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Three-body description of 9C: Role of low-lying resonances in breakup reactions
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Background: The 9C nucleus and related capture reaction, 8B(p, γ )9C, have been intensively studied with an
astrophysical interest. Due to the weakly bound nature of 9C, its structure is likely to be described as the three-
body (7Be + p + p). Its continuum structure is also important to describe reaction processes of 9C, with which
the reaction rate of the 8B(p, γ )9C process have been extracted indirectly.
Purpose: We preform three-body calculations on 9C and discuss properties of its ground and low-lying states
via breakup reactions.
Methods: We employ the three-body model of 9C using the Gaussian-expansion method combined with the
complex-scaling method. This model is implemented in the four-body version of the continuum-discretized
coupled-channels method, by which breakup reactions of 9C are studied. The intrinsic spin of 7Be is disregarded.
Results: By tuning a three-body interaction in the Hamiltonian of 9C, we obtain the low-lying 2+ state with the
resonant energy 0.781 MeV and the decay width 0.137 MeV, which is consistent with the available experimental
information and a relatively high-lying second 2+ wider resonant state. Our calculation predicts also sole 0+ and
three 1− resonant states. We discuss the role of these resonances in the elastic breakup cross section of 9C on
208Pb at 65 and 160 MeV/nucleon.
Conclusions: The low-lying 2+ state is probed as a sharp peak of the breakup cross section, while the 1−

states enhance the cross section around 3 MeV. Our calculations will further support the future and ongoing
experimental campaigns for extracting astrophysical information and evaluating the two-proton removal cross
sections.

DOI: 10.1103/PhysRevC.104.034612

I. INTRODUCTION

In stellar nucleosynthesis, proton capture reaction of 8B,
8B(p, γ )9C, is expected to drive an explosive hydrogen burn-
ing (pp chain) and serves as a possibly alternative path to
the synthesis of the CNO elements [1]. Due to the diffi-
culties in measuring the 8B(p, γ )9C cross section at very
low energies, several experiments of alternative reactions
have been performed to indirectly determine the astrophysical
S factor [2–4]. The significant discrepancy in the previous
measurements for the determined astrophysical S factor [5],
has triggered off the new experimental study on the 9C
breakup [6,7]. For studying 9C-breakup reactions as well as
8B(p, γ )9C, the structure of 9C plays a key role.

On the experimental side, the ground and low-lying states
of 9C were measured via multinucleon transfer reaction
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[8–10]. Recently the higher excited states were explored in
Refs. [11–13]. It is noteworthy that the first positive parity
5/2+ state was identified [13] in the mass number 9 and
isospin 3/2 systems. Elastic scattering angular distributions
of 9C on 208Pb target at 25.2 MeV/nucleon has been mea-
sured recently [14]. On the theoretical side, in Ref. [15], the
four-body (α + 3He + p + p) calculation was performed to
study the ground-state property of 9C, while its excited states
were predicted by the antisymmetrized molecular dynamics
[16] and the continuum shell model [17]. Furthermore, the
astrophysical S factor of 8B(p, γ )9C was estimated theoret-
ically, with assuming 9C of the 8B + p configuration, by the
microscopic cluster model [18] and the continuum-discretized
coupled-channels method (CDCC) [19–21] applied to the 9C
breakup processes [5] and the transfer reaction 8B(d, n)9C
[22].

We remark that 9C is only bound by 1.436 MeV [23]
with respect to 7Be + p + p threshold, and all of its excited
states are in the continuum; there exists a 8B + p threshold
just below the three-body threshold by 0.137 MeV. It is im-
portant to accurately reproduce these threshold energies. The
7Be + p + p three-body model is suitable for this purpose as
explained below. Furthermore, the result of the three-body
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FIG. 1. Three sets of the Jacobi coordinates ξc = (rc, yc ) in the
7Be + p + p three-body model. Each set is identified with c (c =
1, 2, 3).

model calculation can be implemented in CDCC and one can
thereby describe dynamical processes of 9C. This will be es-
sential to extract the astrophysical S factor from experimental
data in future.

