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Intermittency analysis of proton numbers in heavy-ion collisions at energies available
at the BNL Relativistic Heavy Ion Collider
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Local density fluctuations near the QCD critical point has been suggested to exhibit a power-law behavior
which can be probed by an intermittency analysis on scaled factorial moment (SFM) in relativistic heavy-
ion collisions. The collision energy and centrality dependence of the second-order SFMs are systematically
investigated in Au+ Au collisions at /syy = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD
model. We estimate the noncritical background in the measurement of intermittency and propose a cumulative
variable method to effectively remove the background contributions. We further study the effect of particle
detection efficiency by implementing the RHIC (STAR) experimental tracking efficiencies in the UrQMD events.
A cell-by-cell method is proposed for experimental application of efficiency corrections on SFM. This work can
provide a guidance of background subtraction and efficiency correction for the experimental measurement of
intermittency in the search of the QCD critical point in heavy-ion collisions.
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I. INTRODUCTION

One of the major goals of relativistic heavy-ion collisions is
to explore the QCD phase structure [1-5]. Theoretical studies
have shown the existence of a critical point (CP) at finite
baryon chemical potential and temperature [6—8]. This CP is
proposed to be characterized by a second-order phase transi-
tion, which becomes a unique property of strongly interacting
matter [9-13]. In the thermodynamic limit, the correlation
length diverges at the CP and the system becomes scale in-
variant and fractal [14—-16]. It has been shown that the density
fluctuations near the QCD critical point form a distinct pattern
of power-law or intermittency behavior in matter produced in
high energy heavy-ion collisions [17-20].

Intermittency is a manifestation of the scale invariance,
fractality of physical processes, and the stochastic nature
of the underlying scaling law [16]. It can be revealed in
transverse momentum spectra as a power-law behavior of
scaled factorial moment (SFM) [14,17]. In current high-
energy heavy-ion experiments at the CERN Super Proton
Synchrotron (SPS) [21,22], the NA49 and NAG61 collabora-
tions have performed the intermittency analysis with various
sizes of colliding nuclei. A power-law behavior has been
observed in Si+ Si collisions at 1584 GeV [21]. Recently,
the STAR collaboration reported the preliminary result of
charged-particle intermittency from the beam energy scan
(BES) program at RHIC. The critical exponent extracted from
intermittency index shows a minimum in central Au+ Au
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collisions around ,/sny = 20-30 GeV [23]. In the mean time,
various model studies have been conducted to investigate the
unique behavior of intermittency under various underlying
mechanisms [24-28].

For a self-similar system with intermittency, it is expected
that the multiplicity distribution in momentum space is as-
sociated with a strong clustering effect, which indicates a
remarkably structured phase-space density [16,29]. However,
the inclusive single-particle multiplicity spectra in finite space
of high-energy collisions are significantly influenced by back-
ground effects. The multiplicity distribution is constrained
or modified by conservation law, resonance decay, statistical
fluctuations, etc. It has been shown that the statistical fluctua-
tions due to a finite number of particles [30] or the choices of
the size in momentum space [31] will influence the measured
SFM. Therefore, it is necessary to estimate and remove these
trivial effects in order to get a clean power-law exponent,
and then one can compare the measured intermittency with
theoretical predictions. For this purpose, Ochs [32], Bialas,
and Gazdzicki [33] proposed to study intermittency by using
the cumulative variable method in which the single-particle
density is a constant. The cumulative variable method can
effectively reduce the distortions of the simple scaling law
caused by a nonuniform single-particle spectrum and there
is no bias from the shape of the inclusive distribution. We
will study how to remove the trivial background effects by
the cumulative variable method in the measurement of SFMs
in heavy-ion collisions.

In heavy-ion collision experiments, the particle detector
has a finite detection efficiency, which could simply result
from the limited capability of the detector to register the
finite-state particles [34,35]. This will lead to the loss of
particle multiplicity in an event, which makes the measured
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event-by-event multiplicity distributions in momentum space
differ from the original produced ones [2,35]. The values
of SFM could be significantly modified by the detector effi-
ciency, which will distort the original signal possibly induced
by the CP. Therefore, we should recover the SFM of the true
multiplicity distributions from the experimentally measured
ones by applying proper efficiency correction technique.

