width �l) at which the system is
analyzed.

2. Continuous baryon number distribution function

The discrete test-particle distribution function, Eq. (55),
can be thought of as having been obtained through sampling
from the underlying continuous baryon number distribution
function with a finite number NT NB of test particles. Given ac-
cess to the underlying baryon number distribution, one could
use it directly to create a corresponding histogram. Indeed,
the number of baryons at a cell at position xk is given by the
integral of the continuous baryon number density, Eq. (54),

B(xk ) =
∫

Vk=(�l )3
dV nB(x, NB), (57)

where k indexes the histogram cells. Adding contributions
from all cells yields the total baryon number in the system,
B. We can then construct a probability distribution function
for encountering a cell with a given number of baryons Ni,

PB(Ni ) = N (i)
c (Ni, B,�l )

C
, (58)

where N (i)
c is the number of cells containing a number of

baryons N within the range Ni ± �N .
For a large number of test particles per particle NT , sta-

tistical observables calculated using the test-particle-number
distribution, with the number of test particles in a given
sample scaled by 1

NT
, are a very good approximation to the

underlying continuous baryon number distribution [62]. That
is, it can be shown that

PB(Ni ) = lim
NT →∞

P

(
Ni,

N (NB, NT )

NT
,�l

)
. (59)

Given that in our simulations we use sufficiently large num-
bers of test particles per particle NT , we will refer to
histograms constructed through the prescription on the right-
hand side of Eq. (59) as the continuous baryon number
distribution function (or just baryon number distribution func-
tion) PB(Ni ), with the understanding that it is only exact in the
limit NT → ∞.
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3. Physical baryon number distribution function

Both the test-particle and the continuous baryon number
distribution functions, Eqs. (55) and (59), are markedly dif-
ferent from the physical baryon number distribution function
corresponding to a discrete baryon number NB. Here we can
intuitively think of the physical baryon number distribution
function as obtained through sampling from the underlying
continuous baryon number distribution with NB test particles,

PNB (Ni ) = P(Ni, N (NB, NT = 1),�l ). (60)

Strictly speaking, the physical baryon number distribu-
tion function could be obtained in transport by solving the
Boltzmann equation in the limit of infinitely many test par-
ticles per particle, thus obtaining the underlying continuous
baryon number distribution function, Eq. (54), and sampling
nB(x, NB) with NB particles. Naturally, this is a numerically
feasible but tedious approach. Alternatively, one can turn to
the concept of parallel ensembles (introduced in Sec. IV).
It can be shown that the test-particle distribution obtained
within a parallel ensembles mode serves as a proxy for the
physical baryon number distribution. To reiterate, within the
concept of parallel ensembles, a simulation corresponding to
NB baryons with NT test particles per baryon is divided into
NT events with NB test particles each. These NT events are
not independent, as they share a common mean field. Nev-
ertheless, at the end of the simulation we have access to NT

events with the test-particle number exactly corresponding to
the baryon number in the “real” system. That is, each of the
NT events is described by the probability distribution function

PNB (Ni ) = P(Ni; N (NB, NT = 1); �l ). Observables calculated
using PNB (Ni ) are probably the closest to those one would
find in an experiment if one could measure positions of the
particles. We postpone a rigorous derivation of this result and
corresponding investigations to a future work.

VI. INFINITE MATTER SIMULATION RESULTS

To simulate isospin-symmetric infinite nuclear matter, we
initialize equal numbers of proton and neutron test particles
in a box with periodic boundary conditions. The side length
of the box is taken to be L = 10 fm; this is informed by the
fact that with periodic boundary conditions, the box can be
kept relatively small with no significant finite-size effects. The
time step used in the simulation needs to be small enough
to resolve all gradients occurring during the evolution (in-
tuitively speaking, a test particle should not ”jump over” a
potential gradient within a single time step). We found that a
time step of �t = 0.1 fm/c is small enough to satisfy this
condition, and it correctly solves the equations of motion,
Eqs. (25) and (26), using the leapfrog algorithm. The mean-
field is calculated on a lattice with lattice spacing a = 1 fm,
which has been tested to be sufficiently fine for accurately
resolving mean-field gradients. To ensure smooth density and
density gradient calculations, we utilize a large number of
test particles per particle, specifically, we use NT = 200 for
ordinary nuclear matter (Sec. VI A) and NT = 50 for dense
nuclear matter (Secs. VI B and VI C). Using different numbers
of test particles in these two cases is justified by the fact that

smooth density and density gradient calculations are ensured
when the average number of test particles encountered in a cell
of the lattice, Navg, is large enough. As an example, within the
described setup, this number will be equal to Navg = 8 for or-
dinary nuclear matter at nB = 0.25n0, and equal to Navg = 24
for dense nuclear matter at nB = 3n0. We choose Navg to be
bigger in the case of dense nuclear matter as mean fields en-
countered in that region of the phase diagram are significantly
larger and require an even more smooth gradient computation.

For studying the thermodynamic behavior of nuclear mat-
ter, we are simulating systems in which all collision and decay
channels are turned off. We have checked that the thermo-
dynamic effects described here persist when collisions are
allowed, and in this work we choose to omit them because
our goal is to study mean-field dynamics. As in Sec. III D, we
are considering only one of the many EOSs accessible within
the VDF model, namely, the one corresponding to the fourth
(IV) set of characteristics listed in Table I. The choice of this
set is arbitrary and serves as an illustration of the properties
of the VDF model which are qualitatively comparable for all
obtained EOSs.

A. Ordinary nuclear matter

We investigate the behavior of systems initialized at tem-
peratures and baryon number densities specific to ordinary
nuclear matter to validate the implementation of the VDF
model in SMASH [23]. For illustrative purposes, we discuss re-
sults for a single simulation run, that is one event. Remarkably,
the thermodynamic behavior of the system is apparent already
for this minimal statistics. This is a consequence of the large
number of test particles per particle used (NT = 200), as well
as the fact that the investigated effects are characterized by
large fluctuations, which result in clear signals.

To start, we initialize symmetric nuclear matter at satu-
ration density nB = n0, which for the box setup described
above corresponds to the number of protons and neutrons
Np = Nn = 80, and at temperature T = 1 MeV. Except for
a slight increase in temperature from the degenerate limit,
which is not significant enough to introduce any relevant
changes, this is the equilibrium point of nuclear matter. We
let the simulation evolve until tend = 200 fm/c and investigate
whether the equilibrium is preserved by hadronic transport.
To address this question, we examine the continuous baryon
number distribution function (for details, see Sec. V B), which
we calculate using the cell width �l = 2 fm; we scale the
histogram entries by the volume of the cell to obtain the distri-
bution in units of the baryon number density, and further scale
the results to express them in units of the saturation density,
n0 = 0.160 fm−3. As expected for matter in equilibrium, the
baryon number distribution remains unchanged throughout
the evolution, as can be seen in the upper panel of Fig. 6. We
also find that throughout the simulation, the binding energy
per particle agrees with the theoretically obtained value within
0.1% (for more details on energy evolution, see Appendix H).
An in-depth discussion of the mean-field response to fluctua-
tions around nuclear saturation density, comparing the results
from several transport codes including SMASH utilizing the
VDF model, can be found in Ref. [63].
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FIG. 6. Baryon number distribution, scaled by the volume of the
cell and shown in units of the saturation density of nuclear matter,
n0 = 0.160 fm−3. The cell width is chosen at �l = 2 fm. Histograms
delineated with red curves correspond to distributions at initialization
(t = 0), while histograms delineated and shaded with blue curves
correspond to distributions at the end of the evolution, t = tend. Upper
panel: Nuclear matter initialized at the saturation density n0 and
temperature T = 1 MeV, evolved until tend = 200 fm/c. The sys-
tem, initialized at equilibrium, remains in equilibrium at tend. Lower
panel: Nuclear matter initialized inside the spinodal region of the
nuclear phase transition, at baryon number density nB = 0.25n0 and
temperature T = 1 MeV, evolved until tend = 100 fm/c. The system,
initialized in a mechanically unstable region of the phase diagram,
undergoes a spontaneous separation into a (very dilute) nucleon gas
and a nuclear liquid drop with a central density nB ≈ n0.