In past, the 9C along with other light mirror nuclei was
studied within a three-body model based on hyperspherical
framework [24,25]. The prime focus of this work was to study
the mirror spectroscopic factors, mirror asymptotic normal-
ization coefficients (ANCs), and pre-asymptotic abnormalities
[26] in the overlap functions for the various three-body mir-
ror systems. These are interesting subjects but beyond the
scope of the present study. The purpose of this study is to
describe the ground and continuum states of 9C by a three-
body model and show how breakup reaction observables
reflect these structures for the first time. To achieve this, the
three-body ground state and discretized-continuum states of
9C are obtained with the Gaussian-expansion method (GEM)
[27]. For searching the resonances in the low-lying continuum
states, we make use of the complex-scaling method (CSM)
[28–31]. We then discuss the role of these low-lying reso-
nances in the elastic breakup cross sections of 9C on the
208Pb target at 65 and 160 MeV/nucleon. The 9C + 208Pb
scattering is described by the CDCC based on the four-body
(7Be + p + p + 208Pb) model. Although the four-body CDCC
is very well tested for reactions involving two-neutron halo
systems [32–35], it is the first time we are extending its im-
plementation for the proton-rich nucleus.

This paper is organized as follows. In Sec. II, we briefly
describe the theoretical framework used for the present study.
In Sec. III, we show our main results for the low-lying contin-
uum spectrum of 9C and its breakup reaction. Finally, we give
the conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

We describe 9C by the 7Be + p + p three-body model.
The ground and discretized-continuum states of 9C are built
within the framework of the GEM by using Gaussian basis
functions [27]. The three-body wave function �Iπ ν (ξc) of 9C
is characterized by the spin I , parity π , eigenenergy index ν,
and ξc = (rc, yc) with c = 1, 2, 3 being three sets of the
Jacobi coordinates (shown in Fig. 1), and it is obtained by

diagonalizing the three-body Hamiltonian:

h = Kr + Ky + Vcp + Vcp + Vpp + Vcpp. (1)

Here, Kr and Ky are the kinetic energy operators associated
with the Jacobi coordinates rc and yc shown in Fig. 1, while
Vcp (Vpp) is a two-body interaction between the 7Be and a pro-
ton (two protons), and Vcpp is a phenomenological three-body
force (3BF). The antisymmetrization of �Iπ ν with respect to
the exchange between the two valence protons is explicitly
taken into account, whereas the exchange between each va-
lence proton and a nucleon in 7Be is approximately treated by
the orthogonality condition model [36].

For detailed insights of the three-body continuum of 9C,
we employ the CSM, in which the radial part of each Jacobi
coordinate is transformed as rc → rceiθ and yc → yceiθ with
the scaling angle θ , and thus, h is rewritten as hθ accordingly.
The diagonalization of hθ results in the eigenstates ϕθ

γ with
complex eigenenergies εθ

γ , where γ is a collective index; γ =
(Iπ , ν). In the CSM, a resonance is identified as an eigenstate
on the complex-energy plane isolated from other nonreso-
nant states; the real and imaginary parts of the eigenenergy
represent the resonant energy and a half of the decay width,
respectively. In the present analysis, we take Iπ = 0+, 1−,
and 2+ states of 9C, and ϕθ

γ are also used in calculating a
continuous breakup energy spectrum from discrete breakup
cross sections obtained by CDCC, as discussed below.

The total wave function 
 of the 9C + 208Pb reaction sys-
tem is obtained by solving the Schrödinger equation,

(KR + h + VpT + VpT + VcT − E )
(ξ, R) = 0, (2)

where R and ξ represent the coordinates between 208Pb and
the center of mass (c.m.) of 9C and the intrinsic coordinate of
9C, respectively. The kinetic energy operator KR is associated
with R, while VpT and VcT are the potentials consisting of
the nuclear and Coulomb parts of the p- 208Pb and 7Be - 208Pb
systems, respectively. Thus, the nuclear and Coulomb breakup
processes are simultaneously taken into account.

In CDCC, we assume that the scattering takes place in a
model space spanned by

P =
∑

γ

|�γ 〉〈�γ |. (3)

The total wave function 
(ξ, R) is then approximated into


(ξ, R) ≈ P
(ξ, R) =
∑

γ

χγ (R)�γ φc

≡ 
CDCC(ξ, R), (4)

where χγ is the relative wave function regarding R, and φc is
an internal wave function of 7Be. Inserting Eq. (4) into Eq. (2)
leads to a set of coupled equations for χγ :

[KR + Uγ γ (R) − (E − εγ )]χγ (R)

