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The properties of the scattering solutions obtained as poles of the S and K matrices are analyzed in terms
of pairing effects in the framework of the Hartree-Fock-Bogoliubov (HFB) Jost function. As a result of our
analysis, we found the following: in order for the poles of the S matrix to form a resonance, there must be a pole
of the K matrix nearby. Within the framework of HFB theory, there are three types of resonance states; shape
resonances, particle-type, and hole-type quasiparticle resonances. Other scattering states that can be classified
are independent K- and S-matrix poles. It is shown both numerically and qualitatively using the Jost function
that the pair-correlation effect is hardly observed in the shape resonance state, and that the appearance of the
pair-correlation effect is different in the particle-type and hole-type quasiparticle resonance. We also found a
noteworthy correlation effect that independent K-matrix poles break the metastable structure of the wave function
of the quasiparticle resonance and turn it into an independent S-matrix pole. The correlation effect that the poles
of the independent S matrix break the metastable structure of the inner wave function without breaking the
resonance structure of the outer wave function when a pole of the independent S matrix is near the hole-type
resonance state was also revealed. This is considered to be another aspect of the Fano effect.
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I. INTRODUCTION

Many sharp resonance peaks at the low-energy region of
the neutron elastic cross section is one of the most important
characteristics of nuclei. Those peaks have been analyzed by
the resonance formula derived from the R-matrix theory [1].
Resonance parameters have been used for the wide purposes,
such as the nuclear power technology, radiation therapy, and
so on. However, it is difficult to understand the physics of res-
onance from the resonance parameters because the R-matrix
theory is a phenomenological theory, there is no clear inter-
pretation of physics for each parameter. In addition, there are
several types of the resonance formula, which has the differ-
ent interpretation in physics [2,3], although all of those are
consistent with the Feshbach projection theory [4]. As a con-
sequence of the R-matrix and Feshbach projection theory, the
coupling of channels has the crucial role of the production of
the sharp resonance peaks. Recently, the continuum particle-
vibration coupling method succeeded to reproduce some of
the sharp resonances, and it was shown that those peaks orig-
inate from the coupling between an incoming neutron and the
collective excitation (especially the giant resonances) of target
nucleus [5].

The Jost function [6] may be the appropriate method to
understand the physics of the resonance because the Jost
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function is calculated by the wave function and potential to
represent the appropriate boundary condition for a regular so-
lution of the Schrodinger equation so as to connect the regular
and irregular solutions, and the zeros of the Jost function on
the complex energy plane represent the poles of the S matrix
corresponding to the bound states and resonances. However,
the single channel has been supposed in the original Jost
function. The extension of the Jost function is necessary so
as to take into account the channels coupling. As a first step
of the extension of the Jost function, we have extended the
Jost function within the HFB formalism [7]. In a broad sense,
the HFB formalism is also the channel coupling formalism
for two channels, because the pairing correlation causes the
mixing of the particle and hole configurations.

The pairing correlation is one of the most important cor-
relations to describe not only the fundamental properties but
also the many varieties of interesting phenomena of open-
shell nuclei. The roles of the pairing correlation have been
discussed for a long time on the ground state and excited states
of open-shell nuclei. The important roles of pairing correla-
tion for the exotic structure and dynamics of the neutron-rich
nuclei were also revealed such as the two-neutron halo [8,9],
dineutron [10], antihalo effect [11–13], pair rotation [14], and
so on, in the last decades. Observation of those phenomena by
nuclear reaction is one of the most important issues. The im-
portance of the pairing correlation in the two-neutron transfer
reaction has been discussed [15]. Very recently, it was shown
that the quasiparticle resonance may be possible to be found as
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a sharp peak of the neutron elastic scattering cross section off
the open-shell nucleus within the Hartree-Fock-Bogoliubov
(HFB) theory [7,16].

In Figs. 9 and 11 of Ref. [7], we have shown the trajectories
of the S-matrix poles to show the dependence on the mean
value of the pairing for the stable and neutron-rich unsta-
ble nuclei. The S-matrix poles have been classified into two
types; the hole-type and particle-type poles of quasiparticle
resonances. The quasiparticle resonance originates from the
Hartree-Fock (HF) single-particle or hole state due to the
particle and hole configuration mixing by the pairing cor-
relation. The pairing effect on the hole-type resonance and
the interference effect with continuum have been discussed
in terms of the Fano effect [17].