The paper is organized as follows: A brief introduction to
the UrQMD model is given in Sec. II. In Sec. III, we introduce
the method of intermittency analysis by using SFMs. Then,
the collision energy and centrality dependence of SFMs are
investigated by the UrQMD model in Au + Au collisions from
A/SnN = 7.7 t0 200 GeV. In Sec. V, we discuss the estimation
and subtraction of background in the calculations of SFMs.
In Sec. VI, the efficiency correction formula is deduced, fol-
lowed by a check of the validity of the method by the UrQMD
model. Finally, we give a summary and outlook of this work.

II. ULTRA RELATIVISTIC QUANTUM MOLECULAR
DYNAMICS MODEL

The wultra relativistic quantum molecular dynamics
(UrQMD) model is a microscopic many-body model that has
been extensively applied to simulate p + p, p+ A, and A + A
interactions in ultrarelativistic heavy-ion collisions [36-38]. It
provides phase-space descriptions of different reaction mech-
anisms based on the covariant propagation of all hadrons
with stochastic binary scattering, color string formation, and
resonance decay [37]. This model includes baryon-baryon,
meson-baryon, and meson-meson interactions with more than
50 baryon and 45 meson species. It preserves the conser-
vation of electric charge, baryon number, and strangeness
number. It models the phenomena of baryon stopping, which
is an essential feature encountered in heavy ions at low beam
energies. It is a well-designed transport model [36] for sim-
ulations with the entire available range of energies from SIS
energy (/snn =2 GeV) to the top RHIC energy (/sny =
200 GeV). More details about the UrQMD model can be found
in Refs. [36-38].

The UrQMD model is a suitable simulator to estimate the
noncritical contribution and other trivial background effects in
the measurement of correlations and fluctuations in heavy-ion
collisions. In this work, we use the UrQMD model (version 2.3)
to generate Monte Carlo event samples of Au + Au collisions
at RHIC energies. The corresponding event statistics are 72.5,
105, 106, 81, 133, 38, and 56 million at /s\y = 7.7, 11.5,
19.6, 27, 39, 62.4, and 200 GeV, respectively.

III. METHOD OF ANALYSIS

It is argued that, in heavy-ion collisions, large baryon den-
sity fluctuations may provide a unique signal to the phase
transition in the QCD phase diagram. It is expected to observe
the critical density fluctuations as a power-law pattern on
available phase-space resolution if the system freezes out right
in the vicinity of the critical point [17,22].

In high-energy experiments, the power-law or intermit-
tency behavior can be measured by calculations of SFMs
of baryon number density [17,22,39]. For this purpose, an

available region of momentum space is partitioned into MP”
equal-size bins. The gth order SFM, i.e., F,,(M), is defined as

ity < (B ZE =D (= g + 1)
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with MP being the number of cells in the D-dimensional
partitioned momentum space, n; the measured multiplicity in
the ith cell, and g the order of the moment.

If the system exhibits critical fluctuations, SFM is expected
to follow a scaling function: [17,21]

F,(M) ~ (MP)%,

. (D

M = . 2)

A power-law behavior of F, (M) on the partitioned number
MP when M is large enough is referred to as intermittency.
M 1is the number of cells in each dimension. The scaling ex-
ponent ¢, is called the intermittency index that characterizes
the strength of the intermittency behavior. By using a critical
equation of state of a three-dimensional (3D) Ising system,
the second-order intermittency index in a two-dimensional
transverse momentum space is predicted to be ¢, = % [17]
for baryon density and ¢, = % for sigma condensate [40].
The search of multiplicity fluctuations in increasing number
of partition intervals using the SFM method was first proposed
in Refs. [30,41]. Recent studies show that one can probe QCD
critical fluctuations [24] and estimate the possible critical re-
gion [20] from intermittency analysis in relativistic heavy-ion
collisions.

In the following section, we calculate the second-order
SEM of proton density in transverse momentum space by
using event samples from the UrQMD model in Au + Au colli-
sions at /sy = 7.7-200 GeV. Then, the intermittency index
¢, can be extracted by fitting Eq. (2).