= −
∑

γ ′ �=γ

Uγ γ ′ (R)χγ ′ (R) (5)

with εγ = 〈�γ |h|�γ 〉. This is called the CDCC equations,
which are solved under the standard boundary condition [21].
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In the microscopic four-body CDCC, coupling potentials Uγ γ ′

between �γ and �γ ′ are obtained by the folding procedure as

Uγ γ ′ (R) = 〈�γ |[VpT + VpT + VcT ]|�′
γ 〉. (6)

By solving Eq. (5), one obtains the transition matrix el-
ement Tγ [31], from which the cross sections to the ground
and discretized-continuum states of 9C can be evaluated. To
obtain a continuous breakup energy spectrum, we employ the
smoothing method based on the CSM proposed in Ref. [31].
Consequently, the double differential breakup cross section
reads

d2σ

dεd�
= 1

π
Im

∑

γ ′

T θ
γ ′ T̃ θ

γ ′

ε − εθ
γ ′

, (7)

where ε is a three-body breakup energy measured from the
7Be + p + p threshold, whereas � is the solid angle of the
c.m. of the three particles. The complex-scaled Tγ are given
by

T θ
γ ′ =

∑

γ

T ∗
γ 〈�γ |C−1(θ )

∣∣ϕθ
γ ′

〉
, (8)

T̃ θ
γ ′ =

∑

γ

〈
ϕ̃θ

γ ′
∣∣C(θ )|�γ 〉Tγ (9)

with C(θ ) and C−1(θ ) being the scaling-transformation oper-
ator and its inverse, respectively [31], and are defined as

〈rc, yc|C(θ )| f 〉 = e3iθ f (rceiθ , yceiθ ), (10)

〈 f |C−1(θ )|rc, yc〉 = [e−3iθ f (rce−iθ , yce−iθ )]∗, (11)

where function f is �γ . As shown in Eq. (7), the breakup
energy spectrum is given by an incoherent sum of the contri-
butions from the eigenstates of hθ . This property is crucial to
clarify the role of a resonance in describing breakup observ-
ables.

III. RESULTS AND DISCUSSIONS

A. Binary and ternary potentials

Analysis of the 8B (7Be + p) subsystem is imperative in
studying the structure of 9C as the three-body system. The
measured spectrum of 8B consists of only one weakly bound
state with Iπ = 2+ and the one-proton separation energy Sp

is 0.137 MeV. Thus, in an independent-particle shell model
picture, 8B is usually described as a valence proton in the
0p3/2 orbit loosely bound to the 7Be core (ground state with
Iπ = 3/2−) [37].

In the present study, for simplicity, we assume that the
valence proton in the 0p3/2 orbit is coupled to the inert and
spinless 7Be core. Note that a similar assumption has been
successfully followed in other three-body calculations, for in-
stance, the 9Li +n and 27F +n subsystems for the description
of 11Li [34] and 29F [38], respectively. The numerical detail of
the GEM relevant to the calculation of the binary systems is
relegated to Sec. III B (see Table I).

As regards the interaction between the 7Be core and a
valence proton (Vcp), we adopt the same nuclear potentials
used in Refs. [39,40], including the central and spin-orbit
components. For the Coulomb potential, we take V cp

C (x) =

TABLE I. Parameters of the GEM for the 0+, 1−, and 2+ states.

Set c jmax ȳ1 (fm) ȳmax (fm) imax r̄1 (fm) r̄max (fm)

I 3 13 0.1 15.0 13 0.5 15.0
1, 2 13 0.5 15.0 13 0.5 15.0

II 3 25 0.1 50.0 25 0.5 50.0
1, 2 25 0.5 50.0 25 0.5 50.0

4(e2/x) erf (sx) with s = 0.65 fm−1, where x stands for the
relative 7Be -p distance. With this interaction, we obtain the
0p3/2-ground state with Sp = 0.137 MeV. It should be noted
that in the absence of the core spin, all 0+, 1+, 2+, and 3+
states (corresponding to coupling of the core spin 3/2 with
valence-proton spin 3/2) are degenerate with the ground state.
Thus, the low-lying 1+, 0+, and 3+ resonances [41,42] above
the 7Be + p threshold are not reproduced by this model.

Interestingly, with the same interaction, we obtain a two-
body resonance of 8B in the 0p1/2 state with resonant energy
(decay width) of 2.270 MeV (1.450 MeV). Similarly, in the
absence of core spin the possible degenerate states corre-
sponding to this state are 1+ and 2+. However, this two-body
resonance is found to play no roles in the breakup calculations,
though a feature of this resonance can be seen inside a three-
body system (see discussion in Sec. III C). In other partial
waves, resonances do not exist.