Next, we model nuclear matter inside the spinodal region
of the nuclear phase transition. Specifically, we initialize the
system with the number of protons and neutrons Np = Nn =
20, corresponding to a baryon number density nB = 0.25n0,
at temperature T = 1 MeV. We let the system evolve until
tend = 100 fm/c. The spinodal region is both thermodynami-
cally and mechanically unstable, and so we expect that local
density fluctuations will drive the matter to separate into two
coexisting phases: a dense phase, also known as a nuclear

drop, and a dilute phase which is a nucleon gas. That this
indeed happens can be seen on the lower panel in Fig. 6, which
shows the change in the baryon number distribution function
due to the system’s separation into two coexisting phases. The
distribution, initially centered at nB = 0.25n0, at the end of
the evolution has a large contribution at nB ≈ 0 and a long tail
reaching out to nB ≈ n0, which corresponds to the center of
the nuclear drop.

We then proceed to calculate the pair distribution function
(for details, see Sec. V A) for the system initialized in the
spinodal region of nuclear matter. The results are shown in
Fig. 7. Here, the three panels correspond to three time slices
of the evolution: t = 0, 50, 100 fm/c. The t = 0 plot (left)
shows the pair distribution function, Eq. (53), at initializa-
tion g̃0(r,�r), while plots at t = 50 and 100 fm/c (middle
and right, respectively) show normalized pair distribution
functions g̃(r,�r)/̃g0(r,�r). The time evolution of the pair
distribution function shows that during the spinodal decom-
position the test particles cluster into the nuclear drop. The
half width at half maximum of the pair distribution function is
about 2 fm, which corresponds to the density smearing range
used (see Appendix E for more details). The influence of the
periodic boundary conditions on the shape and behavior of
the pair distribution function at large interparticle distances is
discussed in Sec. V A.

All of the results presented above demonstrate that the
VDF equations of motion implemented in SMASH reproduce
the expected bulk behavior of ordinary nuclear matter.

B. Dense nuclear matter and the QGP-like phase transition

For simulations of critical behavior in dense symmetric
nuclear matter, we run Nev = 500 events and average the re-
sults, calculated event-by-event. We first initialize the system
at nB = 3n0, which corresponds to the number of protons and
neutrons Np = Nn = 240, and at temperature T = 1 MeV. It
can be seen in Figs. 4 and 5 that this corresponds to initial-
izing dense nuclear matter inside the spinodal region of the
QGP-like phase transition described by the EOS employed
[the fourth (IV) set of characteristics listed in Table I]. We
evolve the system until tend = 50 fm/c, which is sufficient
for reaching equilibrium after a spinodal decomposition at
high baryon number densities, since due to considerably larger
values of the mean-field forces on test particles the density
instabilities develop more rapidly.

In Fig. 8, we show the evolution of the baryon number
distribution (see Sec. V B 2). The cell width is chosen at
�l = 2 fm, and the histogram entries are scaled by the volume
of the cell in order to be given in units of the baryon number
density; we then further scale the results to express them in
units of the saturation density, n0 = 0.160 fm−3. In the figure,
the red curve corresponds to the distribution at time t = 0,
while the blue curves delineate the distribution at times t > 0.
At t = 0, the distribution is peaked at the initialization density
nB = 3n0, with its width reflecting the finite number statistics.
In the course of the evolution the system separates into two
coexisting phases: a “less dense” and a “more dense” nuclear
liquid (see Sec. III A for more discussion). As a result, the
baryon distribution displays two peaks largely coinciding with
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FIG. 7. Time evolution of the pair distribution function for a system initialized inside the nuclear spinodal region (at baryon number density
nB = 0.25n0 and temperature T = 1 MeV). The t = 0 plot (left) shows the distribution at initialization, while plots at t = 50 and 100 fm/c
(middle and right, respectively) show normalized distributions. Spontaneous spinodal decomposition occurs at t > 0 and leads to a formation
of a nuclear drop surrounded by a near-perfect vacuum, resulting in a strong correlation between particles clustered within the drop. See
Sec. V A for a discussion of the influence of finite-size effects on the shape and large-distance behavior of the pair distribution function.

the theoretical values of the coexistence region boundaries,
nL = 2.13n0 and nR = 3.57n0, indicated by the green arrows.
We find that the prominence of the peaks depends slightly on
the choice of the EOS. For example, an equation of state with
the same value of critical density n(Q)

c and the same spinodal
region (ηL, ηR), but a higher critical temperature T (Q)

c will
correspond to a more negative slope of the pressure in the
spinodal region and, correspondingly, to stronger mean-field
forces inside the spinodal region, leading to more prominent
peaks.

Next, in Fig. 9 we show the evolution of the pair distri-
bution function. Similarly as in the case of nuclear spinodal
decomposition, the hadron-quark spinodal decomposition
leads to a pair distribution function indicating the formation
of two phases of different densities. Unlike in nuclear spin-
odal decomposition, where drops of a “nuclear liquid” form
in vacuum, in this case we have drops of a “more dense

liquid” submerged in a “less dense liquid” (for a detailed
discussion, see Sec. III A). Consequently, the absolute val-
ues of the normalized pair distribution function, g̃(r)/̃g0(r),
are much smaller for the case of the hadron-quark spinodal
decomposition, as the difference between the number of test-
particle pairs occupying the dense and dilute regions is less
pronounced in this case. Nevertheless, the effect, although
small, is clearly distinguishable and statistically significant.

We note here that a phase separation is such a distinct
behavior of the system that the baryon distribution function
and the pair distribution function as shown in Figs. 8 and
9, respectively, can be largely recovered even in the case of
minimal statistics, that is for one event. However, effects at
and around the critical point, as discussed below, are much
more subtle and require a relatively large number of events.

To conclude our study of dense nuclear matter in SMASH,
we want to investigate the behavior of systems initialized at
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FIG. 8. Time evolution of the baryon number distribution, scaled by the volume of the cell and shown in units of the saturation density
of nuclear matter, n0 = 0.160 fm−3, for a system initialized inside the quark-hadron spinodal region (at baryon number density nB = 3n0 and
temperature T = 1 MeV), averaged over Nev = 500 events. The cell width is chosen at �l = 2 fm. Histograms delineated with red curves
correspond to the baryon distribution at initialization (t = 0), while histograms delineated and shaded with blue curves correspond to baryon
distributions at a chosen time during the evolution (t = {25, 50} fm/c). The system, initialized in a mechanically unstable region of the phase
diagram, undergoes a spontaneous separation into a less dense and a more dense nuclear liquid (see Sec. III A for more discussion), resulting
in a double-peaked baryon number distribution. The green arrows point to values of baryon number densities corresponding to the boundaries
of the coexistence region at T = 1 MeV, nL = 2.13n0 and nR = 3.57n0.

