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Three-body optical potentials in (d, p) reactions and their influence on indirect study of stellar
nucleosynthesis
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Model uncertainties arising due to suppression of target excitations in the description of deuteron scattering
and resulting in a modification of the two-body interactions in a three-body system are investigated for several
(d, p) reactions serving as indirect tools for studying the astrophysical (p, γ ) reactions relevant to r p process.
The three-body nature of the deuteron-target potential is treated within the adiabatic distorted-wave approxima-
tion (ADWA) which relies on a dominant contribution from the components of the three-body deuteron-target
wave function with small n-p separations. This results in a simple prescription for treating the explicit energy
dependence of two-body optical potentials in a three-body system requiring nucleon optical potentials to be
evaluated at a shifted energy with respect to the standard value of half the deuteron incident energy. In
addition, the ADWA allows for leading-order multiple-scattering effects to be estimated, which leads to a
simple renormalization of the adiabatic potential’s imaginary part by a factor of two. These effects are assessed
using both nonlocal and local optical potential systematics for 26Al, 30P, 34Cl, and 56Ni targets at a deuteron
incident energy of 12 MeV, which is typical for experiments with radioactive beams in inverse kinematics. The
model uncertainties induced by the three-body nature of deuteron-target scattering are found to be within 40%
both in the main peak of angular distributions and in total (d, p) cross sections. At higher deuteron energies,
around 60 MeV, model uncertainties can reach 100% in the total cross sections. A few examples of application
to astrophysically interesting proton resonances in 27Si and 57Cu obtained using (d, p) reactions and mirror
symmetry are given.
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I. INTRODUCTION

To fully describe the relative abundances of the elements
we must be able to properly constrain the reaction rates of
the stellar processes that drive them. One class of reactions
important for understanding stellar nucleosynthesis is proton
capture, (p, γ ). Measuring (p, γ ) cross sections directly is
a difficult task since they are very small. One technique for
the investigation of exotic nuclei produced by (p, γ ) in stel-
lar environments is to perform deuteron-induced one-nucleon
transfer reactions (d, n) and (d, p) with radioactive beams,
utilizing inverse kinematics. The first reaction, (d, n), contains
the same crucial piece of information—the overlap function
of the wave functions of nuclei in initial and final states—as
the (p, γ ) reaction does. Populating bound states in (d, n)
reactions provides these overlap functions in a straightforward
manner. However, in many cases, such as the r p process,
astrophysically important states are unbound, and their indi-
rect access via the (d, n) reaction encounters problems both
on the experimental side, where neutron detection could be
problematic, and on the theoretical side, where the transfer
to continuum is not yet well understood. The corresponding
mirror states that could be populated in (d, p) reactions are
bound and more easily accessible to study, both experimen-
tally and theoretically. The information about widths �p of
proton states populated in (p, γ ) reactions could be obtained

from the relations between these widths and the asymptotic
normalization coefficients (ANCs) of the their mirror states
populated in (d, p) reactions [1]. The ANCs determine the
magnitude of the asymptotic decrease of the overlap function.

Extracting ANCs from A(d, p)B reactions takes place
through comparison of measured angular distributions with
those calculated with the help of reaction theory. Given that
deuteron breakup effects are important, their effects are often
accounted for in the adiabatic distorted-wave approximation
(ADWA) [2]. This theory is based on a n + p + A three-
body description of the deuteron-target motion and involves
pairwise n-p, p-A, and n-A interactions. The latter two are
assumed to be given by nucleon optical potentials taken at
half the deuteron incident energy Ed . In reality, the A + n + p
system is a complex many-body system, and it was shown
that projecting its wave function onto a three-body channel
results in a complicated three-body optical operator that in-
cludes multiple scattering to all orders [3]. Even the simplest
leading-order terms of this operator do not look like n-A and
p-A optical potentials since they explicitly depend on the
position of the third particle (p or n) and on the three-body
rather than two-body energy. It has been possible to estimate
the contribution of the leading terms of this operator within
ADWA [3], which requires using nonlocal energy-dependent
optical potentials taken at an energy shifted from the tradition-
ally used value of Ed/2 by n-p kinetic energy averaged over
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the short range of the n-p force. Adding the first-order term of
the three-body optical operator in a leading order results in a
doubling of the dynamical part of this optical potential [4].

The present paper aims to quantify uncertainties, arising
due to induced three-body force, of model predictions of
(d, p) reactions used to indirectly probe (p, γ ) capture that
occurs in the r p process. We assess these effects within the
ADWA. In Sec. II we summarize the ADWA three-body op-
tical potential formalism of Refs. [3] and [4], arising due to
neglecting the channels with target excitations. We apply this
formalism to (d, p) reactions, listed in Sec. III, that could
serve as indirect tools for measuring proton capture reactions
of astrophysical interest. In Sec. IV we discuss numerical
results obtained with different nucleon-nucleon (NN) models
for a global nonlocal nucleon optical potential both with and
without the induced leading-order multiple-scattering three-
body force, and we also explore the possibility of using local
optical potentials within this approach. In Sec. V we study
model uncertainties due to the three-body optical potential in
total (d, p) cross sections. In Sec. VI we apply mirror sym-
metry to determine the proton width of some astrophysically
relevant states in 27Si and 56Co using their relations to the
ANCs of their mirror states derived from (d, p) reactions.
Conclusions are formulated in Sec. VII highlighting the ne-
cessity and directions for future research.

II. INDUCED THREE-BODY OPTICAL POTENTIALS
WITHIN THE ADIABATIC DISTORTED-WAVE

APPROXIMATION FORMALISM

It has been shown in Ref. [4] that projecting the many-body
wave function of the A + n + p system onto a three-body
channel results in a three-body Hamiltonian

H3 = T3 + Vnp + Vopt, (1)

where T3 is the three-body kinetic-energy operator, Vnp is a
short-range n-p interaction, and Vopt is a complicated three-
body optical potential. The latter is the target-ground-state
expectation value 〈φA|U |φA〉 of the optical operator U that
contains multiple scattering to all orders:

U = UnA + UpA︸ ︷︷ ︸
U (0)

+UnA
QA

e
UpA + UpA

QA

e
UnA︸ ︷︷ ︸

U (1)

+ UnA
QA

e
UpA

QA

e
UnA + UpA

QA

e
UnA

QA

e
UpA︸ ︷︷ ︸

U (2)

+ · · · (2)

where

UNA =
(

1 − vNA
QA

e

)−1

vNA. (3)

Here, the operator QA projects onto the model space defined
by all excited states of A and excluded from consideration, e =
E3 + i0 − T3 − Vnp − (HA − EA), and E3 is the three-body
energy in the A + n + p system, while vNA is the sum of
interactions of nucleon N (either n or p) with nucleons of the
target A. The ground-state wave function φA is defined by the
many-body Hamiltonian HA, HAφA = EAφA, with EA being
the intrinsic binding energy of the target.