The second binary interaction used in the internal Hamil-
tonian h of 9C is the p-p interaction (Vpp), for which we
adopt the Minnesota (MN) interaction [43] and a Coulomb
potential between two protons. For the MN interaction, the
exchange-mixture parameter u is set equal to 0.95 and only its
central part is included, while, for the Coulomb part, we take
V pp

C (x) = e2/x, with the relative p-p distance x.
In addition to Vcp and Vpp, it is customary to introduce

a ternary potential (Vcpp) to account for possible effects that
are not explicitly included in the above-mentioned three-body
description [44–47]. We take volume-type 3BF [47] given by
a product of Gaussian functions for the two Jacobi coordi-
nates; V0 exp(−αr2

1 − αy2
1 ). We set the range parameter α =

0.0357 fm−2 and the strength V0 is determined to optimize
the ground state energy and low-lying resonance energies; see
Sec. III B. This flexibility of the adopted three-body model is
preferable because the reproduction of threshold energies is
crucial for describing reaction properties of 9C.

B. Three-body ground state of 9C

In the present three-body model with the inert-spinless core
approximation, our ground state is represented by coupling
the valence protons to 0+ and the continuum-excited states
correspond to the 0+, 1−, and 2+ states.

In the GEM, the ground state of the 7Be + p + p system
is described by a superposition of three channels, each of
which is specified by a certain set of the Jacobi coordinates,
(rc, yc). In the channel c, the radial parts of the internal wave
functions involving rc and yc are expanded by a finite number
of Gaussian basis functions as

ϕi�(rc) = r�
c e−(rc/r̄i )2

Y�(�rc ), (12)
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TABLE II. The ground-state energy of 9C and its interaction
dependence.

Ground state energy
Interaction S2p(MeV)

Vpc + Vpc (without Vpp) −0.254
Vpc + Vpc + Vpp −3.070
Vpc + Vpc + Vpp + Vcpp −1.437

ϕ jλ(yc) = yλ
c e−(yc/ȳ j )2

Yλ(�yc ). (13)

Here, � (λ) and �rc (�yc ) are the orbital-angular momentum
and solid angle, respectively, associated with the coordinate
rc (yc), and the range parameters are given by the geometric
progression

r̄i = (r̄max/r̄1)(i−1)/imax , (14)

ȳ j = (ȳmax/ȳ1)( j−1)/ jmax . (15)

To be precise, the parameters depend on c, but we omitted the
dependence in Eqs. (14) and (15) for simplicity; see Ref. [32]
for the details of the diagonalization and the definition of the
Jacobi coordinates.

For the evaluation of eigenstates of h and hθ , we adopt the
parameter set I for h and set II for hθ listed in Table I.

Using the binary (Vcp and Vpp) and ternary (Vcpp) inter-
actions, described in Sec. III A, we compute the three-body
ground state of the 9C nucleus with Iπ = 0+. In Table II,
the interaction dependence of the ground-state energy is dis-
played. It is clear that the role of Vpp is significant in binding
the two protons in 9C and a repulsive three-body force is
needed to obtain the experimental value of the two-proton
separation energy, S2p = 1.437 MeV. The need of repulsive
three-body force is not so rare; the same situation has been
encountered in the three-body calculations of 12C [48,49]. The
3BF strength optimized for the ground state is obtained as
V0 = 3.172 MeV to reproduce the experimental S2p. Note that,
while this value of V0 is employed also for the 1− states, V0

for the 2+ states are optimized independently, as described in
Sec. III C.

C. Structure of 0+, 1−, and 2+ continua

After fixing the 0+-ground state of 9C, the eigenenergies
of resonant and nonresonant continuum states for Iπ = 0+,
1−, and 2+, which are respectively displayed in Figs. 2(a),
(b), and (c), are computed by using the GEM combined with
the CSM. In Fig. 2, the blue circles and red squares represent
the eigenenergies with the scaling angle θ = 15◦ and 20◦,
respectively, and θ = 20◦ is the converged value with respect
to the position of all the resonances. In the converged model
space, the total number of pseudostates below εγ = 7 MeV
are 40, 50, and 59 for Iπ = 0+, 1−, and 2+, respectively.
These states are included in the calculation of the breakup
cross sections shown in Sec. III D.