IV. ENERGY AND CENTRALITY DEPENDENCE
OF SCALED FACTORIAL MOMENTS

By using the UrQMD model, we generate event samples
at various centralities in Au 4 Au collisions at /sy = 7.7,
11.5, 19.6, 27, 39, 62.4, and 200 GeV. In the model calcula-
tions, we apply the same kinematic cuts and technical analysis
methods as those used in the RHIC (STAR) experiment data
[42]. The protons are measured at midrapidity (]y| < 0.5)
within the transverse momentum 0.4 < py < 2.0 GeV/c. The
centrality is defined by the charged pion and kaon mul-
tiplicities within pseudorapidity |n| < 1.0. Since we only
concern protons in the calculations and use pions and kaons
without protons to determine centrality, it can effectively
avoid autocorrelation effects in the measurement of SFMs.
In our analysis, we focus on proton multiplicities in a two-
dimensional transverse momentum space of p, and p,. The
available two-dimensional (2D) region of transverse momen-
tum is partitioned into M? equal-size bins to calculate SFMs
in various sizes of cells. The statistical error is estimated by
using the bootstrap method [43].

In Fig. 1, the black circles represent the second-order SFMs
as a function of number of partitioned bins, directly calculated
in transverse momenta for proton numbers in 0%—5% most
central Au+ Au collisions at /syy = 7.7-200 GeV. It is
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FIG. 1. The second-order scaled factorial moment (black circles) F> (M) as a function of number of partitioned cells in a double-logarithmic

scale at /sy = 7.7-200 GeV from the UrQMD model. The black lines are the power-law fitting. The corresponding red ones represent the

SFMs calculated by the cumulative variable method.

observed that F, (M) increases slowly with increasing number
of dividing bins. The black lines show the power-law fit of
F>(M) according to Eq. (2). The slopes of the fitting, i.e., the
intermittency indices ¢,, are found to be small at all ener-
gies. And they are much less than the theoretical prediction
¢» =5/6 for a critical system of the 3D Ising universality
class [17].

The F>(M) measured at various collision centralities in
Au + Au collisions at /sxy = 19.6 GeV are shown as the
black circles in Fig. 2. And the black lines are the fit according

to Eq. (2). Again, we find that the directly calculated SFMs
can be fit with a small intermittency index. The values of ¢,
increase slightly from the most central (0%—5%) to the most
peripheral (60%—80%) collisions.

Therefore, we observe that the intermittency indices from
the directly calculated SFMs are small but nonzero in Au +
Au collisions from the UrQMD model. However, the UrQMD
model [36] is a transport model which does not include any
critical related self-similar fluctuation. In this case, the SFM
will be independent of the number of partition bins, and ¢,

SFM
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FIG. 2. The second-order scaled factorial moment (black circles) as a function of number of partitioned cells from the most central
(0%—5%) to the most peripheral (60%—80%) collisions at ,/syy = 19.6 GeV. The corresponding red ones represent the SFMs calculated

by the cumulative variable method.
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would be expected to be zero [16,30,41]. So there must exist
some trivial noncritical contributions from background. The
similar small values of intermittency indices are also found
in the HIJING [44] and PYTHIA [45] Monte Carlo models. In
the NA49 and NAG61 experimental data, the observed scaling
behavior can be reproduced by mixing critical events with a
probability of more than 90% with uncorrelated random tracks
[21,46]. In the case that critical related tracks are rare, the
underlying critical signal may be diluted by majority random
tracks. In light of such a scenario, precise knowledge of the
background is crucial to the measurement of intermittency in
heavy-ion collisions. We will investigate how to remove the
background effects from the directly measured SFMs in the
next section.

V. BACKGROUND SUBTRACTION

To extract the signature of critical fluctuations, it is es-
sential to understand the noncritical effects or background
contributions on the experimental observables. The back-
ground effects will change the multiplicity distributions in the
measured finite momentum space. Then the multiplicity in
each partitioned cell, n;, will be modified accordingly when
calculating SFMs based on Eq. (1). Since the values of cal-
culated SFMs are changed, the intermittency index will be
affected. It is shown that the SFMs are significantly influenced
when adding uncorrelated particles from background to the
event samples of self-similar signals [47]. In this purpose,
NA49 and NAG61 use the mixed event method to estimate and
subtract background by assuming that the particle multiplicity
in each cell can be simply divided into background and critical
contributions [21]. In this paper, we pursue the cumulative
variable method, which has been proved to drastically reduce
distortions of intermittency due to nonuniform single-particle
density from background contributions [32,33,48], to under-
stand and remove the background effects.

