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Differential analysis of incompressibility in neutron-rich nuclei
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Both the incompressibility KA of a finite nucleus of mass A and that (K∞) of infinite nuclear matter are
fundamentally important for many critical issues in nuclear physics and astrophysics. While some consensus
has been reached about K∞, accurate theoretical predictions and experimental extractions of Kτ characterizing
the isospin dependence of KA have been very difficult. We propose a differential approach to extract Kτ and K∞
independently from the KA data of any two nuclei in a given isotope chain. Applying this method to the KA data
from isoscalar giant monopole resonances (ISGMR) in even-even Pb, Sn, Cd, and Ca isotopes taken by Garg
et al. at the Research Center for Nuclear Physics (RCNP), Osaka University, Japan, we find that the 106Cd - 116Cd
and 112Sn - 124Sn pairs having the largest differences in isospin asymmetries in their respective isotope chains
measured so far provide consistently the most accurate up-to-date Kτ value of Kτ = −616 ± 59 MeV and
Kτ = −623 ± 86 MeV, respectively, largely independent of the remaining uncertainties of the surface and
Coulomb terms in expanding KA, while the K∞ values extracted from different isotopes chains are all well
within the current uncertainty range of the community consensus for K∞. Moreover, the size and origin of the
“soft Sn puzzle” is studied with respect to the “stiff Pb phenomenon.” It is found that the latter is favored due to
a much larger (by ≈380 MeV) Kτ for Pb isotopes than for Sn isotopes, while K∞ from analyzing the KA data of
Sn isotopes is only about 5 MeV less than that from analyzing the Pb data.
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I. INTRODUCTION

Because of its fundamental importance in nuclear physics
and broad impact on astrophysics, the incompressibility K∞
of infinite nuclear matter has been a long-standing and major
scientific goal of many experimental and theoretical studies.
Since the pioneering work of Blaizot who determined K∞ =
(210 ± 30) MeV from analyzing the experimental data on
giant monopole resonance (GMR) energies in 40Ca, 90Zr, and
208Pb [1], extensive theoretical studies and systematic exper-
iments on the incompressibility KA of finite nuclei extracted
from GMR energies over the last four decades [1–6] have
led to the community consensus that K∞ is in the range of
220 to 260 MeV [3,6,7] or around 235 ± 30 MeV [8,9].
Thanks to the new advancement in experiments, especially
at rare-isotope-beam facilities, GMR energies of neutron-rich
nuclei along long isotope chains have recently become pos-
sible, facilitating more accurate and extensive explorations of
the isospin dependence of KA.

The incompressibility KA of finite nuclei is usually
parametrized in the form of a leptodermous expansion in
powers of A−1/3 in typical macroscopic models as [1]

KA ≈ K∞(1 + cA−1/3) + Kτ δ
2 + KCouZ2A−4/3 (1)

for a nucleus of mass number A, charge number Z , and
isospin asymmetry δ = N−Z

A , with c ≈ −1.2 ± 0.12 [10] and
KCou ≈ −5.2 ± 0.7 MeV [11] being the surface and Coulomb
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parameters, respectively. The Kτ characterizing the isospin
dependence of KA has been the main focus of many recent
experimental and theoretical investigations. By moving the
Coulomb term to the left side of the above equation, for all
practical purposes [3] for extracting Kτ from the experimental
KA data [12–17], KA − KCouZ2A−4/3 was fit with a quadratic
function of the form a + Kτ δ

2 assuming a = K∞(1 + cA−1/3)
is a constant. This approach resulted in an “experimental”
value of Kτ = −550 ± 100 MeV from the KA data of Sn
isotopes and Kτ = −555 ± 75 MeV from Ca isotopes. The
mass dependence of a and the known correlation between K∞
and Kτ neglected in the above approach were found to affect
significantly the extracted Kτ values [5,18]. For example, us-
ing the same c and KCou parameters but preserving the mass
dependence of a and considering the correlation between K∞
and Kτ in the error minimization of a multivariate χ2 fit, Kτ =
−595 ± 177 MeV, K∞ = 209 ± 6 MeV from Sn isotopes,
and Kτ = −463 ± 405 MeV, K∞ = 211 ± 11 MeV from Cd
isotopes were found [5]. As stressed already [3,5,18,19], the
state of affairs in understanding and extracting Kτ has been
very unsatisfactory for a long time.