Three two-body resonances (encircled by green circles in
Fig. 2) are found in the 0+, 1−, and 2+ states, which are found
to be unaffected by the inclusion of the 3BF. They correspond

FIG. 2. Complex eigenenergies of 9C for (a) Iπ = 0+, (b) Iπ =
1−, and (c) Iπ = 2+ states with the scaling angle θ = 15◦ (blue
circles) and 20◦ (red squares). For details see text.

to the same 8B resonant state in p1/2 at around 2.3 MeV.
Depending on the angular momentum of the other proton
in nonresonant states, the total spin-parity can be 0+ (p1/2),
1− (s1/2 or d3/2), and 2+ (p3/2 or f5/2). A broad three-body
resonance is found in the 0+ continuum with the resonant en-
ergy 5.488 MeV and the decay width 4.428 MeV [not shown
in Fig. 2(a)], with the inclusion of three-body force. In the
region of εγ > 3 MeV, three three-body resonances [encircled
by pink circles in Fig. 2(b)] are obtained in the 1− contin-
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FIG. 3. The comparison of our three-body results with the avail-
able experimental data adopted from Ref. [12]. AIn Ref. [11], a 5/2−

state at 2.163 (2) MeV, with a width of 1.4 (5) MeV is reported and
Bin Ref. [13], a broad positive-parity state 5/2+ at 2.863 MeV, is
reported. The experimental uncertainties are in units of keV.

uum. Their resonant energies (decay widths) in the units of
MeV are 3.129 (0.719), 4.187 (2.088), and 4.537 (2.293). It
is found that the position of the 1− resonances are weakly
dependant on the strength of the 3BF. This is because these
resonances have an extended structure (i.e., three constituents
are not in close proximity of each other). On the other hand,
the above-mentioned 0+ resonance has a compact form (i.e.,
three constituents stay close to each other), which shifts to
higher energy by including the 3BF. It should be noted that,
for the 0+- and 1−-continuum states, we employ the same 3BF
strength (V0 = 3.172 MeV) determined for the ground state.

The narrow low-lying and relatively high-lying wider
three-body resonances [encircled by pink circles in Fig. 2(c)]
are obtained in the 2+ continuum. Their resonant energies
(decay widths) in the units of MeV are 0.781 (0.137) and
3.680 (2.088). For the 2+-continuum states, the 3BF strength
is optimized as V0 = 5.320 MeV to obtain the low-lying ex-
perimental resonance energy, and this strength is different
from that used for 0+ and 1− states. Without the 3BF, the
low-lying 2+ narrow resonance becomes a bound state and
the high-lying 2+ wider resonance moves to lower energy
(εγ = 1.44 MeV). Similar to the 0+ states, the effect of the
3BF is strong and clearly visible for the 2+ states, and this is
due to the compact structures of the optimized bound states.

Figure 3 shows the comparison of our results with the avail-
able experimental data [12]. The energies (shown in black
color) and widths (shown in blue color) are given above and
below the lines, respectively, in units of MeV. As mentioned,
we have tuned the 3BF so as to reproduce the energies of
the ground state and the first excited state. The width of the
later thus found to be consistent with the experimental value.
As for relatively high-lying states, the preceding experimen-
tal study [12] suggested 5/2−, 3/2−, and 7/2− states. The
first one has been confirmed in Ref. [11] but with a much
larger width. Furthermore, recently, a 5/2+ state is reported at
2.863 MeV [13]. Thus, these states are still under discussion.
Our three-body model calculation with a spinless core ap-

proximation suggest relatively high-lying sole 0+, one 2+, and
three 1− resonances, whose parity will be negative, negative
and positive, respectively, when we consider the spin-parity
of 7Be. A further investigation of these possible resonance
states through a breakup cross section will be interesting and
important.

D. 9C + 208Pb elastic breakup

Next, we perform the four-body CDCC calculation for
the 9C scattering on the 208Pb target at 65 MeV/nucleon and
160 MeV/nucleon, using the wave functions of the bound and
discretized-continuum states of 9C described in Secs. III B and
III C. In this analysis, the convergence of the calculated elastic
breakup cross section has been achieved within about 3.5%
fluctuation with respect to the GEM parameters tabulated in
Table I. We truncated the eigenenergy of the pseudostates at
7 MeV.