The shape resonance [18] is one of the well-known types
of resonance. As is written in many textbooks of quantum
physics, a shape resonance is a metastable state in which a
nucleon is trapped due to the shape of the centrifugal barrier
of the mean-field potential of the target nucleus. The wave
function of the internal region is connected to the one of
the external region through the tunneling effect. The shape
resonance is not affected by the occupation of the nucleons in
the potential (i.e., no dependence on the Fermi energy). The
overall shape of the neutron elastic cross section is mainly
determined by those shape resonances.

At first, we thought all of S-matrix poles that are found
within the HFB framework can be classified in particle-type
or hole-type. However, in Ref. [7], we noticed that some poles
(d5/2 for example) have different types of the dependence on
the pairing from neither particle-type nor hole-type poles. This
may imply that we need further classification for the S-matrix
poles. In this paper, we will, therefore, try to classify the S-
matrix poles and discuss the pairing dependence on each type
of pole.

II. ANALYSIS

In the scattering system of the physics, there are three
kinds of quantities, the S, T , and K matrix [19,20]. As is well
known, the S matrix is the unitary matrix, which connects
asymptotically sets of the free particle states in the Hilbert
space of the physical states, such as the bound states, virtual
states, and resonances. The physical states are represented as
the poles of the S matrix on the complex energy plane. The
T matrix is a quantity, which is directly connected with the
cross section. The K matrix is defined as the Hermite matrix.
All of those quantities are related to each other, and it has been
believed that all of those quantities have the same information
but different mathematical properties.

As is known, the S-matrix pole exhibits the bound state,
virtual state, and resonance depending on the position on
the complex energy/momentum plane. The bound and virtual
states are the states that exist on the real axis of the first and
second Riemann sheets of the complex energy, respectively.
The resonance is the S-matrix pole, which exists on the second
Riemann sheet. The real and imaginary part of a pole repre-
sent the resonance energy and width [21]. There is another
definition of the resonance. In Ref. [22], the resonance has
been defined by the Sturm-Liouville eigenvalues. It is possible

to show that the Sturm-Liouville eigenvalues are equivalent
with the poles of the K matrix as shown in Appendix A. Note
that the width of the resonance is defined by the resonance
formula, which is derived in Ref. [22].

However, it is clear that the S matrix and K matrix have
the different mathematical properties, and also their poles
have the different properties and physical meaning. By using
the Jost function, the difference in mathematical properties
between the S and K matrices can be made more clear. The
S matrix is defined as the ratio of the determinant of the Jost
function to its complex conjugate. The K matrix is defined as
the ratio of the real and imaginary parts of the determinant
of the Jost function. The S-matrix poles are given by zeros
of the determinant of the Jost function, and the K-matrix
poles are given by zeros of the real part of the determinant
of the Jost function. The Jost function is defined as a function
connecting regular and irregular solutions, and the S matrix
defined by the Jost function provides the proper scattering
boundary condition in the scattering state. The poles of the
K matrix appearing on the real axis of the complex energy
also provide the boundary condition for the standing wave
solution.

A. S and K matrix and scattering states of n-A scattering
without pairing

Within the HF framework, the S matrix is expressed as

S(0)
l j (ε) ≡ J (−)

0,l j (ε)

J (+)
0,l j (ε)

, (1)

since single-channel system is supposed in the HF framework,
and the S-matrix pole ε0

R is given by

J (+)
0,l j

(
ε0

R

) = 0, (2)

where J (±)
0,l j (ε) is the HF Jost function.