The ADWA model starts from expanding the eigenfunction
�(R, r) of the three-body Hamiltonian H3 over the Weinberg
basis functions φi(r),

[−εd − Tr − αiVnp]φi(r) = 0, i = 1, 2, . . . , (4)

where r is the n-p separation coordinate and Tr is the
kinetic-energy operator associated with it. The φi satisfy the
orthonormality relation

〈φi|Vnp|φ j〉 = −δi, j . (5)

The ADWA retains only the first term of the Weinberg-
state expansion of �(R, r) [2]. This results in the �(R, r) ≈
χ

(+)
dA (R)φd (r) approximation with φd being the deuteron

ground-state wave function and the d-A channel distorted
wave function χ

(+)
dA satisfying the two-body Schrödinger

equation

[TR + V ADWA(R) − Ed ]χ (+)
dA (R) = 0, (6)

where TR is the deuteron kinetic-energy operator associated
with the relative coordinate R connecting the centers of mass
of the deuteron and the target A. The adiabatic potential
V ADWA is the first diagonal matrix element of the optical
operator U , which due the Weinberg orthonormality condition
is defined as 〈φ1|U |φd〉, where

φ1 = Vnpφd

〈φd |Vnp|φd〉 . (7)

The matrix element of the first term, U (0), of the operator U
contains interactions of n and p with the target nucleons only,
so that it can be associated with the n-A and p-A optical poten-
tials. All other terms will contain interactions between n and
p via excitation of excited states in A. The associated matrix
elements will combine into a three-body potential. Including
it into the model Hamiltonian will account for three-body
effects induced by the target excitation. We call them induced
three-body effects (I3B).

It has been shown in Ref. [4] that, in the ADWA, the
simplest term, U (0) = UpA + UnA, of the operator U is given
by U ADWA

nA + U ADWA
pA , with

U ADWA
NA = vNA + vNA

QA

Eeff − TN − HA − QAvNAQA
vNA, (8)

where

Eeff = Ed/2 + 
E , (9)


E = 1
2 〈φ1|Tnp|φd〉. (10)

The representation (8) coincides with the definition of the N-A
optical potential taken at energy Eeff equal to half the deuteron
incident energy plus the n-p kinetic energy averaged over Vnp

[3]. The ADWA also allows the leading order of the term

U (1) = UnA
QA

e
UpA + UpA

QA

e
UnA (11)

to be evaluated. It was shown in Ref. [4] that

〈φ1φA|U (0) + U (1)|φAφd〉 ≈ 2〈φ1φA|U (0)|φdφA〉
−

∑
N=n,p

〈φ1φA|vNA|φdφA〉. (12)
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This has a simple connection with the nonlocal dispersive
optical model (NLDOM) potential given by

〈φ1φA|U (0) + U (1)|φdφA〉
= V HF

nA + 2
V dyn
nA (E ) + V HF

pA + 2
V dyn
pA (E ), (13)

where V HF
NA and 
V dyn

NA (E ) are the Hartree-Fock and dynam-
ical part, respectively. The latter contains an imaginary part,
responsible for absorption, and a real part (or polarization po-
tential) that contains contributions from all the excited states
of A. Both V HF

NA and 
V dyn
NA (E ) are connected by dispersive

relations [5]. Thus, induced three-body effects arising due
to multiple scattering in the leading order can be accounted
for by a simple doubling of the dynamic part of the optical
potential.

The study involving 〈φ1φA|U (0)|φdφA〉 only revealed that
including energy dependence of the nonlocal optical potential
via the energy shift 
E can result in a significant difference
from traditional Ed/2-based ADWA calculations, and this re-
sult strongly depends on the assumptions about the energy
dependence of the optical potentials [3,6]. In general, applying
the energy shift gives higher (d, p) cross sections than those
obtained in standard ADWA with local optical potentials.
Including 〈φ1φA|U (1)|φdφA〉 brings these cross sections down
due to increased absorption [4]. Interestingly, with a stronger
imaginary part increasing the dynamical real (polarization)
part does not have any noticeable consequences for (d, p)
cross sections. This justifies the use of phenomenological
potentials that are not based on dispersive relations. This is
important given that NLDOM potentials are available for a
very limited number of isotopes. Previous investigations have
been carried out mainly for the 40Ca(d, p) 41Ca reaction. Be-
low we will concentrate on a few (d, p) reactions which are
interesting from the point of view of indirect study of the
astrophysical r p process.

III. (d, p) REACTIONS OF ASTROPHYSICAL INTEREST

Motivated by recent and ongoing experimental application
of deuteron-induced one-nucleon transfer reactions to investi-
gate stellar (p, γ ) reaction rates we have selected four (d, p)
reaction cases as indirect tools for astrophysical reaction stud-
ies. These reactions allow one to determine the spectroscopic
information, the neutron spectroscopic factor, or the ANC
associated with the overlap between the wave functions of the
target and residual nucleus states. Using the mirror symmetry,
discussed later in Sec. VI, one can find the corresponding
protons spectroscopic information needed to calculate the
proton radiative capture. The four selected reactions are the
following.

(i) 26Al(d, p) 27Al as a surrogate for proton capture re-
action 26Al(p, γ ) 27Si, one of the major destruction
pathways of 26Al, primarily in Wolf Rayet stars, but
also in AGB stars [7]. This capture reaction has been
investigated with two indirect experimental meth-
ods using 26Al beam, one measuring 26Al(d, p) 27Al
angular distributions [8,9] at an incident deuteron en-
ergy of Ed = 12 MeV and another measuring total

cross sections of 26Al(d, n) 27Si [10] at Ed = 60 MeV.
Both experiments have been performed to constrain
the widths �p of key 27Si resonances.