034904-17



AGNIESZKA SORENSEN AND VOLKER KOCH PHYSICAL REVIEW C 104, 034904 (2021)

0 1 2 3 4 5 6 7 8

 [fm]r

10

20

30

40

6
10�

(r
)

g~

/cfmt = 0

0 1 2 3 4 5 6 7 8

 [fm]r

0.99

1

1.01

1.02

1.03

1.04

(r
)

0
g~

(r
) 

/ 
g~

/cfmt = 10

0 1 2 3 4 5 6 7 8

 [fm]r

0.99

1

1.01

1.02

1.03

1.04

(r
)

0
g~

(r
) 

/ 
g~

/cfmt = 20

0 1 2 3 4 5 6 7 8

 [fm]r

0.99

1

1.01

1.02

1.03

1.04

(r
)

0
g~

(r
) 

/ 
g~

/cfmt = 30

FIG. 9. Time evolution of the pair distribution function for a system initialized inside the QGP-like spinodal region (at baryon number
density nB = 3.0n0 and temperature T = 1 MeV), averaged over Nev = 500 events. The t = 0 plot (first panel) shows the pair distribution at
initialization, while plots at t = 10, 20, 30 fm/c (second, third, and fourth panels) show normalized pair distributions. Spontaneous spinodal
decomposition occurs at t > 0 and leads to a formation of two coexisting phases: a less dense and a more dense nuclear liquid. The increased
relative concentration of particles in the more dense phase results in an elevated normalized pair distribution at small distances.

various points of the phase diagram above the critical point,
inspired by possible phase diagram trajectories of heavy-ion
collisions at different beam energies. Specifically, we initial-
ize the system at one chosen temperature and a series of
baryon number densities,

T = 125 MeV, nB ∈ {2.0, 2.5, 3.0, 3.5, 4.0} n0. (61)

In contrast with most of the previous examples, systems
initialized in this region of the phase diagram are thermo-
dynamically stable, and there are specific predictions for the
behavior of thermodynamic observables such as ratios of cu-
mulants of baryon number (see Fig. 5). In the upper panel of
Fig. 10, we show values of the second-order cumulant ratio,
κ2
κ1

, as calculated from the VDF model, both in the T -nB and
the T -μB plane. The dots on the cumulant diagrams mark the
points at which we initialize the system, specified in Eq. (61),
and are intended to guide the eye toward the corresponding
normalized pair distribution plots at the end of the evolution,
t = tend, displayed in the lower panel of the same figure. The
deviation of values of the normalized pair distributions at
small distances from 1 (where 1 corresponds to a system of
non-interacting particles) directly follows the deviation of val-
ues of the second-order cumulant ratio κ2

κ1
from the Poissonian

limit of 1,

g̃ (0,�r)

g̃0(0,�r)
> 1 ⇔ κ2

κ1
> 1, (62)

g̃ (0,�r)

g̃0(0,�r)
< 1 ⇔ κ2

κ1
< 1. (63)

We show a detailed derivation of this fact in Appendix F. It is
clear that a two-particle correlation corresponds to a value of
the cumulant ratio κ2

κ1
> 1, and a two-particle anticorrelation

corresponds to a value of the cumulant ratio κ2
κ1

< 1. This
behavior is exactly reflected in Fig. 10.

We want to stress that the pair distributions shown in
Fig. 10 develop relatively fast. In Fig. 9, where we explored
the behavior of a system initialized at a temperature T =
1 MeV, one can see by comparing the second and the fourth
panels that already at t = 10 fm/c a significant part of the pair
distribution has developed. This effect is further magnified at
higher temperatures, where relatively larger momenta of the

test particles result in a faster propagation of effects related to
mean fields. For systems shown in Fig. 10, we have verified
that the majority of the pair distribution function development
occurs within �t = 3 fm/c.

These results show not only that hadronic transport is
sensitive to critical behavior of systems evolving above the
critical point, but also that this behavior is exactly what is
expected based on the underlying model. Moreover, we note
that the behavior of both the second-order cumulant and the
pair distribution function across the region of the phase dia-
gram affected by the critical point is remarkably distinct. It is
evident that an equilibrated system traversing the phase dia-
gram through the series of chosen points, Eq. (61), follows a
clear pattern: first displaying anticorrelation, then correlation,
and then again anticorrelation. Thus already the second-order
cumulant ratio presents sufficient information to explore the
phase diagram, and, provided that correlations in the coordi-
nate space are transformed into correlations in the momentum
space during the expansion of the fireball, this pattern may be
utilized to help locate the QCD critical point, in addition to
signals carried by the third- [49] and fourth-order [50] cumu-
lant ratios. This may prove to be especially important given
that the quantity observed in heavy-ion collision experiments
is not the net baryon number, but the net proton number. In
calculations of the net baryon number cumulants based on the
net proton number cumulants, the higher order observables
are increasingly more affected by Poisson noise [64]. In view
of this, the second-order cumulant ratio (or equivalently the
two-particle correlation) could be considered among the key
observables utilized in the search for the QCD critical point,
and it remains to be seen if this somewhat smaller signal
(as compared to higher order cumulant ratios) is nevertheless
noteworthy due to the much higher precision with which it can
be measured in experiments.

C. Effects of finite number statistics

Qualitative and quantitative features of observables are in-
fluenced by the finite number of particles in analyzed samples.
When analyzing observables such as the baryon distribution,
one has to keep in mind that fluctuations due to finite number
statistics may wash out the expected signals. This is not only
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FIG. 10. Comparison of the cumulant ratio κ2/κ1, calculated within the VDF model, and normalized pair distribution function at t =
30 fm/c, for a series of chosen initialization points. The description of the cumulant diagrams (upper panel) is the same as in Fig. 5. The dots
on the cumulant diagrams mark the points at which we initialize the system, specified in Eq. (61), and are intended to guide the eye toward
the corresponding normalized pair distribution plots (lower panel). The deviation of the normalized pair distributions from the normalized
pair distributions of a perfectly uncorrelated system (red line) directly follows the deviation of values of the cumulant ratio κ2/κ1 from the
Poissonian limit of 1. See text for more details.

a numerical problem but, as we shall discuss below, is also an
issue relevant for experiments.

First, we discuss this subject in the context of the choice
of binning width. In particular, the double-peak structure in
the baryon number distribution shown in the right panel of
Fig. 8 depends on the size of the cell used to construct the
histogram, chosen to be �l = 2 fm. In this case, the Poisso-
nian finite number statistics superimposed on the underlying
baryon distribution is characterized by a certain width σ(2 fm).
If we reduce the cell width �l by a factor of 2, the average
number of particles in a cell is reduced by a factor of 8.
Consequently, the width of the Poissonian fluctuations will be
σ(1 fm) = 2

√
2σ(2 fm), which is considerably larger than previ-

ously and which in fact washes out the double-peak structure.
This can be seen in Fig. 11, where we show the baryon
number distribution for a sampling cell width of �l = 1 fm
for the same events as used to create Fig. 8; the red and blue
lines correspond to the distribution at time t = 0 and tend =
50 fm/c, respectively. For the system at hand, the Poissonian
widths in the two cases, in terms of baryon density, were
σ(2 fm) = 0.22n0 and σ(1 fm) = 0.62n0. If we then estimate the
full width at half maximum as approximately given by 2.355σ

(the full width at half-maximum of a normal distribution), it
is clear that in the case of the cell width �l = 1 fm, the full

width is comparable with the separation of the peaks given
by the width of the coexistence region, nR − nL = 1.44n0.
As a result, the two-peak structure cannot be resolved for
this sampling statistics. Let us note here that decreasing the
volume of the cells, (�l )3, can be done without penalty if
one proportionally increases the number of test particles per
particle, NT . Conversely, decreasing the number of test parti-
cles per particle NT exacerbates the effects of finite number
statistics.