While it is well known that K∞ is a fundamental quantify
critical for solving many interesting issues in both nuclear
physics and astrophysics, to the best of our knowledge, the
impact of Kτ on astrophysical observables, e.g., the radii of
neutron stars, is only indirect through the shared underlying
isovector interactions. Nevertheless, an accurate value of Kτ

is useful for predicting the incompressibilities and thus the
collective excitations of heavy neutron-rich nuclei that have
not been measured or cannot be measured directly because
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of their instabilities. It is thus imperative to find more robust
methods to extract accurately both K∞ and especially Kτ from
the KA data. Such methods are also expected to play important
roles in analyzing the coming new data from measuring the KA

of exotic, more-neutron-rich nuclei in long isotopic chains at
advanced radioactive-beam facilities.

In some earlier studies, see, e.g., Ref. [3] for a recent
review, the leptodermous expansion of Eq. (1) was used to
extract its coefficients by performing χ2 fittings to the ex-
perimental KA data. We regard this approach as the integral
approach in our following discussions. It has been shown in
numerous works, see, e.g., Ref. [20], that such approach is
not very accurate. It was concluded that these leptodermous
coefficients are not well constrained by the experimental data.
Later, some sort of community “consensus” was reached that
the model to analyze K∞ must contain microscopic effects,
reproduce the GMR, and also other observables before one
extrapolates to the infinite system. In reality, in analyzing the
GMR data from RCNP, for instance, the consensus approach
was used in extracting only K∞ and indeed much interesting
physics was obtained. However, the “experimental” Kτ value
was always extracted from the same KA data by using Eq. (1)
[12–17] because Kτ is only defined through this equation
for the incompressibility of finite nuclei. Thus, regardless of
whatever criticisms people may have for using Eq. (1) to
extract K∞, the same consensus approach does not apply to the
extraction of Kτ which can only be extracted by using Eq. (1).
Moreover, given the still very large dependencies on both the
many-body theories and interactions used in the consensus
approach in studying K∞ for infinite nuclear matter, some of
the same techniques cannot be used in calculating Kτ for finite
nuclei, and the relevant isovector interactions are much less
known than the isoscalar interactions.

Indeed, shell and pairing effects are not considered in
Eq. (1). These effects may play some roles in extracting the
incompressibility from ISGMR data [21], but their effects are
still much smaller than the current uncertainty range of the
fiducial value of K∞, not to mention the huge uncertainty
of Kτ discussed above when these effects are neglected. We
notice that it was already pointed out that shell effects are
not important for ISGMR [15] because giant resonances are
basically collective phenomena. Obviously, more research is
necessary to quantify more precisely the shell and pairing
effects on ISGMR.

The well-known problems mentioned above about the re-
liability of the leptodermous coefficients extracted from χ2

fitting do not necessarily mean that Eq. (1) itself is wrong
or inaccurate, they may indicate instead that the χ2 fitting
approach is not appropriate for extracting the K∞ and Kτ

values. Thus, they do not prevent people from using the same
Eq. (1) in better or more appropriate ways to extract accurately
K∞ and Kτ from the same KA data.

In this work, we propose a differential approach to extract
the exact values of K∞ and Kτ independently from the KA data
of two nuclei in any isotopic chain. The nucleus-nucleus pair
having the largest difference in their isospin asymmetries is
found to give the most accurate Kτ and K∞ values simultane-
ously. Effects of varying the c and KCou parameters by ±20%
around their known most probable values on extracting both
Kτ and K∞ are also examined. While the variations of c and
KCou lead the extracted K∞ values to vary within its current
consensus range, they have almost no effect on extracting
Kτ , indicating the robustness of the differential approach. We
found that both the mean value and uncertainty we extracted
for K∞ are compatible with those from using state-of-the-art
microscopic theories in the consensus approach, while the ac-
curacy of the extracted Kτ in our approach is much higher than
what is available in the literature. Finally, it has been known
for about a decade that the KA values extracted experimentally
from Sn isotopes are apparently smaller compared with pre-
dictions of nonrelativistic mean-field or relativistic mean-field
+ random-phase approximation (RPA) calculations that can
successfully describe the ISGMR data of Pb isotopes [13].
However, the origin of this so-called “soft Sn puzzle” [3,22]
or “stiff Pb phenomenon” [21] is still unclear. We investigate
whether the differential analysis can shed new light on this
issue.