The K matrix can be expressed by using the Jost function
as

K (0)
l j (ε) = i

(
J (−)

0,l j (ε) − J (+)
0,l j (ε)

J (−)
0,l j (ε) + J (+)

0,l j (ε)

)
(3)

and the pole of the K matrix is given by

J (+)
0,l j

(
ε0

n

) + J (−)
0,l j

(
ε0

n

) = 0. (4)

Since the scattering wave function ψ
(+)
0,l j (r; ε) is expressed as

ψ
(+)
0,l j (r; ε) = 1

2

(
v

(−)
l j (r; ε) + S(0)

l j (ε)v(+)
l j (r; ε)

)
, (5)

ψ
(+)
0,l j (r; ε) becomes

ψ
(+)
0,l j

(
r; ε0

n

) = 1
2

(
v

(−)
l j (r; ε0

n ) − v
(+)
l j (r; ε0

n )
)
, (6)

at ε = ε0
n . This is a solution of Eq. (A12), which has a typical

behavior of the standing wave solution because v
(±)
l j has the

asymptotic behavior of the outgoing/incoming wave.
Obviously, the S-matrix and K-matrix poles are indepen-

dent because Eqs. (2) and (4) are independent. When the
S-matrix pole is found, the K-matrix pole is not guaranteed
to be found. The total neutron elastic cross section, which is
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FIG. 1. The numerical results for f5/2 and g9/2 of square of T
matrix |T 0

l j |2, the inverse of the K matrix 1/K (0)
l j , and the phase shift

δ0 determined S(0)
l j = e2iδ0 are plotted as a function of the incident

neutron energy ε in (a)–(c), respectively. In (d), the square of the Jost
function |J (+)

0,l j (ε)|2 is shown on the complex-ε plane.

shown in Ref. [7] consists the partial wave components of
s1/2, p1/2, p3/2, d5/2, f5/2, and g9/2 at the zero pairing limit
(〈�〉 = 0 MeV).

In Figs. 1–3, for those partial wave components, we show
the square of the T matrix |T (0)

l j |2 in the Fig. 1(a), this is
a quantity, which is directly related with the partial wave
component of the cross section. The inverse of the K matrix
is shown in Fig. 1(b) in order to check the existence of the
K-matrix pole on the real axis of the incident energy. In
Fig. 1(c), the phase shift, which is determined by the S matrix
as S(0)

l j = e2iδ0
l j is plotted as a function of the incident neutron

energy ε. The square of the Jost function |J (+)
0,l j (ε)|2 are shown

on the complex-ε plane in order to show the S-matrix pole.
Note that the same Woods-Saxon parameters, which were

used in Ref. [7], are adopted in this paper.. The chemical
potential λ = −8.0 MeV for the stable nucleus and λ = −1.0
MeV for the unstable nucleus are adopted unless specifically
mentioned.

In Fig. 1, the K-matrix pole is found at ε0
n = 7.81 MeV

for f5/2, ε0
n = 9.48 MeV for g9/2, respectively. These ener-

gies of poles are corresponding to the peaks of |T (0)
l j |2. At

ε = ε0
n , the phase shift becomes δ0 = π

2 . In Fig. 1(d), we can
find the S-matrix pole at ε0

R = 6.75–i1.63 MeV for f5/2 and
ε0

R = 9.06–i1.14 MeV for g9/2, respectively. However, εn is
slightly different from the real part of the S-matrix pole ε0,r

R .
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FIG. 2. The same as Fig. 1 but for p1/2 and d5/2.

In Fig. 2, we can find the S-matrix poles at ε = 0.54–i0.56
and 2.59–i4.63 MeV for p1/2 and d5/2, respectively. However,
no K matrix is found in the Fig. 2(b). In the Fig. 2(a), we
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FIG. 3. The same as Fig. 1 but for s1/2 and p3/2.
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solid red and dashed blue curves are the square of the wave function
at ε = ε0

n and ε0,r
R , respectively.

can see the broad peak shape of square of the T matrix, but
obviously the peak energy is quite different from ε0,r

R .
In Fig. 3, we can find the K-matrix pole at ε0

n = 3.70 and
4.12 MeV for s1/2 and p3/2, respectively. These poles are cor-
responding to the peaks of |T (0)

l j |2, but different shape from the
typical resonance formula. The phase shift shows the smooth
profile as a function of the energy although it goes through
π/2 at ε = ε0

n . No S-matrix pole is found in the Fig. 3(d).
This may be a typical profile of the standing wave solution.