(ii) 30P(d, p) 31P as a surrogate for 30P(p, γ ) 31S proton
capture reactions, which are known to dominate the
uncertainty in total abundances of sulfur isotopes
[11], with the variation in reactions rates changing
abundances by factors of up to 100 [12]. This un-
certainty affects the abundances of nuclei that follow
later in the r p process. There are no published exper-
imental works that attempt this with (d, p) reactions
but measurements of total cross sections using (d, n)
reactions at Ed = 60 MeV to constrain 31S resonances
are reported in Ref. [13].

(iii) 34Cl(d, p) 35Cl as indirect probes for the
34Cl(p, γ ) 35Ar reaction, which contributes to the
production of 35Ar, an important isotopic observable
in presolar grains in meteorites. The importance
of uncertainties associated with this reaction on
calculations of final abundances in oxygen neon
novae has previously been highlighted [12], changing
abundances of 34S sevenfold, and the ability to reduce
these uncertainties is of particular importance because
the 32S / 34S ratio is used to determine whether grains
originate from novae [14]. New states in 35Cl have
been identified in 36Cl(d, t ) 35Cl reaction that include
mirror analogs of astrophysical 35Ar states [15],
however, (d, t ) experiments do not allow the partial
proton widths �p to be determined.

(iv) 56Ni(d, p) 57Ni. In the late r p process and type-
Ia supernovae, 56Ni(p, γ ) 57Cu reactions destroy the
doubly magic N = Z nucleus 56Ni by populating
resonances in 57Cu [16,17]. Determining the pro-
duction rate of the heavier than 56Ni nuclei relies
on 57Cu resonance strengths and reaction rates of
56Ni(p, γ ) 57Cu. They have been investigated with
56Ni(d, p) 57Ni reactions using inverse kinematics,
with experiments measuring differential cross sec-
tions carried out at an incident energy of Ed = 8.9
MeV [18], with integrated cross sections also having
been measured at Ed = 64 MeV.

Each of these reactions will be investigated for a number of
excited states, with a preference for states where experimental
cross sections are available. The excitation energies and spin-
parities of selected states probed for each reaction are listed in
Table I.

All ADWA (d, p) calculations presented in this paper have
been performed using the TWOFNR code [19], which has an
option of reading externally generated distorted waves in and
thus can easily accommodate any calculations with nonlo-
cal potentials. When using nonlocal nucleon potentials in
deuteron and proton channels we calculate the corresponding
distorted waves as explained in Ref. [20]. All cross sections
presented below are calculated in the zero-range approxima-
tion for Vnp(r)φd (r) ≈ D0δ(r) in the (d, p) reaction T matrix,
which is consistent with assumptions made in Refs. [3,4] to
derive expressions (8), (11), and (12). The D0 value does not
depend on NN model choice, so we use a standard value
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TABLE I. The ratio between the maximum of the differential cross sections peaks calculated at Ed = 12 MeV for reactions from the first
column. The excitation energies (in keV), final-state spins, and quantum numbers of the populated level are given in the second, third, and
fourth columns. The position of the maximum, θ , is given in the fifth column. In the following columns σGRZ and σ I3B

GRZ denote the cross sections
calculated using GRZ without and with I3B, respectively, σKD03 are standard Johnson-Tandy results with KD03 potentials, σ I3B

KD03 are obtained
by applying the shift 
E and I3B effects to the local potential KD03, and σ NLE,I3B

KD03 is obtained by restoring nonlocal equivalent of the local
KD03 potential.

Reaction Ex Jπ l j θ σGRZ/σKD03 σ I3B
GRZ/σKD03 σ I3B

GRZ/σGRZ σ I3B
KD03/σKD03 σ NLE,I3B

KD03 /σKD03

26Al(d, p) 27Al 3004 9/2+ s 1
2

0◦ 0.924 0.614 0.665 0.896 0.868

7806 9/2+ s 1
2

0◦ 0.945 0.707 0.748 1.041 1.030
7806 9/2+ d 3

2
22◦ 0.956 0.782 0.818 0.962 0.970

7948 11/2− p 1
2

13◦ 0.954 0.688 0.701 0.827 0.825
30P(d, p) 31P 6336 1/2+ s 1

2
0◦ 0.989 0.736 0.744 1.046 1.036

6336 1/2+ d 3
2

24◦ 1.018 0.807 0.793 0.992 0.997
6399 7/2− f 5

2
35◦ 1.208 0.812 0.673 0.907 0.907

34Cl(d, p) 35Cl 6492 1/2+ s 1
2

0◦ 0.940 0.709 0.754 1.008 1.006

6746 5/2+ d 5
2

24◦ 0.972 0.772 0.794 0.921 0.939
56Ni(d, p) 57Ni 768 5/2− f 5

2
34◦ 1.659 0.998 0.602 1.154 1.106

1112 1/2− p 1
2

15◦ 1.212 0.814 0.672 1.015 0.993

2443 5/2− f 5
2

35◦ 1.472 1.003 0.681 1.111 1.089

2577 7/2− f 7
2

35◦ 1.255 0.897 0.715 0.961 0.963

of D0 = −126.15 MeV fm3/2. The calculations are carried
out with overlap integrals represented by single-particle wave
functions calculated in a Woods-Saxon potential well with a
radius r0 = 1.25 fm, diffuseness a = 0.65 fm, and spin-orbit
depth Vs.o. = 6 MeV. For the purposes of comparing differ-
ent model calculations we employ the spectroscopic factor S
equal to one.

IV. NUMERICAL RESULTS FOR ANGULAR
DISTRIBUTIONS

A. Cross sections with different energy shift defined
by deuteron model choice

We start with presenting calculations using global system-
atics of nonlocal optical potentials from Giannini, Ricco, and
Zucchiatti (GRZ) [25]. This potential has energy-independent
real part and energy-dependent imaginary part, which van-
ished at zero nucleon scattering energy and approaches
exponentially to a constant value of 17.5 MeV with its in-
crease. For this potential employing the shift 
E is crucial
since without it the imaginary part is too small to give sen-
sible cross sections [3]. However, the numerical value of 
E
strongly depends on the choice of the NN interaction model,
varying from 57 to 123 MeV [26]. Some of these values are
shown in Table II. The n-p model choice for Vnp in Eq. (1)
also affects the ADWA solution for d-A distorted wave [26] so
that we have two sources of NN-model-induced uncertainties
when using energy-dependent nonlocal potentials.