The rest of the paper is organized as follows: In the next
section, we present details of the proposed differential anal-
yses. In Sec. III, we perform a differential analysis for the
KA data [12–17] from isoscalar giant monopole resonances in
even-even Pb, Sn, Cd, and Ca isotopes taken by Garg et al. at
RCNP. In Sec. IV, we study the effects of the remaining uncer-
tainties of the surface and Coulomb parameters on extracting
the K∞ and Kτ values. Finally, we summarize our work and
draw conclusions.

II. THE DIFFERENTIAL APPROACH

Applying Eq. (1) to any two isospin asymmetric (δ �= 0)
nuclei of mass and charge (A1, Z1) and (A2, Z2) separately, Kτ

and K∞ can be expressed exactly as

Kτ =
[

KA1

S1
− KA2

S2
− KCou

(
Z2

1 A−4/3
1

S1
− Z2

2 A−4/3
2

S2

)]/(
δ2

1

S1
− δ2

2

S2

)
, (2)

K∞ =
[

KA1

δ2
1

− KA2

δ2
2

− KCou

(
Z2

1 A−4/3
1

δ2
1

− Z2
2 A−4/3

2

δ2
2

)]/(
S1

δ2
1

− S2

δ2
2

)
, (3)

where Si = 1 + cA−1/3
i for nucleus i with i = 1 or 2.

One can understand intuitively the physical meanings
of the above expressions by using the mathematical

definitions of Kτ and K∞ based on Eq. (1). Namely,
neglecting the Coulomb correction, Kτ ≡ (∂KA/∂δ2)S ≈
�(KA/S)/�(δ2/S) = (

KA1
S1

− KA2
S2

)/( δ2
1

S1
− δ2

2
S2

) gives the
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leading term of Kτ in Eq. (2). It is simply the rate of
change of KA with respect to δ2 evaluated by using the
ratio of their finite changes. Similarly, K∞ ≡ (∂KA/∂S)δ ≈
�(KA/δ2)/�(S/δ2) = (

KA1

δ2
1

− KA2

δ2
2

)/( S1

δ2
1

− S2

δ2
2

) gives the
leading term of K∞ in Eq. (3).

We notice that, while Kτ and K∞ are determined indepen-
dently by the KA data themselves of any two nuclei used, they
satisfy the constraint given by Eq. (1). Therefore, there is an
intrinsic correlation between Kτ and K∞ when they are varied
using the KA data of many different nucleus-nucleus pairs in a
given isotopic chain, as we shall demonstrate.

The corresponding uncertainties of Kτ and K∞ can be
calculated exactly according to the rules of error propagation
using the experimental errors of KA data, i.e., σKA1

and σKA2

in the nucleus-1 and nucleus-2 considered. Nevertheless, to
see analytically what nucleus-nucleus pairs may give the most
accurate Kτ and K∞ values, we notice that, for heavy nuclei
in the same isotope chain, S1 ≈ S2 ≈ 1, the error bars are
reduced to

σKτ
≈

√
σ 2

KA1
+ σ 2

KA2

/∣∣δ2
1 − δ2

2

∣∣, (4)

σK∞ ≈
√(

δ2
2σKA1

)2 + (
δ2

1σKA2

)2/∣∣δ2
1 − δ2

2

∣∣. (5)

They both are inversely proportional to |δ2
1 − δ2

2 |, thus nuclear
pairs having the largest difference in their isospin asymmetries
will give the most accurate Kτ and K∞ values simultaneously.
Moreover, because of the weighting of σKA by δ2 � 1 in
evaluating σK∞ , K∞ can be more precisely evaluated than Kτ ,
explaining the larger errors of the extracted Kτ values.

