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Collisional energy loss and the chiral magnetic effect
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Collisional energy loss of a fast particle in a medium is mostly due to the medium polarization by the
electromagnetic fields of the particle. A small fraction of energy is carried away by the Cherenkov radiation.
In chiral medium there is an additional contribution to the energy loss due to induction of the anomalous
current proportional to the magnetic field. It causes the particle to lose energy mostly in the form of the chiral
Cherenkov radiation. We employ classical electrodynamics, adequate in a wide range of particle energies, to
compute the collisional energy loss by a fast particle in a homogenous chiral plasma and apply the results
to quark-gluon plasma and a Weyl semimetal. In the latter case photon spectrum is strongly enhanced in the
ultraviolet and x-ray regions which makes it amenable to experimental investigation. Our main observation is
that while the collisional energy loss in a nonchiral medium is a slow, at most logarithmic, function of energy
ε, the chiral Cherenkov radiation is proportional to ε2 when the recoil is neglected and to ε when it is taken
into account.

DOI: 10.1103/PhysRevC.104.034903

I. INTRODUCTION

A fast charged particle moving through a medium experi-
ences energy loss due to its interaction with medium particles.
The collisional part of the energy loss equals the work done by
the induced electromagnetic field on displacing the medium
particles. If the particle energy is much larger than the typ-
ical ionization energy, then the collisional part of its energy
loss depends on the macroscopic medium response to the
electromagnetic field. The unique feature of such response
in materials containing chiral fermions is the chiral magnetic
effect [1–5] which is induction—by the way of the chiral
anomaly [6,7]—of anomalous electric current flowing in the
magnetic field direction. The work spent by the particle on
inducing the anomalous current contributes to its energy loss.
The goal of this paper is to calculate this anomalous part of
the collisional energy loss.

The classical calculation of the collisional energy loss in
the nonchiral medium was first preformed by Fermi [8]. We
generalize his calculation to the chiral medium with anoma-
lous response to the magnetic field, utilizing the recently
derived expressions for the electromagnetic field [9]. Our
main conclusion is that the energy loss in the chiral medium
is proportional to the particle energy itself and comes mostly
in the form of the chiral Cherenkov radiation—an analog of
the Cherenkov radiation that exist only in the chiral medium.
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This is in striking contrast with the collisional energy loss
in nonchiral medium which is independent of the particle’s
energy in the ultrarelativistic limit. We also argue that in a
wide range of particle energies, quantum corrections due to
the recoil effects are small.

The collisional energy loss spectrum is given by Eqs. (10)–
(18). It contains the anomalous contribution, mostly due to
the chiral Cherenkov radiation, which is clearly seen in Fig. 1
for quark-gluon plasma and in Fig. 2 for a Weyl semimetal.
In the latter case the photon spectrum is strongly enhanced in
the ultraviolet and x-ray regions which makes it amenable to
experimental investigation.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIUM

Electrodynamics of isotropic chiral medium is character-
ized by the emergence of the anomalous current proportional
to the magnetic field viz. jA = σχB, where σχ is the chiral
conductivity [1,14]. As a result, the field equations for a point
charge q moving in the positive z direction with constant
velocity v read:

∇ × B = ∂t D + σχB + qvẑδ(z − vt )δ(b), (1a)

∇ · D = qδ(z − vt )δ(b), (1b)

∇ × E = −∂t B, (1c)

∇ · B = 0, (1d)

where b denotes the transverse components of the position
vector r. The solution to (1) with Dω = ε(ω)Eω, where
Ez = 1

2π

∫ ∞
−∞ Ezωe−iωt dω, etc., was derived in Ref. [9] as a
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FIG. 1. Electromagnetic part of the collisional energy loss spec-
trum of a d-quark with γ = 20 in quark-gluon plasma. Plasma
parameters: ωp = 0.16T , � = 1.11T [10], m = T = 250 MeV. Solid
line: σχ = 10 MeV, dashed line: σχ = 7 MeV, dotted line: σχ = 0.
ω± are defined in (13). The QCD contribution has a similar shape
and is about 103–104 times larger in magnitude.