To disentangle these uncertainties, we first fix Vnp potential
in the three-body Schrödinger equation choosing the Hulthén
model [21], which results in using the Hulthén wave func-
tions for φd and φ1 in V ADWA from Eq. (6), and make a
series of calculations with GRZ potentials shifted by ener-
gies from 0 to 100 MeV with a step of 20 MeV. We have

chosen 26Al(d, p)27Al∗ (Ex = 7806 keV) at Ed = 12 MeV as
an example and studied it both for l = 0 and l = 2 orbital
momentum transfer. Similar to what has been observed in
Ref. [3], 
E = 0 leads to significantly higher cross sections
in the main peak, however, for 
E between 57 to 100 MeV,
spanning most values generated by different NN models, the
corresponding difference in angular distributions are small.
This is explained by the fact that imaginary part of GRZ for
E > 60 MeV is practically saturated and its energy depen-
dence is very weak. Doubling the imaginary part according to
prescription of Eq. (12) does not change this dependence.

As a next step, we used consistently the same NN model
both in evaluating the shift 
E and the functions φd and φ1

that enter the matrix element 〈φ1|U (0) + U (1)|φd〉. We used
four NN models, presented in Table II. The first of them,
the Hulthén model, contains the deuteron s-wave state only.
The other three models include contribution from the deuteron
d-wave state. We account for this contribution exactly using
approach developed in Ref. [20]. In Fig. 1 we show angu-
lar distributions for two (d, p) reactions populating mirror
analogs of astrophysically relevant states, 26Al(d, p) 27Al and
56Ni(d, p) 57Ni. The calculations are performed without and

TABLE II. 
E values (in MeV) and percentage of d-state con-
tribution for the different deuteron wave function models used.

Wave-function model 
E D-state contribution

Hulthén [21] 57 0%
AV18 [22] 63.1 5.76%
CD-Bonn [23] 56.3 4.85%
χEFT at N4LO with regulator 123.6 4.29%

of 0.8 fm [24]
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FIG. 1. Comparison of (a), (b), (d), (e) 26Al(d, p) 27Al and (c), (f) 56Ni(d, p) 57Ni cross sections calculated at Ed = 12 MeV with GRZ
potentials with (dashed lines) and without (solid lines) I3B terms for NN models from Table II. The results with Hulthén, AV18, CD-Bonn,
and χEFT NN model choices are shown by green, black, red, and blue lines, respectively.

with doubling imaginary part of GRZ, which corresponds to
the absence and presence of the I3B effects, respectively. The
figure shows that without I3B effects the spread in the angular
distributions due to different NN model choice is significant,
up to 25% with respect to the average value for l = 2 and
l = 3 transfers. This is similar to findings of Ref. [26] where
energy-independent nonlocal potential was used. However,
for the l = 0 and l = 1 cases the spread obtained with GRZ,
around 5%–15% and although being smaller than that for l =
2, 3, is larger than that obtained in Ref. [26]. Also, in the case
of the energy-independent nonlocal potential of Ref. [26], the
cross sections in the main peak are clearly correlated with
the matrix element 〈φ1|Tnp|φd〉, being larger with increased
values of the latter. This correlation seems to be either lost
or not so well expressed for the energy-dependent potential
GRZ when in some cases the cross sections for the smallest
〈φ1|Tnp|φd〉 are the largest. This can be a result of small
changes in the optical potential evaluated for different 
E ,
when a smaller 〈φ1|Tnp|φd〉 leads to a smaller imaginary part,
which produces less absorption. When the I3B force is added,
the spread between the cross sections obtained with different
NN models is significantly reduced for all cases considered.
It does not exceed 15% with respect to the average value
for l = 2, 3 transfers, and is no larger than 10% for l = 0
and l = 1 transfers. Also, the correlation between 〈φ1|Tnp|φd〉
is restored. Similar to findings of Ref. [4], the introduc-
tion of I3B significantly lowers the cross sections. We have
performed calculations (not shown here) for two other re-
actions including sd-shell targets 30P and 34Cl at the same
deuteron incident energy of 12 MeV and populating the 31P
and 35Cl states from Table I. We came to the same conclusions
about I3B effects and NN model choice as in the case of 26Al
and 56Ni.

B. Nonlocal optical potential and deuteron s-wave model

The strong dependence of 
E on NN model arises in
ADWA mainly due to including a deuteron d state in φ1

[20,26], which opens the door to a large contribution from
poorly known high-n-p momenta into 〈φ1|Tnp|φd〉. Such a
contribution also affects the ADWA d-A scattering waves
and (d, p) cross sections, obtained with nonlocal optical
potentials, which is a drawback of ADWA that should disap-
pear when three-body A + n + p dynamics is treated exactly
[27,28]. However, if only the s-wave state is retained in the
deuteron wave function then the contribution to 
E is domi-
nated by low-n-p momentum physics where sensitivity to the
n-p model is weak. In the rest of the paper we choose the
Hulthén model for Vnp, φd , φ1, and 
E . As shown in Ref. [28],
in this case ADWA with nonlocal energy-independent poten-
tials gives (d, p) results that are closer to those obtained in
exact three-body calculations.

We have calculated angular distributions for reactions from
Table I using the GRZ potential evaluated for 
E = 57 MeV
without and with I3B force. We compare them to the stan-
dard Johnson-Tandy ADWA cross sections obtained with local
optical potential KD03 [29]. These calculations have been
carried out for an incident deuteron energy of 12 MeV avail-
able at several radioactive beam facilities. We have discovered
that without the I3B force the main peak cross sections σKD03

and σGRZ, obtained with GRZ and KD03, respectively, are
very similar for populating 27Al, 31P∗(6336), and 35Cl ex-
cited states. Their ratio is shown in Table I. In the case of
31P∗(6336) and 57Ni final states, σGRZ is larger than σKD03 by
20%–66%. A few selected angular distributions for populating
1s, 0d , 1p, and 0 f states are shown in Fig. 2. One can see
that including an energy shift does not change the shape of
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FIG. 2. The ADWA angular distributions for (a), (b) 26Al(d, p); (c), (d) 34Cl(d, p); and (e), (f) 56Ni(d, p) reactions and populating (c) l = 0;
(b), (f) l = 1; (a), (d) l = 2; and (e) l = 3 states calculated at Ed = 12 MeV using the nonlocal GRZ potential with (dashed) and without (solid)
I3B terms in comparison with those obtained using standard Johnson-Tandy model with the local KD03 potential (dot-dashed).

angular distributions very much, resulting mainly in the renor-
malization of the cross sections. Including I3B force leads to
decrease of the peak cross section by 60%–80% as shown in
Table I by ratios σ I3B

GRZ/σGRZ. As the result, in most of the peak
cross sections with GRZ and I3B force are much smaller than
those obtained with KD03, only a few cases being within 10%
of the KD03 results.