The cumulative variable X(x) is related to the single-
particle density distribution p(x) through [32,33]

B '[x):nin o(x)dx

Xx)= . 3
T I s v
Here x represents the original measured variable, e.g., py
or p,. p(x) is the density function of x. Xyin and Xy, are the
lower and upper phase-space limits of the chosen variable x.
The cumulative variable X (x) is determined by the shape of
density distribution p(x). The distribution of the new variable
X (x) is uniform in the interval from O to 1. It has been proved
that the cumulative variable could remove the dependence of
the intermittency parameters on the shape of particle density
distributions and give a new way to compare measurements
from different experiments [33]. To use the cumulative vari-
able, the two-dimensional momentum space p,p,, which is
partitioned into M? cells, will transfer to be pypy space.
And the SFM directly calculated in p,p, space [F2(M)] will
transfer to be CF,(M), which is now calculated in px py space.
The process of fitting ¢5 from CF>(M) is similar to that of ¢,
from F, (M) according to Eq. (2).

T T
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FIG. 3. The black symbols represent the second-order scaled fac-
torial moment as a function of number of partitioned cells (a) in pure
CMC events and (b) in CMC events contaminated with Gaussian
background fluctuations. The corresponding red ones are the SFMs
calculated by the cumulative variable method.

To test the validity of the cumulative variable method in the
calculations of SFMs, we use a critical Monte Carlo (CMC)
model [17,24] of the 3D Ising universality class to generate
critical event samples. The CMC model involves the self-
similar or intermittency nature of particle correlations and
leads to an intermittency index of ¢, = % [17]. In Fig. 3(a),
both F>(M) (black circles) and CF,(M) (red triangles) are
shown in the same panel. We observe that CF,(M) follows
a good power-law behavior as F>(M) with increasing M>.
Within statistical errors, the intermittency index ¢5 fitted from
CF,(M) equals ¢, obtained from F,(M). It means that the
cumulative variable method does not change the intermittency
behavior for a pure critical signal event sample, which has
been proved by Bialas and Gazdzicki when they proposed
to use the cumulative variable method to study intermittency
[33]. In Fig. 3(b), the CMC event sample is contaminated by
hand with a statistical Gaussian background contribution, with
the mixed probability A = 95%. The chosen value of A is close
to the one used in the simulations of background in the NA49
experiment [21]. In this case, one finds that the directly calcu-
lated F> (M) deviates substantially from the linear dependence,
i.e., violation of the scaling law because of the Gaussian
background contribution. So we cannot make a good fitting
based on the scaling function defined in Eq. (2). However,
the trend of CF,(M), which is calculated by the cumulative
variable method, still obeys a similar power-law dependence
on M? as that in Fig. 3(a). Furthermore, the intermittency
index ¢35 calculated from CF,(M) remains unchanged when
comparing with the one in the original CMC sample shown
in Fig. 3(a). We feel that these results are encouraging. They
confirm that, in the intermittency analysis, the cumulative
variable method efficiently removes the effects caused by the
background contribution.

Let us go back to the problem of the background effect
in the UrQMD model from Sec. IV. We calculate SFMs in
the same event sample by the proposed cumulative variable
method and then get the intermittency index from CF,(M).
The results are shown as red triangles and red lines in Figs. 1
and 2. CF,(M) is found to be nearly flat with an increasing
number of cells in all measured energies and centralities.
Furthermore, the intermittency index, with the value near
to zero, is much smaller than the value directly calculated
from F>(M). It verifies that the background of the noncritical
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effect can be efficiently removed by the cumulative variable
method in the calculation of SFMs in the UrQMD model. This
method could also be used for the intermittency analysis in the
ongoing experimental at RHIC (STAR) or further heavy-ion
experiments in search of the QCD critical point. We would
also note that the fit values of ¢5 from CF,(M) are still not
exactly zero although they are much smaller than ¢, obtained
directly from the measured F>(M). It possibly accounts for
other effects such as proton correlations due to Coulomb
repulsion and Fermi—Dirac statistics [21] or the influence of
momentum resolution [47]. Further studies on these effects
should also be concerned in the calculation of intermittency
index in heavy-ion collisions.

VI. EFFICIENCY CORRECTION

One of the difficulties of measuring SFMs and intermit-
tency in experiment is efficiency correction. It is known that
the values of SFMs are changed from the original true SFMs
due to the fact that detectors miss some particles with a
probability named efficiency. To understand the underlying
physics associated with this measurement, one needs to per-
form a careful study on the efficiency effect. Generally, the
efficiencies in experiments are obtained by using the Monte
Carlo (MC) embedding technique [34,49]. This allows for
the determination of the efficiency, which is the ratio of the
matched MC tracks number and the number of input tracks. It
contains the effects of tracking efficiency, detector acceptance,
and interaction losses.