superposition of the helicity states λ = ±1, which are the
eigenstates of the curl operator in the Cartesian coordinates:

B(r, t ) =
∫

d2k⊥dω

(2π )3
eik·r−iωt

×
∑

λ

ελk
qẑ · ε∗

λkλk

k2
⊥ + ω2(1/v2 − ε) − λσχk

, (2a)

E(r, t ) =
∫

d2k⊥dω

(2π )3
eik·r−iωt

×
[∑

λ

ελk
iqωẑ · ε∗

λk

k2
⊥ + ω2(1/v2 − ε) − λσχk

+ k̂
q

ivkε

]
,

(2b)

where k = k⊥ + (ω/v)ẑ is the wave vector, k =√
k2
⊥ + ω2/v2 its length, and ελk are the circular polarization

vectors satisfying the conditions ελk · ε∗
μk = δλμ, ελk · k = 0

FIG. 2. Collisional energy loss spectrum of electron with γ =
100 in a semimetal with parameters ωp = 0.5 eV, � = 0.025 eV (so
that its conductivity is 10 eV at room tempearture) [11] and m =
0.5 MeV. Solid line: σχ = 0.19 eV [12,13], dashed line: σχ = 0. ω±
are defined in (13). The seeming discontinuity at ω = ω+ is a visual
artifact.

and the identity

ik̂ × ελk = λελk. (3)

Summations over λ are performed using the polarization sums
given in Appendix in Ref. [9]. The space-time dependence of
the electromagnetic field given by the integrals (2a) and (2b)
was approximately evaluated in Refs. [9,15,16] assuming the
low frequency limit of a conductor ε = 1 + iσ/ω and used to
compute the effect of the chiral anomaly on the magnetic field
produced in relativistic heavy-ion collisions.

To compute the energy loss we need only the frequency
components of the fields, see (10). These can be computed
exactly. For illustration, consider

Bω(r) =
∫

d2k⊥
(2π )2

q k eiωz/v+ik⊥·b

[k2
⊥ + ω2(1/v2 − ε)]2 − (σχk)2

×
{

[k2
⊥ + ω2(1/v2 − ε)]

∑
λ

λελk(ẑ · ε∗
λk)

+ σχk
∑

λ

ελk(ẑ · ε∗
λk)

}
. (4)

Its azimuthal component is

Bφω(r) =
∫

d2k⊥
(2π )2

q k eiωz/v+ik⊥·b

[k2
⊥ + ω2(1/v2 − ε)]2 − (σχk)2

×
{

[k2
⊥ + ω2(1/v2 − ε)]

−ik⊥
k

cos θ

+σχk
−kzk⊥

k2
sin θ

}
, (5)

where k⊥ · b = k⊥b cos θ . Integration over θ and then over k⊥
yields (6a) below. Other field components an be obtained in a
similar way with the following result:

Bφω(r) = q

2π

eiωz/v

k2
1 − k2

2

2∑
ν=1

(−1)ν+1kν

(
k2
ν − s2

)
K1(bkν ), (6a)

Bbω(r) = σχ

q

2π

iω

v

eiωz/v

k2
1 − k2

2

2∑
ν=1

(−1)νkνK1(bkν ), (6b)

Bzω(r) = σχ

q

2π

eiωz/v

k2
1 − k2

2

2∑
ν=1

(−1)ν+1k2
ν K0(bkν ), (6c)

Ezω(r) = q

2π

iω

v2ε

eiωz/v

k2
1 − k2

2

2∑
ν=1

(−1)ν+1

× [
(v2ε − 1)

(
k2
ν − s2) − σ 2

χ

]
K0(bkν ), (6d)

Ebω(r) = q

2π

1

vε

eiωz/v

k2
1 − k2

2

2∑
ν=1

(−1)ν+1kν

× (
k2
ν − s2 − σ 2

χ

)
K1(bkν ), (6e)

Eφω(r) = vBbω(r), (6f)
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where

k2
ν = s2 − σ 2

χ

2
+ (−1)νσχ

√
ω2ε + σ 2

χ

4
(7)

with ν = 1, 2 and

s2 = ω2

[
1

v2
− ε(ω)