While this discussion may appear to be of purely numerical
nature, experimental data are similarly affected by finite num-
ber statistics. In experiments, one always deals with exactly
NB particles per event, which in our simulations corresponds
to NT = 1. Naturally, it must lead to a distribution in which
any possible peaks are even more washed out. This can be
seen in Fig. 12, where we show results for the case of NT = 1
and �l = 2 fm; the red and blue lines correspond to the
distribution at time t = 0 and tend = 50 fm/c, respectively.
Here, in order to ensure that we are comparing systems with
identical dynamics, we used the same simulation data as in
Figs. 8 and 11, but this time we accessed the baryon number
distribution corresponding to NT = 1 using the parallel en-
sembles method (for details, see Sec. IV and Appendix G).
Not surprisingly, the signal is almost entirely washed out and
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FIG. 11. Time evolution of the continuous baryon number dis-
tribution, scaled by the volume of the cell and shown in units of
the saturation density of nuclear matter, n0 = 0.160 fm−3, for the
same system as described in Fig. 8, averaged over Nev = 500 events.
Here, cell width is chosen at �l = 1 fm. The histogram delineated
with the red curve corresponds to the baryon distribution at ini-
tialization (t = 0), while the histogram delineated and shaded with
the blue curve corresponds to the distribution at the end of the
evolution (tend = 50 fm/c). Nuclear matter, initialized in a mechani-
cally unstable region of the phase diagram, undergoes a spontaneous
separation into a less dense and a more dense nuclear liquid (see
Sec. III A for more discussion). Correspondingly, the distribution
function becomes wider with time; however, due to the size of the
binning cell, the average number of test particles in a cell is small
and consequently the double-peaked structure, clearly seen on the
right panel in Fig. 8, is washed out by Poissonian fluctuations. See
text for more details.

only a slight broadening of the distribution is discernible. We
note that increasing the number of events does not resolve this
issue, as the resolution is determined by Poissonian fluctua-
tions in individual events. Consequently, one needs to devise
other methods to extract the information about the underly-
ing baryon distribution, one of which will be presented in a
forthcoming work.

Finally, we note that the pair distribution function is less
affected by finite number statistics. In Fig. 13, we show the
pair distribution function calculated within the parallel ensem-
bles method, which is nearly identical to the pair distribution
function calculated in the full ensemble, Fig. 9. Indeed, the
normalized pair distribution function is not determined by the
total number of test particles in an event or in a given sub-
volume of the system, but by relations between any two test
particles. The only difference between the pair distribution
functions obtained within the two methods is in the error bars,
which are larger in the parallel ensembles case due to smaller
statistics: the number of pairs in the full ensemble is given
by Nev(NBNT )2, while in the parallel ensembles it’s equal
NT Nev(NB)2. Obtaining the same pair distribution function
demonstrates that the physics accessible in the full ensemble
and the parallel ensembles approach is the same.
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FIG. 12. Time evolution of the continuous baryon distribution,
scaled by the volume of the cell and shown in units of the saturation
density of nuclear matter, n0 = 0.160 fm−3, for the same system as
described in Figs. 8 and 11, but calculated using the parallel ensem-
bles method; the results are averaged over N (parallel)

ev = NT × Nev =
25 000 events. Cell width is chosen at �l = 2 fm. The red curve
corresponds to the distribution at initialization (t = 0), while the
blue curve corresponds to the distribution at the end of the evolution
(tend = 50 fm/c). Nuclear matter, initialized in a mechanically unsta-
ble region of the phase diagram, undergoes a spontaneous separation
into a less dense and a more dense nuclear liquid (see Sec. III A
for more discussion). Correspondingly, the distribution function be-
comes wider with time; however, small numbers of particles in cells
used to construct the histogram and corresponding finite number
statistics effects wash out the structure clearly seen on the right panel
in Fig. 8. See text for more details.
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FIG. 13. Pair correlation function at t = 30 fm/c for a sys-
tem initialized inside the quark-hadron spinodal region (at baryon
number density nB = 3.0n0 and temperature T = 1 MeV), calcu-
lated within the parallel ensembles method; the results are averaged
over N (parallel)

ev = NT × Nev = 25 000 events. Spontaneous spinodal
decomposition leads to a formation of two coexisting phases: a less
dense and a more dense nuclear liquid. The increased relative con-
centration of particles in the more dense phase results in an elevated
normalized pair correlation at small distances. The correlation is
exactly the same as shown on the rightmost panel in Fig. 9. See text
for more details.
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VII. SUMMARY AND OUTLOOK

In this paper we have presented a flexible vector den-
sity functional (VDF) model, which allows one to construct
a parametrized dense nuclear matter EOSs (Sec. II). The
model, based on the relativistic Landau Fermi-Liquid theory,
obeys Lorentz covariance, preserves conservation laws, and is
shown to be thermodynamically consistent. The constructed
family of EOSs describes two first-order phase transitions:
the experimentally observed nuclear liquid-gas phase transi-
tion, and a postulated high-temperature, high-density phase
transition intended to model the QGP phase transition
(Sec. III).

To study the dynamical evolution of dense nuclear matter,
the model has been implemented in the hadronic transport
code SMASH [23] through solving the relativistic mean-field
equations of motion derived from the VDF EOS (Sec. IV).
For investigating the qualitative features of the behavior of
dense nuclear matter, we have concentrated on one specific
realization of the dense matter EOS, keeping in mind that
the ultimate motivation behind creating the VDF model and
its supporting framework within SMASH is to enable large-
scale comparisons between experimental data and simulations
spanning a broad family of EOSs.

Results from simulations in SMASH (Sec. VI) demonstrate
that critical behavior in dense nuclear matter can be studied
within a hadronic transport approach equipped with interac-
tions corresponding to a chosen EOS. In particular, we have
shown that systems initialized in unstable regions of the phase
diagram undergo spontaneous spinodal decomposition, fol-
lowed by an evolution towards an equilibrated mixture of two
coexisting phases with compositions matching the predictions
from the underlying EOS. Likewise, an investigation of equili-
brated uniform nuclear matter in the vicinity of a critical point
shows that the thermodynamic behavior expected from the
underlying theory is reproduced. The correct description of
both thermodynamics and nonequilibrium phenomena implies
that hadronic transport can be used as a tool with unique
capabilities to investigate the dynamic evolution of matter
created in heavy-ion collisions.

We have also shown that, for systems initialized at various
points of the phase diagram, the pair distribution functions
calculated from hadronic transport simulation data follow
theoretical expectations based on the second-order cumulant
ratio, κ2

κ1
(Sec. VI B). In particular, as the baryon number

density (and, consequently, baryon chemical potential) is in-
creased in the region of the phase diagram affected by the
critical point, the pair distribution function follows a clear
pattern: displaying first anticorrelation, then correlation, and
then again anticorrelation. This behavior of two-particle cor-
relations (and, on the theoretical side, of the second-order
cumulant ratio κ2

κ1
) is a clear signature of crossing the phase

diagram above the critical point. This is especially important
in view of the experimental search for the QCD critical point,
as lower order statistical observables, such as κ2

κ1
, are more

likely to be measured with accuracy sufficient for discerning
signals of critical behavior.