The distorting nucleon-nucleus (p- 208Pb) and nucleus-
nucleus (7Be - 208Pb) potentials are evaluated by a micro-
scopic folding model. The Melbourne nucleon-nucleon g
matrix [50] and the Hartree-Fock wave functions of 7Be and
208Pb based on the Gogny D1S force [51,52] are adopted. This
microscopic approach has successfully been applied to several
reaction systems [21,53,54].

We investigate the role of the 0+, 1−, and 2+ resonant
and nonresonant-continuum states on the cross section. Fig-
ures 4(a) and 4(b) show the elastic breakup cross section
at 65 and 160 MeV/nucleon, respectively, as a function of
the smoothed three-body breakup energy ε. The curves are
obtained by integrating the double differential cross section,
Eq. (7), over �. We can decompose the cross section into each
contribution of the spin-parity state of 9C; the solid, dashed,
dotted, and dash-dotted lines denote the the total, Iπ = 0+,
1−, and 2+ contributions, respectively.

Now, let us focus on the case of the lower incident energy
65 MeV/nucleon in Fig. 4(a). It is well known that, in the
breakup reactions caused by a heavy target, the E1 transitions
are expected to be a dominant contribution. In our model,
because the spin-parity of the ground state of 9C is 0+ the large
dominance of the 1− contribution is obtained as about 58.4%
of the total breakup cross section. The shape of the breakup
cross section is guided by a narrow peak around 0.781 MeV
in the lower energy region, namely ε � 2 MeV. This peak
originates from the narrow 2+ resonance, and its contribution
to the total breakup cross section is around 19.0% (whereas
full 2+ contribution is about 26.0% to the total breakup cross
section). In the higher energy region, say, ε > 2 MeV, the
shape of the total breakup cross section is mainly determined
by the 1− resonance at 3.129 MeV. Thus, we find that the
1−-cross section is dominated by the low-lying nonresonant
continuum and high-lying 1− resonance state at 3.129 MeV.
Furthermore, the 0+-cross section is not negligible (about
15.6% of the total breakup cross section) and comes from
nonresonant continuum because no low-lying three-body res-
onances exist for Iπ = 0+.

The same features can be seen at the higher incident en-
ergy 160 MeV/nucleon, as shown in Fig. 4(b). Quantitatively,
the magnitude of breakup cross sections are smaller with
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FIG. 4. Energy spectra of the breakup cross section of 9C on
208Pb at (a) 65 MeV/nucleon and (b) 160 MeV/nucleon. The solid,
dashed, dotted, and dash-dotted lines correspond to the total, 0+, 1−,
and 2+ breakup contributions, respectively.

respect to the lower incident energy case. However, the peak
in 1− breakup at 3.129 MeV is more pronounced in the 160
MeV/nucleon case.

In summary, the first 2+ state with a small decay width is
well understood as the first excited state, and its contribution
to the cross sections shows up as a sharp peak. The high-lying
second 2+ and three 1− resonant states contribute to the cross
section in the higher breakup-energy region of the energy
spectrum as a bump-shape structure. Whereas, the high-lying
0+ resonant state contributes negligibly small to the total cross
sections in the energy region, viz., ε � 5 MeV and hence does
not show any structural feature in the breakup cross sections.
Thus, we conclude that, in order to clarify the properties of

the resonant states via breakup observables, it is required an
accurate analysis of treating not only resonant contributions
but also nonresonant ones in the energy spectrum.

As a future work we need to investigate the role of the
spin of the core nucleus 7Be. We will follow the prescription
proposed in Ref. [55], in which the spin of the 7Be core is
simplified in peripheral breakup reactions to extract the astro-
physical S factor of 7Be(p, γ )8B. Moreover, it is necessary
to disentangle the 8B(g.s.) + p channel from the discretized
continuum channels in the calculation of the breakup cross
section. To this end, a practical method proposed in Ref. [56]
is expected to provide useful information.

IV. CONCLUSIONS

We have investigated the ground and low-lying continuum
states of the 9C nucleus by means of the GEM combined
with the CSM. The role of these low-lying resonances is
studied in the elastic breakup of 9C on the 208Pb target at
65 and 160 MeV/nucleon, using the CDCC based on the
7Be + p + p + 208Pb four-body model.