]
. (8)

Without loss of generality we assume that σχ > 0 which im-
plies that k2

2 > k2
1 . The plasma permittivity is well described

by

ε = 1 − ω2
p

ω2 + iω�
, (9)

where ωp is the plasma frequency and the damping constant
� is related to the electrical conductivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the
Poynting vector out of a cylinder of radius a coaxial with the
particle path. For a particle moving with velocity v along the
z-axis the total loss per unit length reads

−dε

dz
= 2πa

∫ ∞

−∞
(EφBz − EzBφ )dt

= 2a Re
∫ ∞

0
(EφωB∗

zω − EzωB∗
φω )dω. (10)

To calculate the integral over ω we first isolate the contribution
of the pole in 1/ε at ω = ωp using the rule

1

ε
= ω2

ω2 − ω2
p + i0

= −iπω2
pδ

(
ω2 − ω2

p

) + P ω2

ω2 − ω2
p

,

(11)

where it is assumed that � � ωp. Substituting the field com-
ponents from (6) into (10) and replacing 1/ε by its imaginary
part one derives

−dεpole

dz
= q2ω2

p

4πv2
K0(aωp/v) Re

{
a
√

ω2
p/v

2 − σ 2
χ K1

(
a
√

ω2
p/v

2 − σ 2
χ

)}
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over ω comes from those domains of
ω where at least one of kν’s is imaginary. There are two such domains (A) and (B). In domain (A) k2

1 < k2
2 < 0. Inspection of (7)

reveals that k2
2 < 0 if either ω2 > ω2

+ or ω2 < ω2
− where

ω2
± =

−2(1/v2 − 1)ω2
p + σ 2

χ/v2 ±
√[

2(1/v2 − 1)ω2
p − σ 2

χ/v2
]2 − 4(1/v2 − 1)2ω4

p

2(1/v2 − 1)2
. (13)

Additionally, if ωp < σχ/
√

2 the inequality

0 < ω <

√
σ 2

χ/2 − ω2
p

1/v2 − 1
(14)

must be satisfied. Domain (B), k2
1 < 0 < k2

2 , corresponds to in the interval ω2
− < ω2 < ω2

+. We note that in vacuum,1 i.e. when
ωp = 0 domain (A) is empty because (13) and (14) are never satisfied at any σχ . In contrast, when σχ = 0, domain (B) is empty
because then k1 = k2.

It can be readily verified that Im k1 < 0 at all ω’s, while Im k2 < 0 when ε > 0 and positive otherwise. It is not difficult to
compute the real part of the Poynting vector in both cases. However, later we will be primarily concerned with the ultrarelativistic
limit v → 1 in which the energy loss is dominated by high frequencies ω � ωp. In this case ε > 0 and the imaginary parts of
k1,2 are negative. It is convenient to denote k2

+ = −k2
1 and k2

− = −k2
2 , so that in domain (A) Im k1,2 = k± < 0 while in domain

(B) Im k1 = k+ < 0. We derive

Re (EφωB∗
zω )|(A) = q2

(2π )2

σ 2
χω

(k2+ − k2−)2

{
π

2a
(k2

+ + k2
−) − π2

4
k+k2

−[J1(ak+)Y0(ak−) − J0(ak−)Y1(ak+)]

−π2

4
k2
+k−[J1(ak−)Y0(ak+) − J0(ak+)Y1(ak−)]

}
, (15)

Re (EφωB∗
zω )|(B) = q2

(2π )2

σ 2
χω

(k2+ − k2−)2

{
π

2a
k2
+ − π

2
k2

2k+J1(ak+)K0(ak2) + π

2
k2
+k2K1(ak2)J0(ak+)

}
, (16)

Re (EzωB∗
φω )|(A) = q2

(2π )2

ω

v2ε(k2+ − k2−)2

{
− π

2a

[
(v2ε − 1)(k2

+ + s2) + σ 2
χ

]
(k2

+ + s2) − π

2a

[
(v2ε − 1)(k2

− + s2) + σ 2
χ

]