The ratios σ I3B
GRZ/σKD03 indicate how much the spectro-

scopic factors change if the GRZ + I3B model is used instead
of the ADWA with KD03. If these spectroscopic factors are
used for (p, γ ) determination then the corresponding model
uncertainty will propagate to the proton capture cross sections
in similar proportions.

C. Local global systematics

Most global systematics of optical potentials are local. It is
therefore of interest to check the consequences of applying
an adiabatic model of three-body optical potentials for the
case of local potentials. We have chosen the KD03 system-
atics for n-A and p-A potentials, which were evaluated at
Eeff = Ed/2 + 
E with 
E = 57 MeV to account for energy
dependence of optical potentials and then multiplied their
imaginary parts by the factor of two. To gauge the impact of
these modifications to N-A potentials we compare the results
obtained with those from the standard Johnson-Tandy ADWA
approach employing the same KD03 potential but without any
modifications.

We found that the reduction in the real part of deuteron-
target adiabatic potentials that results from the inclusion of

E (roughly 15 MeV for the cases we investigate) produces
a notable increase in the cross section. This is comparable
in magnitude to the reduction caused by the addition of I3B

terms. Some states display a greater sensitivity to the addi-
tions, with their impact most obvious for Ni calculations, but
in general it was found that the reduction in cross section
caused by the doubling of the imaginary potential offsets the
effects of the energy shift. This is demonstrated in Fig. 3 for a
few typical cases. The factors that these cross sections differ
by are denoted as σ I3B

KD03/σKD03 and shown in Table I. They can
be as large as 25%, while most fall within 5% of cross sections
generated using a standard approach, with little to no change
found in the angular distribution.

It is known that local and nonlocal optical potentials give
similar description of nucleon elastic scattering if the follow-
ing transformation between the nonlocal potential and its local
equivalent U N

loc is used [30],

U N
loc(r) = UNA(r) exp

{
μβ2

2h̄2

[
U N

loc(r) − V̄c
]}

, (14)

where μ is the N-A reduced mass and V̄c is the Coulomb po-
tential. This transformation assumes that the optical potentials
are of the Perey-Buck form [30]:

ŨNA(E , r, r′) = H (|r − r′|)UNA

(
E ,

r + r′

2

)
, (15)

where H (x) = π−3/2β−3 exp(− x2

β2 ) and β is some nonlocality
range. A few recent examples of how this transformation
performs and references to more literature on this sub-
ject can be found in Ref. [31]. We can assume that a
known phenomenological energy-dependent optical potential
Uphen(E , r) is a local-equivalent analog of an underlying non-
local energy-dependent potential ŨNA(E , r, r′), which we can
restore through the transformation (14). Then, according to
Sec. II one should use form factors UNA(E , r) taken at the
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FIG. 3. The ADWA angular distributions for (a), (b) 26Al(d, p); (c) 30P(d, p); (d) 34Cl(d, p); and (e), (f) 56Ni(d, p) reactions and populating
(a), (d) l = 0; (f) l = 1; (b) l = 2; and (c), (e) l = 3 states calculated at Ed = 12 MeV using the KD03 potential evaluated at a shifted by
57 MeV energy with (dashed) and without (solid) I3B terms in comparison with those obtained using standard Johnson-Tandy model with the
same KD03 potential (dot-dashed).

energy E = Eeff = Ed/2 + 
E , treating them as energy inde-
pendent. It was shown in Ref. [3] that this results in the local
d-A distorting potential Uloc being used in (d, p) calculations,
which is obtained from the transcendental equation

Uloc(Ed , r) exp

[
−μdβ

2
d

2h̄2 Uloc(Ed , r)

]
= V (Ed , r), (16)

where

V (Ed , r)

= exp

[
μβ2

2h̄2 Eeff − μdβ
2
d

2h̄2 (Ed − V̄c)

]

× M0

[
U n

phen(Eeff , r) exp

[
−μβ2

2h̄2 U n
phen(Eeff , r)

]

+U p
phen(Eeff , r) exp

[
−μβ2

2h̄2

(
U p

phen(Eeff , r) − V̄c
)]]

.

(17)

Here μd is the d-A reduced mass, M0 is the value that quanti-
fies the overlap of φ1, modified by nonlocality, with φd and βd

is the deuteron effective nonlocality range. Exact definitions
of M0 and βd can be found in Ref. [32].

We use the KD03 potential as U N
phen and assume a standard

value for the nonlocality range β = 0.85 fm, which in the
Hulthén model gives M0 = 0.78 and βd = 0.4 fm [32]. We
calculate Uloc from Eqs. (16) and (17) and use it in local (d, p)
calculations for the targets of previous sections and compare
the outcome with standard Johnson-Tandy KD03 calculations.
A few typical angular distributions are shown in Fig. 4. We
have found that the angular distributions populating final s-,

p-, and d-wave states calculated with Uloc are very similar
to those obtained by directly applying the shift and I3B to
the local KD03 potential with some differences seen for the
cross sections to final f -wave state. In general, the differ-
ences increase with the orbital momenta of the transferred
neutron. The ratios σ NLE,I3B

KD03 /σKD03 of the cross sections in
the maximum, obtained using these two different approaches
employing local optical potentials systematics, are shown in
Table I. Most results obtained with the two methods agrees
within 3%, the largest difference being 6% for 57Ni(768 keV)
state.