The square of the wave functions |ψ (+)
0,l j |2 are shown in

Fig. 4 together with the potential Vl j (r) = Ul j (r) + h̄2l (l +
1)/2mr2 (the solid black curve). For f5/2 and g9/2, the ampli-
tude at the internal region of the potential is larger than the
one at the outside of the potential. The wave function, which
exhibits the internal structure in the nucleus, is connected with
the free particle states outside the nucleus asymptotically. This
behavior shows the metastable property of the state. Both the
S- and K-matrix poles for f5/2 and g9/2 are found near the top
of the centrifugal barrier of the potential. These properties ex-
hibit the typical properties of those so-called written in many

textbooks. The K-matrix poles of s1/2 and p3/2 are found at the
continuum energy region. The behavior of the wave function
exhibits a typical behavior of the standing wave solution, and
the wave length of the wave function inside of the potential
is reflected by the potential depth. The outer amplitude is
larger than the inner one. The S-matrix poles for p1/2 and d5/2

are found near the top of the centrifugal barrier although the
height of the barrier is very low. The amplitude of square of
the wave function outside the potential is much larger than the
one inside the potential, even though the imaginary part of the
S-matrix pole for p1/2 is small. As one can see in Fig. 2, the
phase shift is very small at ε = ε0,r

R for p1/2 and d5/2. This
means that the interference between the scattering wave and
outgoing wave without scattering is very small. Namely, the
incident wave can not enter the nucleus at ε = ε0,r

R for p1/2

and d5/2 even though the centrifugal barrier is very small.
Summarizing the analysis of Figs. 1–4, we can conclude

about the scattering solution and resonance on n-A scattering
within the HF framework as following:

(i) The S-matrix and K-matrix poles can exist indepen-
dently.

(ii) In order to form a resonance, the real part of the pole
of the S matrix is necessary to be near the pole of the
K matrix. It is found that the scattering wave function
has the metastable structure. Hereafter, we call this
type scattering solution as the resonance.

(iii) The independent S-matrix pole can not form the reso-
nance by itself. The square of the T matrix has the
broad shape and less contribution than others. The
wave function has the larger amplitude outside of
nucleus than inside. It seems that the incident wave
can not enter the nucleus even if the centrifugal barrier
is small.

(iv) The independent K-matrix pole exhibits the standing
wave solution. The square of the T matrix at the
energy of the K-matrix pole has a peak, but the shape
is different from the Breit-Wigner formula.

In the next section, we will analyze the pairing dependence
of the scattering solutions (resonance, independent S- and K-
matrix poles) within the HFB framework.

B. S and K matrix and scattering states
of n-A scattering with pairing

In order to show the pairing dependence of poles of the
S and K matrix, it is necessary to introduce the definition
of the S and K matrix, which are described within the HFB
framework. Within the HFB formalism, the S, T , and K matrix
are represented by using the HFB Jost function as

Sl j (E ) = det J (+)∗
l j (E∗)

det J (+)
l j (E )

(7)

Tl j (E ) = i

2
(Sl j (E ) − 1) (8)

= i

2

(
det J (+)∗

l j (E∗) − det J (+)
l j (E )

det J (+)
l j (E )

)
, (9)
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and the K matrix is

Kl j (E ) = Tl j (E )

1 − iTl j (E )
(10)

= i

(
det J (+)∗

l j (E∗) − det J (+)
l j (E )

det J (+)∗
l j (E∗) + det J (+)

l j (E )

)
. (11)

The incident energy ε and the quasiparticle energy E are
related as

ε = λ + E , (12)

where λ(<0) is the chemical potential (Fermi energy) given
in the HFB framework. The S-matrix and K-matrix poles are
found at E = ER, and En, which are determined by

det J (+)
l j (ER) = 0 (13)

and

det J (+)∗
l j (En) + det J (+)

l j (En) = 0, (14)

respectively. It should be noted that the S-matrix pole for a
bound state is found on the real axis of the first Riemann
sheet of the complex energy E plane, the S-matrix pole for a
resonance is found on the second Riemann sheet as a complex
energy ER(=Er

R − iE i
R). The K-matrix pole En is found on

the branch cut, which connects the first and second Riemann
sheet (the real axis of E for E > −λ), since the K matrix is
Hermitian.