1The term “vacuum” refers to Eqs. (1) with ε = 1 and finite σχ , which is a version of axion electrodynamics [17]
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× (k2
− + s2) − π2

4

[
(v2ε − 1)(k2

+ + s2) + σ 2
χ

]
(k2

− + s2)k−[J0(ak+)Y1(ak−) − J1(ak−)Y0(ak+)]

−π2

4

[
(v2ε − 1)(k2

− + s2) + σ 2
χ

]
(k2

+ + s2)k+[J0(ak−)Y1(ak+) − J1(ak+)Y0(ak−)]

}
, (17)

Re (EzωB∗
φω )|(B) = q2

(2π )2

ω

v2ε(k2+ − k2−)2

{
− π

2a

[
(v2ε − 1)(k2

+ + s2) + σ 2
χ

]
(k2

+ + s2)

−π

2

[
(v2ε − 1)(k2

+ + s2) + σ 2
χ

](
s2 − k2

2

)
k2J0(ak+)K1(ak2)

−π

2

[
(v2ε − 1)

(
s2 − k2

2

) + σ 2
χ

]
(k2

+ + s2)k+J1(ak+)K0(ak2)

}
. (18)

Substituting these equations into (10) we obtain frequency
spectrum of the energy loss −dε/dzdω which is plotted in
Figs. 1 and 2. The ω integral can be computed exactly in
several important approximations that we now consider.

A. Ultrarelativistic limit

In the limit akν � 1, the contribution of the pole (12) is
proportional to large logarithm ln a, the term (18) is indepen-
dent of a, whereas the remaining terms are suppressed by the
positive powers of akν . The corresponding energy loss reads

−dε

dz
= q2

4π

ω2
p

v2
ln

1.12v

aωp

− q2

4π

∫
k2

1<0<k2
2

ω

v2ε

(
s2 − k2

1

)
(v2ε − 1) + σ 2

χ

k2
1 − k2

2

dω.

(19)
The integration domain (B) simplifies in the ultrarelativistic
limit v → 1: ω2

p/σχ < ω < γ 2σχ , where γ = (1 − v2)−1/2.
Expanding the integrand at large frequencies, assuming
ω � σχ , yields

− q2

4π

1

2σχ

∫ γ 2σχ
(

−σχω

γ 2
+ σ 2

χ

)
dω, (20)

where the precise value of the lower limit is irrelevant as long
as γ � 1. Integrating one obtains

−dε

dz
= q2

4πv2

(
ω2

p ln
v

aωp
+ 1

4
γ 2σ 2

χ

)
. (21)

We observe that the energy loss due to the anomaly, repre-
sented by the second term in (21), dominates at high energies.
Inclusion of quantum effects produces the logarithmic depen-
dence of the first term on γ but this does not change our
conclusion.

B. Nonchiral medium

In the limit σχ → 0 the contributions of (15), (16), and (18)
vanish. The finite limit emerges from (17) which along with
(12) yields

−dε

dz
= q2

4π

ω2
p

v2
K0(aωp/v)(aωp/v)K1(aωp/v)

+ q2

4πv2

∫
s2<0

ω

(
v2 − 1

ε

)
dω. (22)

The second term vanishes in plasma since ε < 1 implies that
s2 is always positive, see (8) and (9). However, if medium
contains bound states, then the second term contributes when
the velocity of the particle is larger than the phase velocity
of light in the medium. A single bound state of frequency ω0
contributes to the permittivity as

ε(ω) = 1 − ω2
p

ω2 − ω2
0 + iω�

(23)

In this case (22) is generalized as

−dε

dz
= q2

4π

ω2
p

v2
K0

(
a
√

ω2
p + ω2

0/v
)(

a
√

ω2
p + ω2

0/v
)

× K1
(
a
√

ω2
p + ω2

0/v
) + q2

4πv2

∫
s2<0

ω

(
v2 − 1

ε

)
dω.