V. MODEL UNCERTAINTIES IN TOTAL (d, p) CROSS
SECTIONS

Usually, the determination of ANCs relies on a theoret-
ical description of the angular distribution within the main
maximum where the direct peripheral transfer mechanism is
dominant. However, in some inverse-kinematics-based exper-
iments with radioactive beams this is not always possible. For
example, detecting neutrons from (d, n) reactions that could
probe �p directly can be very difficult. Also, deducing (d, n)
angular distributions by detecting the charged products of the
resonance decay in coincidence could be very challenging due
to the necessity of collecting a large proportion of resulting
protons, having a good energy calibration and an absence
of any contamination in the beam. For very narrow proton
resonances of astrophysical interest lying close to the proton
threshold, where γ -decay mode dominates, it has been pos-
sible to measure the total cross sections for a population of
excited final states by detecting γ rays emitted in their deex-
citation (see, for example, Refs. [10,13]). Total cross sections
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FIG. 4. The ADWA angular distributions for (a), (b) 26Al(d, p); (c) 30P(d, p); (d) 34Cl(d, p); and (e), (f) 56Ni(d, p) reactions and populating
(a), (d) l = 0; (f) l = 1; (b) l = 2; and (c), (e) l = 3 states calculated at Ed = 12 MeV using the nonlocal equivalent of the KD03 potential with
(dashed) and without (solid) I3B terms in comparison with those obtained using standard Johnson-Tandy model with the same KD03 potential
(dot-dashed).

only were also measured in some (d, p) experiments [33,34]
without the corresponding differential cross sections.

The differential cross section at the main peak and the
total cross section may carry different physical information.
Indeed, the latter are obtained as

σ =
∫ 2π

0
dϕ

∫ π

0

dσ (θ )

d�
sin θdθ, (18)

which contain sin θ that suppresses the contribution from for-
ward angles.

This suppression could be particularly relevant for pop-
ulation of s-wave final nucleon states, most interesting in
astrophysical applications, especially for higher incident en-
ergies. Increased contribution from a wider angular range,
where other mechanisms may come into play and where pe-
ripherality may be lost, can lead to larger model uncertainties
in the total cross sections than those established in the main
peak.

In Table III we show the various ratios of total (d, p) cross
sections calculated in the same models that were used to ob-
tain the results presented in Table I. We show these ratios for
two typical deuteron energies, Ed = 12 MeV, already studied
in previous sections and often used for measuring differential
cross sections, and Ed = 60 MeV, which has been used several
times to measure the total cross sections for (d, n) reactions.

For Ed = 12 MeV, the difference between the total σ I3B
GRZ

and σKD03 cross sections is within 30%. Unlike in the case
of ratios of peak cross sections, where σ I3B

GRZ are either lower
or similar to σKD03, the total cross section of σ I3B

GRZ could be
either larger or smaller than those of σKD03 ones. The ratios
σ I3B

GRZ/σKD03 of total cross sections are larger than the corre-
sponding ratios of peak cross sections, thus confirming that

the model uncertainties in the total cross sections are gener-
ally higher than those in the peak values. Similar situation
occurs when local potential KD03, modified to account for
three-body effects, is used in calculations. Different treatment
of this modification, either applied directly or using local
potential reconstruction technique of Eqs. (16) and (17) via
nonlocal equivalent of KD03, gives the total cross sections
differing by no more 6%, which is marginally larger than the
difference of 2% between that obtained by the two methods
for peak cross sections.

The calculations at Ed = 60 MeV revealed that the cross
sections are much more sensitive to the model choice for Vnp,
to extent that this choice can strongly affect the shapes of the
angular distributions (not shown here). Similar effect has been
observed in Ref. [28] for 26mAl(d, p) 27Al at Ed = 50 MeV. As
in previous sections, we use the Hulthén model, which in the
case of nonlocal potentials suppresses the contribution from
poorly defined high n-p momenta causing strong deviation of
the ADWA cross sections from exact three-body dynamics
predictions. Unlike in the case of Ed = 12 MeV, applying
the energy shift and doubling imaginary part can dramatically
affect the shapes of angular distributions so that they may lose
resemblance with the standard ADWA predictions. Signifi-
cant shape changes make comparison of peak cross sections
meaningless. We calculate the ratio of the total cross sections
obtained with 
E and I3B force to the standard ADWA ones
showing them in Table III. As in the case of Ed = 12 MeV, we
apply the shift 
E and doubling imaginary part to nonlocal
potential GRZ and to local potential KD03, both directly or to
its nonlocal equivalent. The three-body effects introduced in
this way have a stronger influence on the total cross sections
than in the 12 MeV case, in particular for populating s1/2
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TABLE III. Ratio between total cross sections peaks calculated from the first column at deuteron energies given in the fifth column. The
excitation energies (in keV), final-state spins, and quantum numbers of the populated level are given in the second, third, and fourth columns.
In the following columns σGRZ and σ I3B

GRZ denote the cross sections calculated using GRZ without and with I3B, respectively, σKD03 are standard
Johnson-Tandy results with KD03 potentials, σ I3B

KD03 are obtained by applying the shift 
E and I3B effects to the local potential KD03, and
σ NLE,I3B

KD03 is obtained by restoring nonlocal equivalent of the local KD03 potential.

Reaction Ex Jπ l j Ed (MeV) σ I3B
GRZ/σKD03 σ I3B

KD03/σKD03 σ NLE,I3B
KD03 /σKD03

26Al(d, p) 27Al 3004 9/2+ s 1
2

12 0.886 1.187 1.169

60 0.725 1.112 1.239
7806 9/2+ s 1

2
12 0.990 1.078 1.106

60 1.579 1.725 2.075
7806 9/2+ d 3

2
12 1.027 1.180 1.187

60 0.557 1.013 1.073
7948 11/2− p 1

2
12 0.745 0.817 0.804

60 0.458 0.623 0.640
30P(d, p) 31P 6336 1/2+ s 1

2
12 0.959 1.013 1.044
60 1.712 1.765 2.137

6336 1/2+ d 3
2

12 1.068 1.155 1.173

60 0.654 1.101 1.178
6399 7/2− f 5

2
12 0.823 0.836 0.838

60 0.471 0.759 0.721
34Cl(d, p) 35Cl 6492 1/2+ s 1

2
12 0.902 0.956 0.989

60 1.833 1.718 2.088
6746 5/2+ d 5

2
12 0.857 0.867 0.906

60 0.921 1.184 1.265
56Ni(d, p) 57Ni 768 5/2− f 5

2
12 1.244 1.352 1.258

60 0.522 0.851 0.824
1112 1/2− p 1

2
12 1.126 1.231 1.165

60 1.050 1.089 1.188
2443 5/2− f 5

2
12 1.300 1.340 1.285

60 0.628 0.950 0.935
2577 7/2− f 7

2
12 1.065 1.029 1.026

60 0.935 1.167 1.164

states, as expected. This influence is different depending of
what kind of potential was used in the calculations, nonlocal
GRZ or local KD03 corrected for I3B effects. In general,
the model uncertainty due to the three-body nature of optical
potentials can be as large as a factor of two. It can result both
in an increase and a decrease of the cross sections depending
on the reaction choice.