While in principle the above formalisms can be applied to
any two nuclei, we shall restrict their applications to nuclei
in the same isotopic chain. This will reduce not only effects
of systematic experimental errors as what is being used is the
difference in KA scaled by either the surface factor S or isospin
asymmetry δ of the two nuclei in the same isotopic chain, but
also effects of the higher-order terms neglected in expanding
the KA in Eq. (1). This is also one of the reasons why the
differential approach can more precisely extract both Kτ and
K∞ compared with the typical integral approaches normally
used in the literature.

In cases where one of the nuclei is isospin symmetric, say
δ1 = 0, its KA alone can be used to evaluate K∞ according to
K∞ = KA1/S1 − KCouZ2

1 A−4/3
1 /S1 while Kτ can be evaluated

from Eq. (2) by choosing nucleus-2 as neutron rich as possible
to get the most accurate result, indicating the importance of
using exotic heavy isotopes. As noticed already in the litera-
ture, see, e.g., Ref. [19], the leptodermous expansion in Eq. (1)
itself may not be a good approximation for light nuclei, the
differential approach is thus expected to work better for more
heavy nuclei.

III. DIFFERENTIAL ANALYSES OF KA DATA FROM
EXPERIMENTS AT THE RESEARCH CENTER FOR

NUCLEAR PHYSICS

Shown in Fig. 1 are the results of our differential analyses
of the KA data in 204,206,208Pb, 112,114,116,118,120,122,124Sn,
106,110,112,114,116Cd, and 40,42,44,48Ca from the GMR

experiments at RCNP [12–17] using c = −1.2 and
KCou = −5.2 MeV. The extracted Kτ and K∞ values are
shown as functions of the difference (δ2 − δ1) in isospin
asymmetries of the two nuclei involved in each isotope chain.
Except for the Pb isotopes, we took the KA data directly
from the experimental publications, as listed in Table I. They
derived the KA values by using the moment ratios for the
ISGMR energies EISGMR and the experimental charge radii
(〈r2〉)1/2 from Ref. [23] according to the relation

KA =
(

EISGMR

h̄c

)2

Mc2〈r2〉, (6)

where M is the average nucleon mass. They did not publish the
KA values for the three Pb isotopes. We derived their KA values
using the published ISGMR energies (from

√
m1/m−1) [15]

and their charge radii from Ref. [23]. More quantitatively, we
found that KA is 136.93 ± 1.99 MeV, 137.44 ± 1.99 MeV, and
136.44 ± 1.99 MeV, respectively, for 204Pb, 206Pb, and 208Pb.

Several interesting observations can be made: (1) The un-
certainties of both Kτ and K∞ generally decrease while their
mean values remain approximately constant with increasing
(δ2 − δ1) for each isotope chain. (2) The 106Cd - 116Cd and
112Sn - 124Sn pairs give the most accurate and consistent val-
ues of Kτ = −616 ± 59 MeV and Kτ = −623 ± 86 MeV,
respectively. (3) The Kτ values from analyzing the relatively
light 40,42,44,48Ca isotopes have larger error bars and scatter
around broadly at small isospin separations. However, they
seem to converge at large isospin separations and become
generally consistent with the means from analyzing the Sn
and Cd isotopes within error bars. We notice that, among
all data available from the RCNP experiments, the 40–48Ca
pair has the highest isospin separation (δ2 − δ1) = 0.167. This
pair gives Kτ = −756 ± 149 MeV. As mentioned earlier, the
KA expansion of Eq. (1) is not expected to work well for
light nuclei. The scattering of the Kτ values from analyzing
the Ca data may thus indicate that our differential approach
based on Eq. (1) has reached the limit of its validity. (4) The
106Cd - 116Cd and 112Sn - 124Sn pairs also give the most accu-
rate K∞ values of K∞ = 213 ± 2 MeV and K∞ = 220 ± 3
MeV, respectively. (5) The extracted K∞ shows the well-
known isotope dependence found earlier when the Eq. (1) was
used previously in χ2 fittings of KA data [1,3–6,19] although
our differential approach does not use any fitting at all. Never-
theless, the variation of the K∞ from Cd to Ca isotopes is well
within the uncertainty range of the current consensus value
for K∞.