(24)

Neglecting �, the integration region s2 < 0 is equivalent to
(1 − ε(0)v2)/(1 − v2) < ω2/ω2

0 < 1 if v < 1/
√

ε(0) and to
ω < ω0 if v > 1/

√
ε(0). Integration over ω in the second term

yields the well-known Fermi’s result [8].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form
of the Cherenkov radiation. In the nonchiral medium it is
included in the second term in (22) (provided that ε(0) is
finite, as explained in the previous subsection) and is small
compared to the large first term that describes excitation of
the longitudinal oscillations in the medium (medium polariza-
tion).

In the chiral medium the Cherenkov radiation emerges
even when ε = 1, which is known as the chiral (or, in a
different context, vacuum) Cherenkov radiation [18–21].2 It
is generated by the anomalous electromagnetic current in the
presence of the moving charged particle. The Cherenkov ra-
diation is that part of the total energy flux moving radially
away from the particle which is finite at a → ∞. It can
be computed by replacing the Bessel functions appearing in
(15)–(18) with their asymptotic expressions. In particular, the

2It was proposed to be a test of the Lorentz symmetry violation in
Refs. [17–19,22–28].
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rate of the chiral Cherenkov radiation emitted in a unit interval
of frequencies by an ultrarelativistic particle in empty space
(ε = 1) is given by

dW

dω
= − dε

dzωdω

∣∣∣
a→∞

= q2

4π

{
1

2

(
1 − 1

v2

)
+ σχ

2ω
+ (1 + v2)σ 2

χ

8v2ω2
+ . . .

}
,

ω < σχγ 2. (25)

which comes about from (18). Expansion in powers of σχ/ω

is justified for the ultrarelativistic particle. Equation (25) is
derived neglecting the fermion recoil which proportional to
h̄ω. It is a good approximation as long as ω+ = σχγ 2 � ε, in
other words when γ � m/σχ , where m is the particle mass.
The total radiated power P is obtained by integrating (25) over
ωdω. It is dominated by the upper limit so that only the first
two terms contribute at large γ with the result:

P = q2

4π

σ 2
χγ 2

4
. (26)

We observe that the spectrum (25) is exactly the same as
(20) which indicates that all energy lost by the ultrarelativistic
particle due to the anomalous current is radiated as the chiral
Cherenkov radiation.

The spectrum of the chiral Cherenkov radiation was previ-
ously computed by one of the authors in the leading order of
QED with the result [20]
dW quant

dω
= q2

(4π )2ω

{
σχ

(
x2

2
− x + 1

)
− m2

ε
x

}
, ω < ωM,

(27)

where x = ω/ε is the fraction of the fermion energy carried
away by the radiated photon and

ωM = ε

1 + m2/(σχε)
. (28)

Photon spectrum always extends all the way to ωM since
ωM < σχγ 2. Moreover, since ωM < ε and hence x < 1, (27)
is valid even at γ � m/σχ , in contrast to the classical formula
(25). The classical limit of (27) is recovered in the limit
x � 1: the term in (27) proportional to σχ reduces to the
second term in (25), while the second term in (27) reduces
to the first term in (25). The total radiation power is

Pquant = q2

4π

σχε

3
, (29)

where the terms of order m/ε = 1/γ were neglected. Evi-
dently, the effect of the recoil on the energy loss is to reduce
the energy dependence from ε2 to ε.

IV. DISCUSSION

The classical calculation performed in this paper captures
the main feature of the energy loss in chiral medium, namely,
its much faster increase with the particle energy that in a
nonchiral medium. Taking the recoil effects into account, the
energy loss is proportional to energy ε. In contrast, energy
dependence of the collisional energy loss in nonchiral medium

is at most logarithmic. The conventional radiative energy loss
is likewise proportional to energy in the noncoherent Bethe-
Heitler (BH) regime. The ratio of the energy loss due to the
chiral Cherenkov (χC) effect to the conventional radiative loss
is

�εχC

�εBH
∼ σχ

e2T
∼ μ5

T
, (30)

where T is the plasma temperature and μ5 is the axial
chemical potential. The coherence effects reduce the energy
dependence of the radiative energy loss to

√
ε (see review

[29]). This significantly increases the ratio (30). In this paper
we assumed that distribution of the topological charge density
is homogenous and therefore there are no coherence effects on
the chiral Cherenkov radiation. This is a good approximation
as long as the coherence length associated with photon radia-
tion is smaller than the distance over which the topological
charge density significantly varies. This maybe the case in
the nuclear matter where there is evidence—supported by the
theoretical arguments [30,31]—of the topological domains of
nearly constant density in wide range of temperatures [32–39].