Multiple future research directions are possible, with a
couple of them considered below.

To start, possible generalizations of the VDF model include
adding interactions of scalar type, which will allow for an
even greater flexibility in postulating the position of the QCD
critical point. While such interactions will be computationally
much more demanding, their addition will ultimately allow
for a more robust comparison with experimental data. This
generalization of the VDF model is a subject of an ongoing
work.

Further, finite number statistics affects both the qualitative
and quantitative features of statistical observables. We have
shown that, within two complementary simulation paradigms,
hadronic transport gives access to both the continuous baryon
number distribution, employed in theoretical calculations, and
the physical baryon number distribution relevant to experi-
mental results (Secs. IV and V B). Though driven by the same
physics, these distributions lead to starkly different values for
integrated statistical observables (Secs. VI B and VI C). A
direct link between these two simulation paradigms and its
consequence for comparisons with experimental data is the
subject of an ongoing work.
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APPENDIX A: THE QUASIPARTICLE
DISTRIBUTION FUNCTION

Quasiparticles are understood as emergent phenomena oc-
curring when a microscopically complex system of “real”
particles can be described as if it was made of different,
weakly interacting “quasiparticles” in free space. This concept
is well known, among others, when applied to the behavior
of an electron traveling through a semiconductor, which can
be described as a motion of a free electron with a different,
“effective” mass.

The bulk behavior of a system of quasiparticles is described
by a quasiparticle distribution function, constructed based on a
one-to-one correspondence between quasiparticles and “real”
particles. In the nonrelativistic limit, this correspondence can
be understood as follows (for a more complete introduction
see [65]). One begins by considering an ideal Fermi gas (ne-
glecting spin), in which the dispersion relation is

εfree
p = p2

2m
. (A1)

The state of the system as whole can be specified by giving
the number of particles Np = {0, 1} in each of the single-
particle states defined by a specific value of the momentum
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p. Thus, for example, in the ground state each of the states
with momenta less than the Fermi momentum, pF , is occupied
(Np = 1), and all other states are empty (Np = 0). One can
then imagine that interactions in the system are slowly turned
on in such a way that the process is adiabatic. Quantum
mechanics shows that while such an adiabatic change will
lead to a distortion of the energy levels, it will preserve their
number. This means that the distribution function Np, while
also smoothly distorted, preserves its functional form. Now,
however, the dispersion relation εint

p takes interactions into the
account, and it is different than that of a free particle, Eq. (A1).

We stress that the construction of the quasiparticle distribu-
tion is based on the assumption that there exists a one-to-one
correspondence between quasiparticles and “real” particles.
This means, for example, that this formalism is not appropri-
ate for describing phenomena in which the number of particles
in the system changes throughout the evolution, such as for-
mation or dissolution of bound states.

For describing the macroscopic properties of a Fermi liq-
uid, it is sufficient to use a mean or smoothed quasiparticle
distribution function, often denoted by fp, which is an aver-
age of Np over a group of neighboring single-particle states.
While Np is a discontinuous function of p, fp and is a smooth
function of p.

APPENDIX B: MODEL DERIVATIONS

1. Quasiparticle energy

To obtain the quasiparticle energy, we calculate a func-
tional differential of the energy density, δE(1), where E(1) is
given by Eq. (1). Taking into the account that the kinetic
energy εkin, Eq. (2), is also a functional of the quasiparticle
distribution function through the dependence of εkin on baryon
current, we get

δE(1) = −C1(b1 − 2)( jμ jμ)
b1
2 −2 jμδ jμ j · j

−C1( jμ jμ)
b1
2 −1 j · δ j

+ g
∫

d3 p

(2π )3
εkin δ fp

+C1(b1 − 2)( jμ jμ)
b1
2 −2 jμδ jμ( j0)2

+ 2C1( jμ jμ)
b1
2 −1 j0δ j0

+C1(b1 − 1)( jμ jμ)
b1
2 −1 jμδ jμ, (B1)

where in the first two terms we have used the definition of the
vector baryon current j, Eq. (3). The first, fourth, and sixth
terms can be combined using j0 j0 − j · j = jμ jμ, so that

δE(1) = −C1( jμ jμ)
b1
2 −1 jμδ jμ

−C1( jμ jμ)
b1
2 −1 j · δ j

+ g
∫

d3 p

(2π )3
εkin δ fp

+ 2C1( jμ jμ)
b1
2 −1 j0δ j0. (B2)

Then we also note that jμδ jμ = j0δ j0 − jδ j, which further
reduces the above equation to

δE(1) = g
∫

d3 p

(2π )3
εkin δ fp + C1( jμ jμ)

b1
2 −1 j0δ j0. (B3)

Using the definition of baryon density j0, Eq. (4), we arrive at

δE(1) = g
∫

d3 p

(2π )3

[
εkin + C1( jμ jμ)

b1
2 −1 j0

]
δ fp, (B4)

from which we immediately obtain the quasiparticle energy,

εp ≡ δE
δ fp

= εkin + C1( jμ jμ)
b1
2 −1 j0. (B5)

2. Relativistic covariance of the equations of motion

With the definition of the kinetic momentum 	μ, Eq. (23),
the Hamilton’s equations, Eqs. (9) and (10), can be rewritten
as

dxi

dt
= 	i

	0
(B6)

and

d pi

dt
=

∑
k 	k

	0

∂Ak

∂xi
+ ∂A0

∂xi
. (B7)

Using the fact that H(1) = εp = p0, we can see that for the
temporal component of xμ we have trivially

dx0

dt
= ∂H(1)

∂ p0
= 1 = 	0

	0
, (B8)

which allows us to write Eqs. (B6) and (B8) together as

dxμ

dt
= 	μ

	0
. (B9)

For the temporal part of pμ we can likewise write

d p0

dt
= d p0

dx0
=

∑
k 	k

	0

∂Ak

∂x0
+ ∂A0

∂x0
, (B10)

where on the right-hand side we have simply carried out the
differentiation with respect to x0, and it follows that Eqs. (B7)
and (B10) can be jointly written as

d pμ

dt
=

∑
k 	k

	0

∂Ak

∂xμ

+ ∂A0

∂xμ

=
∑

k 	k

	0

∂Ak

∂xμ

+ 	0

	0

∂A0

∂xμ

=
∑

ν

	ν

	0

∂Aν

∂xμ

. (B11)

Let us note that from the definition of the kinetic momen-
tum 	μ we have

d	μ

dt
= d pμ

dt
− dAμ

dt
. (B12)

Using Eq. (B11), the above equation becomes

d	μ

dt
=

∑
ν

	ν

	0

∂Aν

∂xμ

− dAμ

dt
. (B13)
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We can always write

dAμ

dt
= ∂Aμ

∂xν

dxν

dt
= ∂Aμ

∂xν

	ν

	0
, (B14)

so that in the end

d	μ

dt
=

∑
ν

	ν

	0

∂Aν

∂xμ

− 	ν

	0

∂Aμ

∂xν

=
∑

ν

	ν

	0

∂Aν

∂xμ

− 	ν

	0

∂Aμ

∂xν

=
∑

ν

	ν

	0
(∂μAν − ∂νAμ) =

∑
ν

	ν

	0
Fμν, (B15)

where Fμν is defined similarly as the field strength in EM.
Both Eqs. (B9) and (B15) are written in a relativistically

covariant form.