While the three Pb isotopes pairs have very small isospin
separations of 0.00765, 0.00781, and 0.0155, respectively,
the results from the differential analyses of their KA values
set a useful reference for comparisons and favor a stiff Pb
phenomenon [21] instead of the so-called soft Sn puzzle ex-
isting in the literature. The Pb data give an average value of
K∞ = 223.1 ± 39.5 MeV and Kτ = −245 ± 753 MeV. Their
means are indicated by the horizontal magenta bars for com-
parisons. Two important indications are worth emphasizing.
First, it was not known before what causes the soft Sn puzzle.
Our analysis here indicates that the mean value of K∞ from
Sn isotopes (218 MeV) is only 5 MeV below that from Pb
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FIG. 1. Kτ (lower window) and K∞ (upper window) from differential analyses of the incompressibilities in finite nuclei as functions of
the difference (δ2 − δ1) in isospin asymmetries of the isotope pairs used. The solid lines are the mean values of Kτ and K∞ for the respective
isotope chains. The arrows indicate the Cd and Sn isotope pairs giving the most accurate Kτ and K∞ values.

isotopes (223 MeV), well within the experimental uncertain-
ties. This finding happens to be the same as that found in a
very recent Bayesian uncertainty quantification of the nuclear
matter incompressibility using the original GMR data of the
same sets of isotopes analyzed within the Skyrme Hartree-
Fock plus RPA approach [24]. On the other hand, the mean
value of Kτ from Sn isotopes (−626 MeV) is significantly
below that (−245 MeV) from the Pb isotopes although the
latter also has a large error bar. It indicates that the soft Sn
puzzle is mainly due to the significantly smaller Kτ value for
Sn isotopes or larger Kτ value for Pb isotopes. The overpre-
dictions of the KA values by the state-of-the-art microscopic
theories are most likely due to the model ingredients control-
ling the Kτ instead of K∞ values. Second, it is interesting to
note that the Kτ values from Sn, Cd, and Ca isotopes all con-
verged asymptotically at large isospin separations to relatively
precise values with less than about 20% errors. However, the
average Kτ value for Pb isotopes is significantly higher than
these asymptotic values, although it is only slightly higher
than the Kτ values for Sn and Cd isotopes at the same small
isospin separations. These findings may give us some hints

about whether there is a soft Sn puzzle or a stiff Pb phe-
nomenon. Our results seem to indicate that it is probably more
meaningful to speak about a stiff Pb phenomenon. To verify
the latter experimentally, more KA data for Pb isotopes are
obviously necessary.

It is interesting and necessary to check in more detail the
consistency between the results of our differential analyses
and those from the traditional integral analyses. Shown in
Fig. 2 are the correlations between Kτ and K∞ with each point
representing one nucleus-nucleus pair in the Cd or Sn isotope
chain corresponding to the results shown in Fig. 1. Averaging
over these results is equivalent to performing a typical integral
analysis, e.g., a multivariate χ2 fitting or Bayesian analysis.
The solid lines are results of a χ2 fit to all points in the two iso-
tope chains, separately. The mean of Kτ is −625 ± 100 MeV
for the Cd isotopes and −626 ± 188 MeV for the Sn isotopes.
The corresponding mean of K∞ is 213 ± 3 MeV for the Cd
isotopes and 218 ± 6 MeV for the Sn isotopes. These mean
values are in general agreement with the results of earlier χ2

analyses [3,5] of the same KA data using essentially identical
surface and Coulomb parameters within error bars.
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TABLE I. Results of analysis of incompressibility data of finite
nuclei.