VI. NEUTRON ASYMPTOTIC NORMALIZATION
COEFFICIENTS AND PROTON WIDTHS

OF MIRROR STATES

To illustrate how model uncertainties due to three-body
nature of optical potentials in the A + n + p system affect in-
formation about reactions in stellar environments, we have de-
termined ANCs for 27Al∗(7806, 7948) and 57Ni∗(768, 1112)
states from the (d, p) angular distributions measured at Ed =
12 and 8.9 MeV in Refs. [9] and [18], respectively, and then
calculated the widths of mirror proton resonances using the
relation [1]

�p

C2
n

≈ Rres ≡ κp

μ

∣∣∣∣ Fl (κpRN )

κpRN jl (iκnRN )

∣∣∣∣
2

, (19)

where Cn is the neutron ANC, κ(n,p) = (2με(n,p)/h̄2)1/2, μ is
the A-N reduced mass, ε(n,p) is the (positive) separation for
neutron or proton resonance energy, RN = R0A1/3 is the range
of internal region of A, jl is a spherical Bessel function, and
Fl is the regular Coulomb wave function. We have chosen
R0 = 1.3 fm and checked that for all our cases the ratio Rres

changes by less than 2% for 1.25 � R0 � 1.35 fm. We should
note that Eq. (19) is a model-independent approximation suit-
able for fast calculations because it requires knowledge of
nucleon energies and target charges only. Since we investigate
the dependence of neutron ANCs and mirror proton widths on
optical potentials only, for the purpose of our paper, the exact
value of �p/C2

n is not needed. However, it can be obtained in
terms of the Wronskians from the radial overlap functions and
regular solutions of the two-body Schrödinger equation with
the short-range interaction excluded (see Ref. [35] for details).

We first checked the extent to which the chosen reactions
are peripheral by changing the radius r0 of the bound neutron
potential within the range of 1.1–1.4 fm and comparing the
calculated cross sections to the experimental ones. In all cases
the spectroscopic factors changed much more strongly than
the ANCs with varying r0, which is a good indication that
the reactions considered are mainly sensitive to the peripheral
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TABLE IV. Squared ANCs C2
n (in fm−1) and widths �p (in eV) for mirror pairs shown in first column. The second and third columns

display resonance energies ER (in MeV) and nucleon orbital momentum l . The calculations are shown for standard ADWA with KD03 (fourth
and fifth columns) and for I3B effects included in nonlocal GRZ and local KD03 optical potentials. The I3B effect in the latter was introduced
either directly (eighth and ninth columns) or in its nonlocal equivalent (tenth and eleventh columns).

KD03 GRZ + I3B KD03(L) + I3B KD03(NLE) + I3B

Mirror pair ER l C2
n �p C2

n �p C2
n �p C2

n �p

27Al(7806)-27Si(7590) 127 0 0.258 6.27 × 10−8 0.365 8.88×10−8 0.247 6.01 × 10−8 0.250 6.08 × 10−8

27Al(7806)-27Si(7590) 127 2 0.148 2.15 × 10−9 0.128 1.86×10−9 0.125 1.81 × 10−9 0.120 1.74 × 10−9

27Al(7948)-27Si(7652) 189 1 0.650 3.63 × 10−5 0.979 5.47×10−5 0.793 4.43 × 10−5 0.797 4.45 × 10−5

57Ni(768)-57Cu(1028) 336 3 23.2 1.24 × 10−11 15.2 8.14×10−12 18.9 1.01 × 10−11 19.8 1.06 × 10−11

57Ni(1112)-57Cu(1106) 416 1 202 2.64 × 10−7 163 2.13×10−7 203 2.65 × 10−7 203 2.65 × 10−7

region of the nucleus. The strongest spread in ANC squared,
up to 14%, was observed for populating 57Ni∗(1112). How-
ever, in this case the spectroscopic factor changed by 43%
with respect to the value obtained with standard radius r0 =
1.25 fm. Since our main aim is to quantify uncertainties due
to the I3B effects, we ignore the uncertainties in ANCs due to
residual dependence on r0 as well as experimental uncertain-
ties. We note that for the 27Al(7806) state the cross section is a
sum of two terms corresponding to l = 0 and l = 2 transfers.
This creates additional uncertainties for ANCs determined for
this particular state.

The ANCs squared, proton widths of mirror states for
GRZ, and two versions of corrected KD03 potential are shown
in Table IV. Results obtained with standard ADWA employing
the same KD03 are shown there as well. One can see that
introducing I3B effects gives different results depending on
nuclear state and on what kind of potential is employed, lo-
cal or nonlocal. The I3B effect can work both ways, either
increasing of decreasing C2

n and the corresponding �p val-
ues, in the worst case—57Ni(768) state with GRZ—deviating
from the standard ADWA approach by 52%. Accounting for
I3B force using local optical potential KD03 in most cases
does not exceed 22% change with respect to ADWA, apart
from the l = 2 case in 26Al(7806) where the uncertainty of
extracted C2

n is expected to be large. In all cases the two
different ways of introducing I3B effects based on KD03 local
potential give very similar results. Introducing I3B force into
nonlocal potential GRZ can cause a stronger effect, up to 52%
in 57Ni(1112).

The widths �p shown in Table IV have already been deter-
mined using mirror-symmetry assumptions in previous works
from (d, p) angular distributions [9,18]. But these widths
were estimated using a different model which assumes that
�p is given by the product of the Coulomb-barrier penetra-
bility factor, the doubled Wigner single-particle width, and
the proton spectroscopic factor, equal to that of the mirror
neutron. While the assumption about equality of spectroscopic
factors in mirror states should be good, the Coulomb-barrier
penetrability depends on the geometry of the nuclear potential,
which introduces additional, usually not considered, uncer-
tainties in determination �p from mirror symmetry. Therefore,
we can expect differences in �p determined by traditional
Coulomb penetrability method and the method of Eq. (19)
used here. We believe that a systematic comparison between

the two method should be a subject of a separate paper. We
just note that the width �p(l = 0) = 2.5 × 10−8 eV of the
ER = 127 keV resonance in 27Si obtained in Ref. [9] is about
3 times smaller than the values obtained in this paper while
the �p = 5.1 × 10−5 eV width for ER = 188 keV resonance
in 27Si is similar to our results. For 57Cu our �p widths are
about 100% and 40% larger than the �p = 5.7 × 10−12 eV
and 1.9 × 10−7 eV values obtained in Ref. [33] for ER = 336
and 416 KeV resonances, respectively.