3. Form of the quasiparticle distribution function

To obtain the functional form of the quasiparticle dis-
tribution function fp of a thermal Fermi system, we use
fundamental thermodynamic relations. We know that any vari-
ation in the energy density is connected to a variation in
entropy density, s, and particle density, n, through

δE = T δs + μδn, (B16)

where T is the temperature and μ is the chemical potential.
We already know that the dependence of δE on the distribution
function is given by the definition of the quasiparticle energy
εp, δE ≡ εp δ fp, but we need to establish the dependence of
δs and δn on fp.

It is possible to calculate the entropy of a given state of the
system by combinatorial considerations only, and in view of
the one-to-one correspondence between the states of the Fermi
liquid and the free Fermi gas (see Appendix A), it is natural to
assume that the entropy density must have the same form as
in the case of the free Fermi gas,

s = − 1

V

∑
p

[ fp ln fp + (1 − fp) ln(1 − fp)]. (B17)

(We note that we use the natural units in which the Boltzmann
constant kB = 1.) Consequently,

δs = − 1

V

∑
p

[
δ fp ln

fp

1 − fp

]
. (B18)

The number of quasiparticles in the interacting system
directly corresponds to the number of particles in the cor-
responding state of the free Fermi gas. Furthermore, the
interaction between the particles conserves the particle num-
ber, and so the total number of particles in a state of the
interacting system must be the same as in the non-interacting
system. In consequence, we can express the quasiparticle den-
sity using the quasiparticle distribution function,

n = 1

V

∑
p

fp, (B19)

from which we have

δn = 1

V

∑
p

δ fp. (B20)

With all this, we can rewrite Eq. (B16) as

1

V

∑
p

εp δ fp = −T

V

∑
p

ln
fp

1 − fp
δ fp+μ

V

∑
p

δ fp, (B21)

which can be further rearranged as

1

V

∑
p

[
εp + T ln

fp

1 − fp
− μ

]
δ fp = 0. (B22)

The above equality will hold for any variation δ fp if and only
if the term in the square bracket vanishes for any p, and we
can immediately use this fact to solve for the quasiparticle
distribution function,

fp = 1

exp
( εp−μ

T

) + 1
. (B23)

Note that, because the quasiparticle energy εp itself depends
on the quasiparticle distribution fp, the above equation is in
fact a rather complicated implicit equation for fp, in contrast
to the free Fermi gas case.

APPENDIX C: PARAMETER SETS

Here we provide parameters corresponding to the EOSs
reproducing sets of the QGP-like phase transition character-
istics (T (Q)

c , n(Q)
c , ηL, ηR), listed in Table I. It is important to

note that the values of the coefficients of the interaction terms,
{C1,C2,C3,C4}, depend on a chosen system of units. Here, we
adopt a convention used in many Skyrme-like parametriza-
tions, in which the single-particle potential is written in the
form

U =
N∑

i=1

C̃i

(
nB

n0

)bi−1

, (C1)

where n0 is the saturation density, so that C̃i must have a
dimension of energy. Naturally, C̃i and Ci are related by

Ci = C̃i

nbi−1
0

. (C2)

In Table III, we list coefficients {C̃1, C̃2, C̃3, C̃4} in units of
MeV. Note that in particular, the sum of all coefficients yields
the (rest frame) value of the single-particle potential at nB =
n0,

∑N
i=1 C̃i = −52.484 MeV.

APPENDIX D: SYMMETRIC SPINODAL REGIONS

The spinodal region is the range of baryon number densi-
ties between two local extrema of pressure, a maximum at ηL

and a minimum at ηR, with ηL < ηR. A curve exhibiting two
extrema will most naturally have an inflection point approxi-
mately in between them. We can see this by considering the
following polynomial:

f (x) = ax3 + bx2 + cx + d, (D1)
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TABLE III. Parameter sets corresponding to the EOSs reproducing sets of the QGP-like phase transition characteristics (T (Q)
c , n(Q)

c , ηL, ηR ),
listed in Table I.

set b1 b2 b3 b4 C̃1 (MeV) C̃2 (MeV) C̃3 (MeV) C̃4 (MeV)

I 1.7614679 3.8453863 4.4772660 6.7707861 −8.315987 × 101 6.144706 × 101 −3.108395 × 101 3.127069 × 10−1

II 1.8033077 3.0693813 7.9232548 10.7986978 −9.204350 × 101 3.968766 × 101 −1.306487 × 10−1 2.434034 × 10−3

III 1.8042024 3.0631798 6.6860893 20.7276154 −9.224000 × 101 3.986263 × 101 −1.066766 × 10−1 2.160279 × 10−11

IV 1.7681391 3.5293515 5.4352787 6.3809823 −8.450948 × 101 3.843139 × 101 −7.958557 1.552593
V 1.7782362 3.4936863 4.2528897 10.3240297 −8.627959 × 101 4.786488 × 101 −1.406946 × 101 1.182795 × 10−4

VI 1.7989835 3.1098389 6.3017683 8.0937872 −9.101665 × 101 3.899891 × 101 −4.856681 × 10−1 1.935808 × 10−2

which is a “minimal” polynomial needed to produce two local
extrema. The condition for an extremum at some point x0 is

df

dx

∣∣∣∣
x=x0

= 3ax2 + 2bx + c

∣∣∣∣
x=x0

= 0. (D2)

We can solve this equation to yield the positions of the ex-
trema xL and xR,

xL = −b − √
b2 − 3ac

3a
, (D3)

xR = −b + √
b2 − 3ac

3a
. (D4)

The position of the inflection point is established through the
condition

d2 f

dx2

∣∣∣∣
x=xinfl

= 6ax + 2b

∣∣∣∣
x=xinfl

= 0, (D5)

from which we get

xinfl = −−b

3a
. (D6)

It is immediately apparent that

xinfl = xL + xR

2
, (D7)

placing the inflection point exactly in the middle between
the two extrema. This result is only exact for a third-order
polynomial, and will be changed if the polynomial includes
additional terms with which one is able to manipulate the
behavior of the curve between the extrema.

We will now argue that in a model with vector-type inter-
actions only, the inflection point of the pressure curve at zero
temperature,

d2P(T = 0)

dn2
B

∣∣∣∣
nB=ninfl

= 0, (D8)

will coincide with the location of the critical point on the nB

axis. Let us first write the pressure as a sum of an ideal gas
term and an interaction term,

P = Pideal + Pint. (D9)

In particular, at T = 0 the ideal part of the pressure is given by
the ideal Fermi gas, Pideal(T = 0) = PFG

0 . Because the Fermi
gas at zero temperature depends on the baryon density as

PFG
0 ∝ n4/3

B , for large densities we can safely assume that

d2PFG
0

dn2
B

= 4

9
n−2/3

B ≈ 0. (D10)

It then follows that at the inflection point we must have

d2Pint

dn2
B

∣∣∣∣
nB=ninfl

≈ 0. (D11)

At the same time, the condition for the position of the critical
point at some location (Tc, nc) leads to

d2Pint

dn2
B

∣∣∣∣
nB=nc

= −d2Pideal

dn2
B

∣∣∣∣nB=nc

T =Tc

. (D12)

For large enough temperatures, the ideal Fermi gas is well
approximated by the ideal Boltzmann gas, and we can write
the ideal part of the pressure as

Pideal ≈ T nB. (D13)

As a result, Eq. (D12) becomes

d2Pint

dn2
B

∣∣∣∣
nB=nc

= 0, (D14)

which immediately confirms that in this case, the location of
the critical density nc coincides with the location of the inflec-
tion point ninfl of the pressure at zero temperature. Moreover,
going beyond the approximation used in Eq. (D10), we see
that at zero temperature the pressure at nB = nc will have
a very small and positive curvature, which means that the
critical density is somewhat larger than the inflection point
density, nc � ninfl.