As a result of the CSM with disregarding the spin of
7Be, we have obtained the resonant energy and decay width
of the first 2+ state, which is consistent with the available
experimental information. We have also found high-lying 0+,
second 2+, and additional three 1− resonant states above the
first 2+ state.

In the analysis of 9C breakup on 208Pb, we have calculated
the elastic breakup cross section to investigate the contribution
of the low-lying resonances to the energy spectrum. We have
shown that the contribution of nonresonant continuum states
to the breakup cross section is also important. In conclusion,
an accurate analysis of treating both resonances and non-
resonant continuum states is highly required to clarify the
properties of the energy spectrum of breakup cross sections. In
future, it will be important to extract astrophysical information
from the present result. Moreover, it would be interesting to
calculate two-proton removal cross sections with the present
four-body model and compare it with the new upcoming ex-
perimental data [6,7].
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[48] C. Kurokawa and K. Katō, Nucl. Phy. A 792, 87 (2007).
[49] S.-I. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama,

Prog. Theor. Exp. Phys. 2013, 073D02 (2013).
[50] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis,

and J. Raynal, Adv. Nucl. Phys. 25, 275 (2000).
[51] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[52] J. Berger, M. Girod, and D. Gogny, Comput. Phys. Commun.

63, 365 (1991).
[53] K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y. R. Shimizu, and

M. Yahiro, Phys. Rev. Lett. 108, 052503 (2012).
[54] T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsumoto, K.

Ogata, Y. R. Shimizu, and M. Yahiro, Phys. Rev. C 85, 064613
(2012).

[55] K. Ogata, S. Hashimoto, Y. Iseri, M. Kamimura, and M. Yahiro,
Phys. Rev. C 73, 024605 (2006).

[56] S. Watanabe, K. Ogata, and T. Matsumoto, Phys. Rev. C 103,
L031601 (2021).

034612-7

https://doi.org/10.1063/1.5091644
https://doi.org/10.7566/JPSCP.32.010057
https://doi.org/10.1103/PhysRevLett.13.726
https://doi.org/10.1103/PhysRevC.10.2633
https://doi.org/10.1103/PhysRevC.75.014603
https://doi.org/10.1103/PhysRevC.95.044326
https://doi.org/10.1103/PhysRevC.100.054618
https://doi.org/10.1103/PhysRevC.98.044608
https://doi.org/10.1143/PTPS.142.97
https://doi.org/10.1143/PTPS.142.205
https://doi.org/10.1134/S1063778814070163
https://doi.org/10.1016/S0375-9474(98)00629-0
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1103/PhysRevC.91.014604
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/PhysRevC.78.054322
https://doi.org/10.1088/1742-6596/111/1/012034
https://doi.org/10.1103/PhysRevC.68.021601
https://doi.org/10.1016/S0146-6410(03)90015-9
https://doi.org/10.1007/BF01877510
https://doi.org/10.1007/BF01877511
https://doi.org/10.1143/PTP.116.1
https://doi.org/10.1103/PhysRevC.82.051602
https://doi.org/10.1103/PhysRevC.70.061601
https://doi.org/10.1103/PhysRevC.73.051602
https://doi.org/10.1093/ptep/ptz126
https://doi.org/10.1103/PhysRevC.102.021602
https://doi.org/10.1143/PTP.41.705
https://doi.org/10.1016/0375-9474(94)90936-9
https://doi.org/10.1103/PhysRevC.102.064627
https://doi.org/10.1016/0375-9474(96)00006-1
https://doi.org/10.1103/PhysRevC.76.024608
https://doi.org/10.1103/PhysRevC.87.054617
https://doi.org/10.1134/1.567784
https://doi.org/10.1016/0375-9474(77)90007-0
https://doi.org/10.1103/PhysRevC.72.024007
https://doi.org/10.1209/0295-5075/90/52001
https://doi.org/10.1103/PhysRevC.88.014327
https://doi.org/10.1103/PhysRevC.90.041602
https://doi.org/10.1016/j.nuclphysa.2007.05.007
https://doi.org/10.1093/ptep/ptt048
https://doi.org/10.1103/PhysRevC.21.1568
https://doi.org/10.1016/0010-4655(91)90263-K
https://doi.org/10.1103/PhysRevLett.108.052503
https://doi.org/10.1103/PhysRevC.85.064613
https://doi.org/10.1103/PhysRevC.73.024605
https://doi.org/10.1103/PhysRevC.103.L031601