Nucleus KA (MeV) Reference

40Ca 144.46 ± 0.33 [17]
42Ca 139.00 ± 1.09 [17]
44Ca 137.36 ± 0.66 [17]
48Ca 131.90 ± 4.13 [17]
106Cd 127.84 ± 0.86 [14]
110Cd 124.59 ± 0.86 [14]
112Cd 123.59 ± 0.77 [14]
114Cd 120.95 ± 1.24 [14]
116Cd 118.96 ± 0.86 [14]
112Sn 131.86 ± 1.53 [12,13]
114Sn 129.45 ± 1.64 [12,13]
116Sn 127.11 ± 1.53 [12,13]
118Sn 126.39 ± 1.54 [12,13]
120Sn 125.45 ± 1.63 [12,13]
122Sn 121.33 ± 1.54 [12,13]
124Sn 120.17 ± 1.62 [12,13]
204Pb 136.93 ± 1.99 [15]
206Pb 137.44 ± 1.99 [15]
208Pb 136.44 ± 1.99 [15]

Interestingly, within the error bars of the mean values there
is a clear anticorrelation between Kτ and K∞. It can be under-
stood easily. With the surface and Coulomb parameters fixed,
for a given KA value, Kτ and K∞ is expected to be anticorre-
lated according to their relationship given in Eq. (1). Notice
that the Kτ vs K∞ correlations for the Cd and Sn isotopes are
almost in parallel in the direction of K∞ because they give
approximately the same Kτ values but slightly different (about
5 MeV) K∞ values (notice the fine K∞ scale used).

We emphasize that the error bars of the mean values of both
Kτ and K∞ in the integral approaches, i.e., by averaging over

FIG. 2. The correlation between Kτ and K∞, with each point
representing one nucleus-nucleus pair in the Cd or Sn isotope chain
corresponding to the results shown in Fig. 1. The solid lines are
results of a χ 2 fit to all points in each isotope chain.

all isotope pairs, are all much larger than those we found in the
differential analyses of 106Cd - 116Cd and 112Sn - 124Sn pairs.
Besides the advantage of largely canceling the systematic er-
rors in the differential analyses, another reason is that the Kτ δ

2

contribution to KA is very small even for the most neutron-rich
nuclei available. For instance, with δ = 0.2, Kτ = −600 MeV,
Kτ δ

2 = −24 MeV that is still only about 10% of the accept-
able K∞ values around 240 MeV. It is actually significantly
less than the current uncertainty of about 40 MeV of the
consensus value for K∞. A global χ2 fit to the KA data or a
Bayesian analysis of all KA data available thus cannot reliably
extract the value of Kτ from its small contribution relative
to K∞ to KA. In turn, the uncertainty of extracting the K∞
cannot be better than Kτ δ

2/K∞ in the integral analyses of the
KA data. On the contrary, the differential approach decouples
completely the extractions of Kτ and K∞ for each isotope pair
used. Only Kτ and K∞ extracted independently for different
isotope pairs along an isotope chain show an expected intrin-
sic correlation within their respective error bars.

IV. EFFECTS OF THE SURFACE AND COULOMB
PARAMETERS

We have used above the most probable known values of
c = −1.2 [10] and KCou = −5.2 MeV [11]. It is also known
that the Coulomb parameter is rather model-independent
[11,25] while the calculations [1,26–30] of the surface pa-
rameter c show somewhat larger variations around c ≈ −1.
It is generally accepted that both the c and KCou parameters
have less than about (10%–20)% uncertainties [3,5]. How do
theses uncertainties affect the accuracies of extracting the Kτ

and K∞ in the differential analyses? To answer this question,
we have carried out systematic calculations by varying the
two parameters independently by ±20% around their most
probable values.

As an example, shown in Fig. 3 are the variations of Kτ

(lower panels) and K∞ (upper panels) due to the variation of
the surface parameter c (left panels) and Coulomb parameter
KCou (right panels) for the Sn isotopes. Qualitatively, effects
of varying the KCou and especially the parameter c are much
smaller on Kτ than on K∞. Quantitatively, for the 112Sn - 124Sn
pair, changing the c parameter by 40% from −1.2 × 0.8 to
−1.2 × 1.2 makes Kτ change by about 6% from −624 ± 84
to −663 ± 87 MeV, while K∞ changes by about 13% from
205 ± 29 to 236 ± 34 MeV, respectively. On the other hand,
by changing KCou by 40% from −5.2 × 0.8 to −5.2 × 1.2, Kτ

changes by about 8% from −616 ± 87 to −669 ± 87 MeV,
while K∞ changes by about 6% from 213 ± 31 to 227 ± 31
MeV. Thus, the 6%–8% uncertainty of Kτ due to the ±20%
uncertainty of the surface parameter is much smaller than the
approximately 14% uncertainty due to the experimental errors
of KA. While the 8%–13% uncertainty of K∞ due to the ±20%
uncertainty in the Coulomb parameter is compatible with that
due to the experimental errors of the KA data. Thus, the re-
maining uncertainties of the surface and Coulomb parameters
of about 10%–20% have essentially no effect on the extraction
of Kτ .