The VDF model largely reproduces the behavior described
above. First, due to the fact that the pressure fits in the
VDF model are “minimal” fits reproducing (among other con-
straints) two local extrema, a maximum at ηL and a minimum
at ηR, the inflection point of the pressure lies roughly in the
middle between ηL and ηR. Second, due to the thermal part
of the pressure being just like that of an ideal gas, the loca-
tion of the critical point nc and the location of the inflection
point of the pressure at zero temperature ninfl are related by
nc = ninfl + δn, where δn is a small positive correction. This
explains why in the VDF model the critical baryon number
density nc lies roughly in the middle of the spinodal region
(ηL, ηR).

034904-24



PHASE TRANSITIONS AND CRITICAL BEHAVIOR … PHYSICAL REVIEW C 104, 034904 (2021)

APPENDIX E: THE METHOD OF TEST PARTICLES

The function f (t, x, p) is a continuous distribution function
for a given total number A of nucleons. Solving the Boltz-
mann equation is equivalent to obtaining the time evolution
of the distribution function. Numerically, given the initial
condition in form of the distribution function at some time
t0, f (t0, x0, p0), we solve for the distribution f (t, x, p) at a
slightly later time t = t0 + δt , and repeat the process until a
final time t = tend is reached. In more detail, the numerical
solution of the VUU equation is achieved through the method
of test particles [54], which is based on the assumption that
the continuous f (t, x, p) distribution can be approximated by
the distribution of a large number N of discrete test particles
with phase space coordinates (xi(t ), pi(t )), see Eq. (51). If we
demand that these test particles are propagated according to

dx
dt

= ∂H(1)

∂ p
,

d p
dt

= −∂H(1)

∂x
, (E1)

then the Vlasov equation, which is the left-hand side of
Eq. (50), immediately follows from the Liouville theorem.

For an evolution without mean-fields, it is most natural
to take the number of test particles exactly corresponding to
the actual number of nucleons present in the system, N = A,
NT = 1. However, employing mean-fields dependent on local
density and its gradients requires adopting an approach in
which statistical noise due to a finite number of test particles is
suppressed. This is especially important in the case of models
with competing repulsive and attractive potentials of large
magnitudes (as is often the case in relativistic models), where
relatively small numerical fluctuations can produce signifi-
cant errors in the mean-field potential calculations. Thus, for
example, for studies of nuclear matter with average density
around the saturation density n0, a number of test particles per
nucleon NT = 100 is often used.

The local baryon current is then defined on a lattice, where
at a given lattice point, the current is a sum of contributions
from all test particles which are in the volume element Vi

corresponding to that lattice point,

jμ(ri ) = 1

NT

1

Vi

∑
k∈Vi

	μ(k)

	0(k)
. (E2)

This prescription naturally reproduces the baryon number in a
given volume element,

B(i) = j0(i)Vi = N (i)

NT
, (E3)

where N (i) is the number of test particles in Vi. In practice, in
order for the local densities and currents to be smooth enough,
a prescription is used in which currents at a given lattice point
i are weighted sums of contributions from all test particles in
some chosen volume Vs around the lattice point i, which is
larger than the volume element Vi, Vs > Vi,

jμ(ri ) =
∑
k∈Vs

	μ(k)

	0(k)
S(ri − rk ), (E4)

where the weight S(ri − rk ) is known as the smearing func-
tion, normalized such that

Vi

∑
i

S(ri − rk ) = 1

NT
. (E5)

Various smearing functions are being employed in existing
transport codes. In our approach, we employ a triangular
smearing function, originating from the lattice Hamiltonian
method of solving nuclear dynamics [66].

APPENDIX F: PAIR DISTRIBUTION FUNCTION
AND THE SECOND-ORDER CUMULANT

The procedure to compute the radial distribution function
gi(r), given by Eq. (52), can be generalized to the case of a
continuous system described by a particle density distribution
n(r′),

gi(r,�r) =
∫

dr′(n(r′) − 1 δ(ri − r′))

× θ (r + �r − |ri − r′|)θ (|ri − r′| − (r − �r)),

(F1)

where care must be taken to subtract the self-contribution
from the reference particle. Similarly, the pair distribution
function g̃(r), Eq. (53), can be rewritten as

g̃(r,�r) = N
2

∫
dr′

∫
dr′′ n(r′)(n(r′′) − δ(r′ − r′′))

× θ (r + �r − |r′ − r′′|)θ (|r′ − r′′| − (r − �r))

= N
2

∫
dr′

∫
dr′′ n(r′)n(r′′)

× θ (r + �r − |r′ − r′′|)θ (|r′ − r′′| − (r − �r))

− N
2

∫
dr′ n(r′) θ (�r − r). (F2)

We note that the second term is only nonzero when r < �r,
which is correct given that the self-contribution only needs
to be subtracted if we consider the pair distribution function
within a distance �r around the reference particles.

It is possible to establish a connection between the pair dis-
tribution function and the second-order cumulant κ2. For this,
we consider the pair distribution function g̃(r) at distances
close to the reference particle, that is we put r = 0, by means
of which Eq. (F2) becomes

g̃(0,�r) = N
2

[ ∫
dr′

∫
dr′′ n(r′)n(r′′)

× θ (�r − |r′ − r′′|) −
∫

dr′ n(r′)
]
. (F3)

Let us assume that �r is small and that within the distance
�r from r′ the density is smooth enough for n(r′′) ≈ n(r′) to
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FIG. 14. Time evolution of kinetic energy per particle (left panel), mean-field energy per particle (middle panel), and total (binding) energy
per particle (right panel) for a system initialized at nuclear saturation density n0 = 0.160 fm−3 and temperature T = 1 MeV. The binding energy
per particle at initialization, EB(t = 0) ≈ −16.218 MeV, is within 0.1% from the value expected from model calculations, and the readout of
these quantities from the mean-field lattice. The mean-field energy oscillates slightly throughout the evolution, reflecting local fluctuations in
density, but its average value remains the same. The increase in kinetic energy per particle in time, which also causes the increase of total
energy per particle in time, is an unwanted feature of the simulation. Slight violation of the conservation of energy is a common feature of
many hadronic transport codes, and is connected to the choice of the integration method for the equations of motion, as well as to details of
density and density gradient calculations (see text for more details).

hold, in which case

g̃(0,�r) = N
2

[ ∫
dr′ [n(r′)]2

×
∫

dr′′ θ (�r − |r′ − r′′|) −
∫

dr′ n(r′)
]

= N
2

[
V�

∫
dr′[n(r′)]2 −

∫
dr′ n(r′)

]
, (F4)

where V� = (4/3)πr3
�. Furthermore, let us divide the volume

of the system V into cubes of volume V�, Ncubes = V/V�, and
assume that we can safely discretize the remaining integrals in
Eq. (F4) according to

∫
dr′ f (r′) → ∑Ncubes

i=1 V� f (ri ), where ri

points to the center of each cube. With this and taking the
number of particles in the ith cube to be Ni(ri ) ≡ V�n(ri ),
Eq. (F4) becomes

g̃(0,�r) ≈ N 1

2

[
Ncubes∑
i=1

[N (ri )]
2 −

Ncubes∑
i=1

N (ri )