In order to analyze the pairing effect, the two potential
formula is useful. As is introduced in Ref. [17], the S matrix
and T matrix can be divided into the HF and pairing parts as

Sl j (E ) = S(0)
l j (E )S(1)

l j (E ) (15)

Tl j (E ) = T (0)
l j (E ) + T (1)

l j (E )S(0)
l j (E ), (16)

when the HFB potential Ul j = (Ul j �

� −Ul j
) is divided the HF

potential part and pairing part as Ul j = U (0)
l j + U (1)

l j where

U (0)
l j = (Ul j 0

0 −Ul j
) and U (1)

l j = ( 0 �

� 0 ).
By inserting Eq. (16) into Eq. (10), we obtain

Kl j (E ) = K (0)
l j (E ) + K (1)

l j (E )

1 − K (0)
l j (E )K (1)

l j (E )
(17)

with

K (0)
l j (E ) = T (0)

l j (E )

1 − iT (0)
l j (E )

(18)

K (1)
l j (E ) = T (1)

l j (E )

1 − iT (1)
l j (E )

. (19)

By using Eqs. (15) and (17), we will classify the scattering
solutions as following:

(i) Shape resonance. If the real part of the S-matrix pole
originates from the S(0)

l j pole is found near the K-

matrix pole originates from the K (0)
l j pole, it is called

the shape resonance.

(ii) Quasiparticle (qp) resonance. If the real part of the
S-matrix pole originates from the S(1)

l j pole is found

near the K-matrix pole originates from the K (1)
l j pole,

it is called the quasiparticle resonance. If the quasipar-
ticle resonance originates from the bound particle (or
hole) state, it is called the particle-type (or hole-type)
quasiparticle resonance.

(iii) Independent S-matrix pole. If no K-matrix pole is
found near the real part of the S-matrix pole ER, the
S-matrix pole is called the independent S-matrix pole.

(iv) Independent K-matrix pole (standing wave solution).
If the K-matrix pole is not close to the real part of the
pole of the S matrix and also it originates from the
pole of K (0)

l j , it is called the pole of the independent
K matrix. This has a physical meaning as a standing
wave.

In Figs. 5–7, the S-matrix poles ER and K-matrix poles En

are plotted as a function of the mean pairing gap 〈�〉 within
the range 0 � 〈�〉 � 10 MeV. The S-matrix pole ER for the
bound state can be found on the real axis of the first Riemann
sheet by solving Eq. (13) numerically. The ER of the resonance
(or independent S-matrix poles) can be found as a complex
energy solution in the second Riemann sheet. The ER for the
bound state, which is given by the real number, is represented
by the black cross symbols. The ER found on the second
Riemann sheet given by the complex number is represented
by the unfilled red circles or triangles with the error bars, the
unfilled symbols and error bars represent the real (Er

R) and
imaginary part (Ei

R), respectively. The K-matrix poles En are
found on the branch cut (the real axis for E > −λ) as the
numerical solution of Eq. (13). Those are shown by the filled
blue circles or triangles. As shown in Eqs. (15) and (17), the
S and K matrices are represented by mean-field component
(S(0)

l j , K (0)
l j ) and pairing component (S(1)

l j , K (1)
l j ), respectively.

To distinguish the contribution of these components in fig-
ures, the poles originating from the mean-field component are
represented by circles and those originating from the pairing
component are represented by triangles. The results for the
stable target of nucleus (λ = −8.0 MeV) are shown in Fig. 5.
Figures 6 and 7 are results for the unstable target of nucleus
(λ = −1.0 MeV).

1. Analysis of f5/2 and g9/2

In the top panels of Figs. 5 and 6, we can find the shape
resonances for f5/2 and g9/2 and their pairing dependence. We
can see the small difference between the pairing dependence
of the S- and K-matrix poles. The pairing effect is very small
for the S-matrix pole, especially the real part of pole is almost
constant for varying the pairing gap. On the other hand, the
K-matrix pole is shifted to higher energy as the pairing gap
increases.