The observed dependencies of Kτ and K∞ on the variations
of the surface and Coulomb parameters can be understood
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FIG. 3. Variations of Kτ (lower panels) and K∞ (upper panels) due to the variations of the surface parameter c (left panels) and Coulomb
parameter KCou (right panels), respectively, for the Sn isotopes.

analytically by further examining the expressions of Kτ and
K∞ in Eqs. (2) and (3), respectively. First, we examine effects
of the parameter c. The c-dependent part of Kτ is

Kτ ∝
(
1 + cA−1/3

2

)
KA1 − (

1 + cA−1/3
1

)
KA2(

1 + cA−1/3
2

)
δ2

1 − (
1 + cA−1/3

1

)
δ2

2

. (7)

Because the parameter c appears in all terms, its effect largely
cancels out. In particular, for heavy nuclei c/A1/3 ≈ 0, Kτ then
becomes independent of c, i.e.,

Kτ → KA1 − KA2

δ2
1 − δ2

2

. (8)

The c-dependent part of K∞ is

K∞ ∝ δ2
2KA1 − δ2

1KA2

c · (
δ2

2A−1/3
1 − δ2

1A−1/3
2

) + δ2
2 − δ2

1

. (9)

The parameter c only appears in the first term of the denom-
inator. Since both terms in the denominator are very small,
a very small change in the parameter c can thus lead to a
large change in the value of K∞. This also implies that the
surface properties of different nuclei may affect significantly
the extraction of K∞ from the KA data, as already noticed in
the χ2 analyses in Ref. [5].

Similar analyses can be done to understand effects of the
Coulomb parameter KCou. More specifically,

Kτ ∝ −KCouZ2

(
1 + cA−1/3

2

)
A−4/3

1 − (
1 + cA−1/3

1

)
A−4/3

2(
1 + cA−1/3

2

)
δ2

1 − (
1 + cA−1/3

1

)
δ2

2

.

(10)
Again, the parameter c has little effect because it appears in
all terms. Considering cA−1/3 ≈ 0 for heavy nuclei, the above
expression reduces to

Kτ → −KCouZ2 × A−4/3
1 − A−4/3

2

δ2
1 − δ2

2

. (11)

As heavy nuclei are more neutron rich in a given chain of
isotopes, i.e., for A2 > A1, δ2 > δ1, the fraction in the above
equation is always negative. Thus, one obtains Kτ ∝ KCou.
While KCou itself is negative, thus a larger negative KCou de-
creases the value of Kτ , as seen in our numerical calculations.
Given that the overall contribution of the Coulomb term to
Kτ is small, its variation causes little change in the final Kτ

value, while for the Coulomb effect on K∞, a similar analysis
leads to

K∞ ∝ −KCou
Z2

A4/3
1 A4/3

2

δ2
2A4/3

2 − δ2
1A4/3

1

δ2
2 − δ2

1

. (12)
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Since the last fraction is always positive, Kτ ∝ −KCou.
Therefore, a larger negative KCou increases the value of
K∞. Moreover, the above analysis clearly explains why the
Coulomb parameter has opposite effects on extracting the Kτ

and K∞ values.

V. SUMMARY AND CONCLUSIONS

In summary, we emphasize the following aspects of our
work

(i) The analytical expressions for K∞ and Kτ are derived
from solving exactly two linear equations for two
unknowns using the KA data as the only input. While
the approach is very simple, its physics is sound. It
also has no dependence on any nuclear many-body
theories nor interactions. There is absolutely no fit-
ting procedure involved, thus it does not suffer from
the well-known problems in fitting the KA data using
Eq. (1).