Figure 1 displays the spectrum of the collisional energy
loss by a fast particle in quark-gluon plasma computed using
the results of Sec. III. We emphasize that this is a purely elec-
tromagnetic effect. The chiral Cherenkov radiation emerges
as a bump between ω− and ω+. The relevant parameters are
inferred from the lattice calculations [10] or by the way of
educated guess in the case of the chiral conductivity. The
quantum corrections due to the recoil would shift the UV
endpoint of the anomalous contribution to the left since ωM <

ω+ = σχγ 2. However, the overall effect of the recoil is not
that significant since ωM = 0.44ε is not too close to unity. The
rate of energy loss due to the anomaly is about ε̇/ε ∼ 10−4 per
unit fm regardless of particle energy as indicated by (29).

Hitherto we have discussed the electromagnetic part of the
collisional energy loss. Our results can be readily generalized
to the strong interactions which dominate the particle energy
loss in QGP [40]. Thus, marking the quantities computed in
QCD by a tilde sign, (21) becomes:

−dε

dz
= g2CF

4πv2

(
ω̃2

p

2N2
c

ln
v

aω̃p
+ 1

4
γ 2σ̃ 2

χ

)
, (31)

where g is the strong coupling. The plasma frequency ω̃p is
obtained from ωp by replacing e → √

Ncg [41]. In (21) the
chiral conductivity σχ is proportional to the QED anomaly
coefficient cA = (Nc/3)(e2/16π2) while σ̃χ is proportional to
the QCD anomaly coefficient c̃A = Nf g2/16π2. The energy
loss due to the chiral anomaly is given by the second term in
(31). With the account of the recoil the anomalous contribu-
tion becomes

−dε

dz

∣∣∣∣
anom

= g2CF

4π

σ̃χε

3
, (32)

which is the QCD version of (29). Accordingly, the rate
of energy loss due to the chiral anomaly of QCD is about
(αs/αem)2 which makes it 103–104 times larger in QCD than
in QED. In view of our estimates in the previous paragraph,
the chiral anomaly of QCD may induce the rate of energy
loss up to ε̇/ε ∼ 1 per fm, meaning that the particle energy
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decreases by a factor of three over each fm it travels regardless
of its initial energy. Moreover, the coherence effects slow
down the increase with energy of the conventional energy
loss mechanisms which brings about the increase with energy
of the relative contribution of the chiral Cherenkov radia-
tion. Clearly, a numerical evaluation of the chiral conductivity
would be of considerable benefit to the QGP phenomenology.

In an anisotropic chiral medium such as Weyl semimetals
there is an additional anomalous current jAH = b × E that
generates the anomalous Hall effect [22,42,43]. Parameter b
is the distance between the Weyl nodes in the momentum
space (not to be confused with the impact parameter used in
Sec. II). The spectrum of the corresponding chiral Cherenkov
radiation was computed in Ref. [44]. In the ultrarelativistic
limit, the energy loss equals the total radiated power and is
given by (29) with σχ replaced by b (assuming that electron’s
velocity is parallel to b). To estimate the energy loss in a
semimetal reported in Refs. [12,13] we use b = (α/π )80 eV.
According to (30) at room temperatures most of energy is lost

due to chiral Cherenkov radiation. The energy loss spectrum
for a typical semimetal computed using the results of Sec. III
is displayed in Fig. 2. The recoil effect is negligible since
ωM � σχγ 2 � ε. One observes significant enhancement of
the ultraviolet and x-ray regions of the photon spectrum which
presents an exciting opportunity for experimental study of the
chiral anomaly effects.

In this paper we computed the leading order contribution
to the collisional energy loss due to the chiral anomaly. It
turned out to be significant, motivating us to investigate the
higher order contributions. If the theory of the conventional
energy loss (see, e.g., Ref. [29]) is a guide, we anticipate that
those contributions will substantially modify the leading order
result.
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