]
. (F5)

Since the normalization can be freely chosen given that
ρ̃(0,�r) should be compared to a reference distribution for an
ideal gas ρ̃0(0,�r), in particular we can take N = 2/Ncubes,
so that finally

g̃(0,�r) = 1

Ncubes

[
Ncubes∑
i=1

[N (ri )]
2 −

Ncubes∑
i=1

N (ri )

]
, (F6)

where Ncubes is determined by �r.
It is clear from Eq. (F6) that the radial distribution function

of all distinct particle pairs at distances close to the reference
particles is

g̃(0,�r) = M2 − M1 = F2 = 〈N (N − 1)〉, (F7)

where Mi and Fi are moments and factorial moments of the
distribution, respectively. Moreover, assuming that the pair
distribution function for uncorrelated pairs g̃0(0,�r) is de-

scribed by the Poisson distribution, for which 〈N〉 = λ and
〈N2〉 = λ2 + λ (where λ is the mean), we have

g̃0(0,�r) = 〈N〉2. (F8)

Let us consider the deviation of the behavior of the pair dis-
tribution function g̃(0,�r) from the ideal case of g̃0(0,�r),
which can be conveniently done by considering the measure

R = g̃ (0,�r)

g̃0(0,�r)
− 1. (F9)

Using Eqs. (F7) and (F8) we can immediately rewrite this as

R = 〈N2〉 − 〈N〉 − 〈N〉2

〈N〉2
= κ2 − κ1

κ2
1

. (F10)

In particular, provided that κ1 > 0, we immediately obtain that
R is bigger (smaller) than 0 if and only if the second-order
cumulant ratio κ2/κ1 is bigger (smaller) than 1, which can be
alternatively expressed as in Eqs. (62) and (63).

We would like to stress that the above relations hold for
an arbitrary distribution of particles, without any assumptions
on the underlying physics, provided that the corresponding
uncorrelated system can be described by the Poisson distribu-
tion. In any such system the sign of [̃g(r,�r)/̃g0(r,�r)] − 1
at r → 0 is the same as the sign of (κ2/κ ) − 1. In particu-
lar, it follows that g̃(r,�r)/̃g0(r,�r) < 1 for systems where
a repulsive interaction dominates at short distances (leading
to a distribution more uniform than that of an ideal gas),
while g̃(r,�r)/̃g0(r,�r) > 1 for systems where an attractive
interaction dominates at short distances (which leads to a
distribution that is less uniform than that of an ideal gas).

APPENDIX G: PARALLEL ENSEMBLES IN SMASH

The version of SMASH that we used did not have the option
to run in a parallel ensembles mode (this option has been
recently added to SMASH and is currently being tested). How-
ever, for simulations with all collision and decay channels
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turned off (such as we study in this paper), we can still employ
the concept of parallel ensembles a posteriori, that is at the
analysis stage. Specifically, in each event we divide the NT NB

test particles obtained from a full ensemble SMASH simulation
(where NB is the baryon number evolved in the simulation and
NT is the number of test particles per particle) into NT separate
groups. We then treat these groups as separate events. Each of
these a posteriori constructed events is governed by PNB (Ni )
(see Sec. V B 3).

We note that for a SMASH simulation run in the full ensem-
ble mode with Nev events and NT test particles per particle, the
corresponding calculation in the parallel ensembles mode will
be characterized by NT Nev events with NT = 1 test particles
per particle.

APPENDIX H: ENERGY EVOLUTION

Theory predicts that the total (binding) energy per particle
at the saturation point should be

EB = E
nB

∣∣∣∣T =1 (MeV)
nB=n0

− mN = −16.23 MeV,

on average. Further, conservation of energy demands that the
total energy in the system, and consequently the total energy
per particle, be conserved. In Fig. 14, we show the energy
evolution of a system initialized at the saturation density of
nuclear matter, nB = n0, and temperature T = 1 MeV. The
left panel shows the kinetic energy per particle, the middle
panel shows the mean-field energy per particle, and the right
panel shows the total (binding) energy per particle. The bind-
ing energy per particle at initialization is found to be within
0.1% from the expected value, EB(t = 0) ≈ −16.218 MeV.
The mean-field energy is found to oscillate slightly throughout
the evolution, reflecting local fluctuations in density, but its
average value remains the same, which is what we expect. An
unwanted feature of the simulation is the increase in kinetic
energy per particle in time, which is also what causes the
increase of total energy per particle in time. This unphysical
gain in energy is a feature of many hadronic transport codes,
and is connected to the choice of the integration method for
the equations of motion, as well as to details of density and
density gradient calculations, and the readout of these quanti-
ties from the mean-field lattice. The spurious contributions to
the kinetic energy depend particularly strongly on statistical
noise fluctuations in the magnitude of local density gradients,
and one of the main reasons for using a significant number of
test particles per particle, NT , is suppressing unphysical den-
sity fluctuations due to the finite number of particles. While

TABLE IV. A summary of average unphysical gains in energy
per particle, �( E

N ), for infinite matter simulations pertaining to differ-
ent points on the phase diagram. For each simulation, the side length
of the box was set at L = 10 fm and the lattice spacing was chosen
at a = 1 fm. The results were averaged over ten events. The depen-
dence of �( E

N ) on the initialization point is evident. Additionally, the
number of test particles per particle NT and the time step �t are also
shown to play a role. See text for more details.

nB (n0) T (MeV) tend (fm/c) NT �t (fm/c) �( E
N ) (MeV)

0.25 1 200 20 0.1 2.291
0.25 1 200 200 1.0 1.516
0.25 1 200 200 0.1 1.411
0.25 1 200 200 0.01 1.393
0.25 1 200 500 1.0 1.315
0.25 25 200 200 1.0 1.135 × 10−4

1.0 1 200 200 1.0 5.684 × 10−6

3.0 1 50 10 0.1 1.615
3.0 1 50 50 0.1 0.542
3.0 1 50 100 0.1 0.420
3.0 125 50 50 0.1 1.373 × 10−4

there exist methods of ensuring exact energy conservation
in nonrelativistic systems [67], we are unaware of general-
izations of such methods applicable to relativistic transport
codes. In view of this, some level of energy conservation
violation will always be present in our simulations.

The degree of energy conservation violation shown in
Fig. 14 is negligible; this is the case because the system in
question is initialized in equilibrium, where mean-field forces
are small. However, in general the issue can become much
more troublesome. A summary of average unphysical gains
in energy per particle, �( E

N ), for simulations pertaining to
different points on the phase diagram, is included in Table IV.
Generally, contributions to �( E

N ) are larger for systems ini-
tialized in regions of the phase diagram where forces acting
on test particles are large, e.g., inside the spinodal region
of a phase transition (and especially in the spinodal region
of the nuclear phase transition, where density gradients tend
to be very large). Conversely, energy conservation is very
satisfactory when forces acting on test particles are small, e.g.,
in regions of the phase diagram where nuclear matter is ther-
modynamically stable, and in particular at the saturation point
of nuclear matter. Additionally, �( E

N ) depends on the number
of test particles NT and time step �t . In general, a larger
number of test particles per particle and a smaller time step
lead to a better energy conservation; however, they also lead
to a significant increase in the simulation time. Thus greater
accuracy needs to be balanced with practical considerations.
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