Let us denote the number of produced particles as N
and the number of experimental measured ones as n with a
detection efficiency €. To correct the factorial moment for
efficiency effects, one has to invoke a model assumption for
the response of the detector. It is often assumed to follow a
binomial probability distribution function [50-53]. Then the
probability to measure n particles given N produced particles
can be expressed as

. — N! n N—n

p(n|N) = B(n, N;¢€) = ATV = n)!E 1—-e)" ™" @

The true factorial moment is defined as fq‘”’e = (N(N —

1)--- (N — g+ 1)). It can be recovered by dividing the mea-

sured factorial moment, f(;“"‘as‘"ed =nn-1)---(n—qg+

1)), with appropriate powers of the detection efficiency
[35,52-55]:

corrected __ fqmeasured _ (n(n — 1) a (n —q+ 1)) 5
femet = o = = LG

This strategy has been used for the efficiency corrections in
the high-order cumulant analysis [2,35,53,56-58]. Consider
that the probability to detect a particle is governed by a bino-
mial distribution, then both cumulants [2,35] and off-diagonal
cumulants [53] can be expressed in term of factorial moments
and then can be corrected by using Eq. (5).

We apply the strategy for the efficiency correction to SFMs
defined in Eq. (1). Since the available region of phase space
is partitioned into a lattice of M? equal-size cells, every ele-
ment (n;(n; —1)---(n; — g+ 1)) of measured SFMs should
be corrected one by one. In this way, the efficiency-corrected
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FIG. 4. (a) Experimental tracking efficiencies as a function of pr
in TPC detector at midrapidity (|y] < 0.5) for protons in 0%—5%
Au + Au collisions. (b) The second-order SFM as a function of
number of partitioned cells from UrQMD calculations. The black
circles represent the original true F, (M), the blue solid triangles are
the measured F>(M) after discarding particles according to the TPC
efficiency, and the red stars show the efficiency-corrected SFMs by
using the cell-by-cell method.

SFM is deduced as
1 M2 ni(ni—1)-(ni—q+1)
<AT Zi:l T >
1 M? n; 9q
(3 i %)

Here, n; denotes the number of measured particles lo-

cated in the ith cell. The mean €; is calculated by (#),

representing the event average of the mean efficiency for
the particles located in the ith cell. Its value depends on
the momentum range of the ith cell and particle species in
experimental measurement [55,58]. We may note that the
efficiencies are assumed to be uncorrelated between cells. The
possible dynamical fluctuations in the efficiencies due to time
and/or detector variations should be handled in experiments.
We call the efficiency-correction technique of Eq. (6) the
“cell-by-cell method.”

To demonstrate the validity of the cell-by-cell method, we
employ the UrQMD model with the particle detection efficien-
cies used in real experiments. It is simulated by injecting
particle tracks from UrQMD events into the RHIC (STAR)
detector acceptance with the experimental efficiencies. In the
STAR experiment, the detection efficiency is not a constant
but depends on the momentum of particles [34,58,59]. The
particle identification method is different between low- and
high-pr regions. The main particle detector at STAR, the
time projection chamber (TPC), is used to obtain momen-
tum of charged particles in the low-pr region of 0.4 < pr <
0.8 GeV/c [34]. And the time-of-flight (TOF) detector is
used to do the particle identification in the relatively-high-pr
region of 0.8 < pr < 2 GeV/c [58,59]. In this case, particles
need to be counted separately for the two pr regions in which
the values of the efficiencies are different.

In Fig. 4(a), we show the py dependence of the experi-
mental efficiency in only the TPC detector in the midrapidity
(Jyl < 0.5) region for protons in the most central Au + Au
collisions at ,/sxn = 19.6 GeV [34]. It first increases with in-
creasing pr, and then gets saturated in higher-p; regions. We
employ this tracking efficiency into the UrQMD event sample
by keeping a particle according to the probability reading from
Fig. 4(a) with the p7 of that particle. And the measured F, (M)