Since the S matrix is expressed by Eq. (15), the S-matrix
pole is given by the pole of S(0)

l j , i.e.,

ER ≈ E (0)
R . (20)

However, one can find that the pairing has some small effect
to make the imaginary part of the S-matrix pole larger when
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FIG. 5. The S- and K-matrix poles (ER and En) plotted as a
function of the mean pairing gap 〈�〉 with λ = −8.0 MeV (sta-
ble nucleus). The S-matrix poles for the bound state is represented
by the black cross symbols. The S-matrix poles are found in the
scattering energy region (ε = E + λ > 0) as the complex energy
ER = Er

R − iE i
R, Er

R is represented by the unfilled red symbols (circles
and triangles), and Ei

R is represented by the red error bars. The filled
blue symbols (circles and triangles) represent the K-matrix poles En.
The circle and triangle symbols represent the poles originate from
the mean field components (S(0)

l j or K (0)
l j ) and the pairing components

(S(1)
l j or K (1)

l j ), respectively. See text for details.

the pairing is very strong. This effect is expected from the
higher-order contribution of the pairing effect.

Since the K matrix is expressed by Eq. (17), it is clear that
the K-matrix pole En is determined as, i.e.,

K (1)
l j (En) = 1/K (0)

l j (En). (21)

By using the first-order approximation of the Taylor expan-
sion, the inverse of K (0)

l j (E ) can be expressed as

1

K (0)
l j (E )

≈ E − E (0)
n

c(0)
l j

, (22)
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FIG. 6. The same as Fig. 5 but λ = −1.0 MeV (unstable nucleus).

where cl j is a real number defined by

1

c(0)
l j

=
(

d

dE

1

K (0)
l j (E )

)
E=E (0)

n

. (23)

By inserting Eq. (22) into Eq. (21), we can obtain

En ≈ E (0)
n + c(0)

l j K (1)
l j (En). (24)
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FIG. 7. The same as Fig. 5 but for f7/2 and d3/2 with λ =
−1.0 MeV (unstable nucleus).
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This is the qualitative explanation about the difference of the
pairing dependence for the shape resonance seen in the top
panels of Figs. 5 and 6.

2. Analysis of p1/2 and d5/2

In the middle panels of Figs. 5 and 6, a hole-type qp
resonance and an independent S-matrix pole are found for p1/2

and d5/2. The small pairing approximation of S(1)
l j and K (1)

l j are
derived in Appendix B and are given by Eqs. (B7) and (B13),
respectively. Since the S matrix Sl j is described by Eq. (15),
the S(0)

l j and S(1)
l j are not correlated to each other as long as

Eqs. (B7) and (B13) are in good approximation. Therefore,
the S-matrix pole ER is given by

ER ≈ E (1)
R , (25)

where E (1)
R is given by Eq. (B14). By inserting Eq. (B13) into

Eq. (21), we can obtain the K-matrix pole En as

En ≈ E (1)
n + K (0)

l j (E )�(h)
l j (E ), (26)

where E (1)
n and �

(h)
l j (E ) are given by Eqs. (B15) and (B10).

The difference between Re ER and En is due to the second term
of Eq. (26). This is the qualitative explanation of the difference
Re ER and En for the qp resonance shown in the middle panels
of Figs. 5 and 6.

The pairing effect on the independent S matrix, which is
seen for d5/2 with λ = −8.0 MeV and p1/2 with λ = −1.0
MeV, is due to the higher-order correction of the pairing. In
the case of d5/2 with λ = −8.0 MeV, it seems that a hole-type
quasiparticle state pushes up the independent S-matrix pole.
This is the origin of the different behavior of the d5/2 trajectory
from others as shown in Fig. 9 of Ref. [7].

3. Analysis of s1/2 and p3/2

In the bottom panels of Figs. 5 and 6, we can find the
independent K-matrix pole and the qp resonance for s1/2 and
p3/2. From Eq. (21), it is clear that both K (0)

l j and K (1)
l j are

strongly correlated to each other when both of them have the
poles.