Finally, we have to comment on the determination of �p

from total (d, p) cross sections σt . We find that at Ed = 12
MeV the calculated total cross sections are not very sensitive
to changes in r0, which suggests that peripherality of these
reactions is lost, but offers an opportunity of determining
the spectroscopic factors. The ANCs C2

n obtained from total
cross sections could have large uncertainties, between 30 to
100%, being either comparable to or even larger than those
due to the I3B effects. At Ed = 60 MeV the situation is
different. Apart from 27Al(7806) with l = 0 and 57Ni(2577)
cases, the ratio σt/b2, where b is the single-particle ANC,
changes significantly with r0, indicating that peripherality is
also lost at higher energies, as expected. At the same time
σt also becomes r0-dependent, inducing large uncertainties in
the spectroscopic factors as well. Once again, these uncertain-
ties can be comparable to those originating from introducing
I3B effects. A special case is 27Al(7806) with l = 0 and
57Ni(2577) cases, where changing r0 within the interval of
the most probable values, between 1.15 and 1.35 fm, results
in a 3% change in σt/b2, with respect to the average value.
This is sufficient to deduce C2

n for 57Ni(2577), where only one
l-value contributes to the total cross section. In this case, using
σt = 1.24 mb for 56Ni(d, p) 57Ni(2577) reaction measured at
Ed = 64 MeV we obtain �p = 2.68 eV, which is about 5 times
larger than the 0.53 eV value obtained via Coulomb-barrier
penetrability method, with uncertainties due to I3B effects
being 6%–16%. For 27Al(7806) the ANCs and the corre-
sponding �p cannot be determined since two unknown values
need to be determined from only one experimental observable.

VII. CONCLUSIONS

We have presented calculations for cross sections of several
(d, p) reactions populating excited states in 27Al, 31P, 35Cl,
and 57Ni, which are mirror analogs of important resonances
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contributing to nucleosynthesis in various stellar environ-
ments via r p process. The main aim of these calculations was
to quantify model uncertainties of the widely used ADWA
arising due to projecting target excitations out, which af-
fects two-body nucleon optical potentials in the A + n + p
three-body system and induces multiple-scattering terms in
the three-body optical potential. Within the ADWA, these
effects are accounted for by (a) evaluating the n-A and p-A
optical potentials at energy shifted with respect to the Ed/2
value by half the n-p kinetic energy within the short range of
Vnp, and (b) doubling their imaginary parts. These corrections
are introduced into two different nucleon optical potentials,
the nonlocal energy-dependent potential GRZ, and the local
global potential KD03, treating the latter in two different
ways. The calculations were carried out at two typical ener-
gies, available at radioactive beam facilities, that have been
already used for indirect study of astrophysically relevant
reactions.

The shift of energy at which optical potentials should be
evaluated in ADWA strongly depends on the choice of the
deuteron model and this can significantly affect the (d, p)
cross sections. The strong sensitivity to the deuteron model
arises due to the existence of a deuteron d-wave state that
contributes about 40% to the n-p potential-energy matrix ele-
ment. Introducing I3B effects by doubling the imaginary part
of the optical potentials reduce dependence on deuteron model
choice. Choosing the s-wave Hulthén model we reduce the
contribution from high n-p momenta along with contributions
from nonadiabatic effects.

With the chosen deuteron model, including the three-body
nature of the optical potentials in the A + n + p system at a
typical deuteron energy of Ed = 12 MeV does not change the
shape of the angular distributions significantly with respect to
predictions of the standard ADWA, resulting in a renormal-
ization of the cross sections. This renormalization depends on
the choice of optical potential being distinct for nonlocal and
local ones. For nonlocal potentials, the I3B effects reduce the
cross sections by up to 40% for 26Al, 30P, and 34Cl targets,
while for 56Ni this reduction does not exceed 20%. For local
potentials the change likewise does not exceed 20%, but can
go either way, increasing or decreasing the cross sections.
Two different ways of applying I3B effects in local potentials,
either directly or to restored nonlocal equivalent, give very
similar results. The total cross sections have larger model
uncertainties, especially at higher deuteron energies. While
at Ed = 12 MeV they do not exceed 35%, being in most
cases within 10%–20%. At Ed = 60 MeV this uncertainty can

be as high as 100%, causing changes both ways, increasing
or decreasing. These uncertainties will directly propagate to
corresponding uncertainties in the widths of astrophysically
relevant resonances and the associated proton capture reaction
rates.

Current estimates of three-body effects in the optical poten-
tial of the A + n + p system, arising from projecting out target
excitations, are based on the ADWA. It is important to under-
stand how they may change beyond the adiabatic assumptions.
The only attempt to do this has been carried out using Faddeev
equations with excited states, but neglecting the many-body
nature of the target. Similar to our findings, treating the energy
dependence of the optical potentials explicitly by adjust-
ing two-body Faddeev T matrices increases the (d, p) cross
sections requiring three-body optical potential that provides
increasing absorption [36]. This is qualitatively the same ef-
fect as the one considered here. It is important to extend the
three-body optical potential study to many-body systems be-
yond the adiabatic approximation. This will help to build more
accurate models that will help to extract reliable spectroscopic
information from (d, p) reactions for various applications,
including understanding of stellar nucleosynthesis.

Finally, we would like to mention that, in addition to
three-body potential effects induced by projecting out target
excitations, there should exist a contribution to the three-body
Hamiltonian that arises due to three-nucleon interactions be-
tween n, p and individual nucleons in the target [37]. This
contribution depends on the choice of target, deuteron in-
cident energy, binding energy of the state populated by the
transferred neutron, and its orbital momentum. The three-
nucleon interaction also introduces additional term into (d, p)
T matrix [38]. These effects can introduce further model
uncertainty to (d, p) cross sections, which will affect the
spectroscopic information obtained from them. More work is
needed to clarify their role.

Note added in proof. Our paper does not address the ques-
tion of antisymmetrization. Nevertheless, the recent paper by
Johnson in [39] provides a firm basis from an antisymmetrized
many-body point of view for the three-body force effects
calculated both in [4] and here.
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