Fqcorrected ( M) — (6)
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FIG. 5. (a) Experimental tracking efficiencies as a function of
pr in TPC + TOF detectors at midrapidity (]y| < 0.5) for protons
in 0%-5% Au+ Au collisions. (b) The second-order SFM as a
function of number of partitioned cells from UrQMD calculations.
The black circles represent the original true F>(M), the blue solid
triangles are the measured F> (M) after discarding particles according
to the TPC + TOF efficiency, and the red stars show the efficiency-
corrected SFMs by using the cell-by-cell method.

is calculated in the event sample after discarding particles.
Next, we apply the correction formula of Eq. (6) to do the
efficiency correction on the measured F,(M). It is observed
in Fig. 4(b) that the measured SFMs (blue triangle) are sys-
tematically smaller than the original true ones (black circles),
especially in the large number of partitioned cells. However,
the efficiency-corrected SFMs (red stars) are found to be well
consistent with the original true ones.

For the case of TPC + TOF efficiencies, Fig. 5(a) shows
the tracking efficiencies as a function of pr in TPC and TOF at
STAR [57-60]. One notes that there is a step-like dependence
of the efficiencies on pr. The reason is that the particle iden-
tification method is different between TPC and TOF detectors
in the STAR experiment. We apply the TPC + TOF effi-
ciency effect to the UrQMD event sample at ,/sxy = 19.6 GeV
and then correct the measured SFMs by Eq. (6). The results
are shown in Fig. 5(b). Again, the SFMs corrected by the
proposed cell-by-cell method (red stars) are verified to be
coincide with the original true ones (black circles).

In this section, we have demonstrated that the cell-by-cell
method could serve as a precise and effective way of efficiency
correction of SFMs. It can be easily applied to current studies
at STAR [23], NA49 [21], NA61 [22] and other heavy-ion
experiments in the intermittency analysis. It should also be
noted that one needs to consider how to treat the momentum
resolution in different experiments. Since we use the py of
individual particles to get the efficiency, the momentum res-
olution might directly affect the calculation of SFMs. This
effect could be studied by smearing the pr for each particle
with the known value of the momentum resolution.

VII. SUMMARY AND OUTLOOK

In summary, we investigate collision energy and centrality
dependence of the SFMs in Au + Au collisions at /sxy =
7.7-200 GeV by using the urQMD model. The second-order
intermittency index is found to be small but nonzero in the
transport model without implementing any critical related
self-similar fluctuations. A cumulative variable method is
then proposed to remove background contributions in the
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FIG. 6. The second-order intermittency index measured at NA49
[21,44] (solid blue symbols) and NA61 [46] (open blue circles).
The results from the UrQMD model in central Au+ Au collisions
are plotted as black circles. The red arrow represents the theoretic
expectation from a critical QCD model [17].

intermittency analysis. It has been verified that this method
can effectively reduce the distortion of a Gaussian background
from a pure self-similar event sample generated by the CMC
model. After applying the method to the UrQMD event sample,
we find that the noncritical background effect can be effi-
ciently removed and that the value of the intermittency index
is close to zero.

In the experimental measurements of intermittency, the
measured SFMs should be corrected for detecting efficien-
cies. We derive a cell-by-cell formula in the calculation of
SFMs in heavy-ion collisions. The validity of the method
has been checked with the UrQMD model by embedding the
tracking efficiencies used in the RHIC (STAR) experiment. It
is demonstrated that the cell-by-cell method provides a pre-
cise and effective way for the efficiency correction on SFMs.
The correction method is universal and can be applied to the
ongoing studies of intermittency in heavy-ion experiments.

In current experimental explorations of the intermittency
in heavy-ion collisions, the NA49 and NAG61 collaborations
have directly measured ¢, at various sizes of colliding nu-
clei [21,44,46], which are represented as blue symbols in
Fig. 6. The intermittency parameter at ,/syy = 17.3 GeV for
the Si+ Si system at the NA49 experiment approaches the
theoretic expectation value, shown as red arrow in the figure,
in the second-order phase transition in a critical QCD model
[17]. The black circles of the UrQMD results give a flat trend
with the value around zero at all energies because no critical
mechanisms are implemented in the transport model.

The RHIC (STAR) experiment has finished taking the
second phase of beam energy scan (BES-II) program in 2018—
2021 [61]. With significant improved statistics and detector
upgrades in BES-II, it would be interesting that the STAR
experiment could measure intermittency to explore the CP
in the QCD phase diagram. Our work provides a noncritical
baseline and gives a guidance of background subtraction and
efficiency correction for the calculations of intermittency in
heavy-ion collisions.
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