By inserting Eq. (22) into Eq. (21) and using Eq. (B13) (for
hole-type) or (B24) (for particle-type), we can obtain(

En − E (0)
n

)(
En − E (1)

n

) = c(0)
l j �

(h or p)
l j /2, (27)

where E (1)
n is the pole of K (1)

l j [given by Eqs. (B13) or (B24)].
In order for Eq. (27) to be obtained for a particle-type reso-

nance,
E−E0

p

E+E0
p

≈ 1 [this factor appears in Eqs. (B18) and (B24)]

must be satisfied. This condition required for the system is ex-
actly that of a neutron-rich unstable nucleus, and is reasonable
condition to explain the case of p3/2 shown in the bottom right
panel of Fig. 6. By supposing that the energy dependence of
Fl j and �l j (defined in Appendix B) is small, it is clear that one
can find two solutions of Eq. (27). Both E (1)

n and �l j increase
as the pairing gap increases. Therefore, critical pairing gap
〈�〉c can be defined as the pairing gap when the discriminant
of Eq. (27) is zero, i.e.,(

E (0)
n + E (1)

n

)2 − 4
(
E (0)

n E (1)
n − c(0)

l j �l j/2
) = 0. (28)
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FIG. 8. The square of the scattering wave functions for reso-
nances. The upper component of the HFB scattering wave function
|ψ (+)

1 |2, and HF scattering wave function |ψ (+)
0 |2 are plotted as a

function of r [fm] by the red solid and blue dashed curves, re-
spectively. The HF potential Vl j = Ul j + h̄2l (l + 1)/2mr2 is plotted
together by the black solid curve. See text for details.

When 〈�〉 = 〈�〉c, En is given by En = 1
2 (E (0)

n + E (1)
n ), and

En doesn’t exist for 〈�〉 > 〈�〉c because the discriminant be-
comes negative. The existence of the critical pairing gap 〈�〉c

exhibits the breaking effect of the quasiparticle resonance by
the independent K-matrix pole and pairing. In the bottom pan-
els of Fig. 6, the critical pairing gap is given by 〈�〉c = 3.30
MeV for s1/2 (left panel) and 〈�〉c = 4.08 MeV for p3/2 (right
panel), respectively.

4. Analysis of f7/2 and d3/2

In Fig. 7, we show the quasiparticle resonance for the
partial wave components ( f7/2 and d3/2), which do not have
any visible contribution of |T |2 at the zero pairing limit (i.e.,
|T |2 → |T0|2 ≈ 0 with 〈�〉 → 0). Figure 7 is a good example
to discuss the difference of the pairing effect between the
hole-type and particle-type resonance, because there is no cor-
relation by the independent S- or K-matrix pole since K (0)

l j ≈ 0

when T (0)
l j ≈ 0. The S- and K-matrix poles for f7/2 and d3/2

are expressed directly by E (1)
R and E (1)

n in Appendix B. As
is shown by Eqs. (B25) and (B26), the coupling effect with
continuum is negligible for the particle-type resonance. This
is consistent with our numerical results shown in the left panel
of Fig. 7.

5. Analysis of resonance wave function

In Fig. 8, the scattering wave functions of the resonances
are plotted as a function of r. The red solid curves represent
the square of the upper component of the HFB scattering wave
function |ψ (+)

1,l j |2, the blue dashed curves are the HF wave
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FIG. 9. Pairing gap evolution of the correlation between the qp
resonance and the independent K-matrix pole of p3/2 with λ =
−1.0 MeV. The S- and K-matrix poles are plotted as a function of
the pairing gap 〈�〉 in the right panels. The real and imaginary part
of the S-matrix pole (Er

R and Ei
R) are represented by the red circles

and error-bars, respectively. The K-matrix poles En are shown by the
blue circles and solid curves. In the left panels, the corresponding
wave functions are plotted as a function of r. The wave function at
the real part of the S-matrix pole E = Er

R is represented by the red
solid curve, the wave function for the K-matrix pole En is represented
by the blue dashed curve. The top, middle, and bottom panels are
representing figures for 〈�〉 = 2.0, 4.0 and 6.0 MeV, respectively.

function |ψ (+)
0,l j |2. The difference of those exhibits the effect

of the pairing on the scattering wave function. We can see that
the most of the resonance wave functions have the metastable
structure except the wave function of the p1/2 hole-type qp
resonance with λ = −8.0 MeV. We can not see the clear pair-
ing effect for the shape resonance of g9/2. The wave function
of the particle-type qp resonance of f7/2 with λ = −1.0 MeV
represents almost the characteristics of the bound state. The
corresponding peak of the cross section is expected to be a
very sharp peak as a bound state embedded in the continuum.