(ii) K∞ and Kτ are directly extracted from the experimen-
tal KA data of any two nuclei in a given isotope chain.
Besides showing that the proposed approach gives K∞
consistent with its fiducial value from the consensus
approach, and a Kτ that is much more accurate than
what is available in the literature, we also ask which
isotope pairs are most useful for extracting especially
Kτ at rare-isotope-beam facilities. Our answer to this
question is expected to be useful for future experi-
ments using rare isotopes to study the equation of
state of neutron-rich matter.

(iii) The so-called soft Sn puzzle (when one uses the in-
teractions that correctly reproduce the GMR strength
in 208Pb to calculate the GMR strengths in the Sn and
Cd isotopes within the consensus approach, the ex-
perimental values are always overestimated) has been
alive for over 10 years. However, people have not
really understood the underlying cause of the puzzle,
leading to the conclusion that it is not feasible to
simultaneously reproduce both 208Pb and Sn’s GMR
data by the same interaction [22] using the state-of-
the-art theories within the consensus approach. While
we did not solve this puzzle in this work, we showed
that K∞ from analyzing the GMR data of Pb, Sn, and
Gd isotopes is not much different within the experi-
mental error bars to indicate strongly a soft Sn puzzle.
Quantitatively, K∞ from Sn isotopes is only about 5
MeV smaller than that from Pb isotopes. On the other
hand, Kτ from analyzing the 204,206,208Pb data is sig-
nificantly higher (by ≈380 MeV) than the converged
asymptotic Kτ value at large isospin separations in
analyzing the Sn and Gd isotopes, indicating strongly
a stiff Pb phenomenon [21]. To verify this further,
differential analyses of future GMR data of more Pb
isotopes will be very useful. The suggestion of having
more Pb data was also made for addressing the same
puzzle from a different perspective in Ref. [21].

(iv) There are several caveats in our work. First, if the
leptodermous expansion of Eq. (1) is perfect, one

expects K∞ and Kτ extracted from all pairs of nuclei
to be identical. In reality, this is of course not the
case. As mentioned earlier, we expect the differential
approach to work better for heavy nuclei along the
same isotope chains. Indeed, Kτ from most isotopes
fall approximately on the same line at large isospin
separations within still relatively large error bars,
while K∞ from different isotope chains, especially
the light nuclei, scatter more broadly due to mostly
the remaining (approximately ±20%) uncertainty of
the surface parameter c. Second, to avoid introducing
any model dependence in presenting their KA data,
the experimentalists translated their original GMR
observables to the experimental KA data by using the
experimentally measured charge radii instead of the
matter radii which are inherently model dependent.
This probably introduced a systematic error in the
experimental KA data and its effects have not been
evaluated yet. We used the experimental KA data as
in all previous analyses in the literature. Thus, all
results presented here should be understood within the
context and with the cautions discussed above. Nev-
ertheless, the importance and new physics revealed
in our work can be clearly seen from comparing our
approach and results with the traditional ones in the
literature. We also emphasize that the focus of this
work is a more accurate determination of Kτ for finite
nuclei, while K∞ for infinite nuclear matter just came
out naturally consistent with its fiducial value that has
not changed much since 1980.

In conclusion, we proposed a differential approach to
analyze the incompressibilities of neutron-rich nuclei and in-
vestigated which nuclear pairs give the most accurate results
using KA data and analytically. The nucleus-nucleus pair hav-
ing the largest difference in their isospin asymmetries in a
given isotope chain is found to give the most accurate values
for both Kτ and K∞ simultaneously. Applying this approach
to the KA data from RCNP, we found that the 106Cd - 116Cd
and 112Sn - 124Sn pairs give consistently the most accurate
up-to-date Kτ values of −616 ± 59 and −623 ± 86 MeV,
respectively, largely independent of the remaining uncertain-
ties of the surface and Coulomb parameters. These results
can exclude many predictions based on various microscopic
and/or phenomenological nuclear many-body theories in the
literature. We also studied the stiff Pb phenomenon versus the
soft Sn puzzle and found that the former is favored. Thus,
compared with the integral approach widely used in the lit-
erature, the differential analysis can reveal some interesting
physics underlying the incompressibilities of finite nuclei.
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