In the bottom left panel of Fig. 8, the wave function of
p1/2 hole-type qp resonance with λ = −1.0 and −8.0 MeV

are shown together. The wave function with λ = −1.0 MeV
exhibits the typical behavior of the metastable state, however,
the wave function with λ = −8.0 MeV does not have the
metastable structure although the large value of the phase
shift is expected from the outer behavior of the wave func-
tion. This difference is due to the Fano effect caused by the
pairing, which is introduced in Ref. [17]. The Fano effect is
the quantum interference effect between the bound state and
background continuum. As is known, the shape of the cross
section becomes the asymmetric shape and the Breit-Wigner
type of shape with the small and large values of q, respec-
tively. The physical meaning of q is the transition probability
to the modified quasihole state at the resonance energy. The
hole-type qp resonance for p1/2 with λ = −8.0 MeV appears
at the energy where the value of q is small. In contrast, the one
with λ = −1.0 MeV appears at the energy where the value of
q is large. The wave function of the hole-type qp resonance for
d3/2 with λ = −1.0 MeV also has been analyzed in Ref. [17]
as an example of the resonance, which has large value of
q, and has the metastable structure of the wave function as
is shown in the lower right panel of Fig. 8. Therefore, it
is found that the large transition probability to the modified
quasihole state is necessary to form the metastable structure of
the scattering wave function for the hole-type qp resonance. In
Fig. 9, we demonstrate how the qp resonance wave function
is broken by the wave solution of the independent K-matrix
pole. When 〈�〉 = 2.0 MeV, the resonance wave function still
keeps the metastable structure. As the pairing increases, the
resonance wave function is separated into the wave functions
for the S-matrix pole and the K-matrix pole. The K-matrix
pole originates when the qp resonance and the independent
one approach each other and vanishes when 〈�〉 = 〈�〉c. The
metastable structure of the qp resonance wave function is
broken and is changed to the wave function structure of the
independent S-matrix pole.

III. SUMMARY

We have investigated the pairing effect of n-A-scattering
solutions within the HFB framework. In order to analyze the
pairing effect, we classified the scattering solutions in terms
of the S- and K-matrix poles. By applying the two potential
formula, we divided the S and K matrix into two parts, the
HF part (S(0)

l j , K (0)
l j ) and pairing part (S(1)

l j , K (1)
l j ). The shape

resonance is defined when the poles of the S(0)
l j and K (0)

l j
are in close proximity to each other. The quasiparticle (qp)
resonance is defined by the poles of the S(1)

l j and K (1)
l j , which

are in close proximity to each other. Since it originates from
the bound particle (or hole) state, it is called as the particle
(or hole)-type qp resonance. The independent K-matrix pole,
which has the physical meaning as the standing wave solu-
tion originates from the pole of K (0)

l j . Analyzing all of those
scattering solutions, we found the following:

(i) The pairing effect on the shape resonance is negligi-
bly small.

(ii) The pairing dependence of the particle-type and hole-
type qp resonance is slightly different. The hole-type
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qp resonance is more sensitive to the coupling effect
with continuum than the particle-type resonance.

(iii) Basically, all kinds of the resonance have the
metastable structure of the wave function except the
following cases.

(iv) The independent K-matrix pole correlates with the
qp resonance. The correlation destroys the metastable
structure of the qp resonance, and transforms the qp
resonance into the independent S-matrix pole.

(v) The presence of independent S-matrix poles in the
vicinity of a hall-type qp resonance will destroy
the metastable structure of the qp resonance, while
maintaining the phase shift property for asymmetric

behavior of the wave function. This can be considered
to be another aspect of the Fano effect.

Finally, it can be concluded that, although the shape reso-
nance, particle-type qp resonance and independent S-matrix
poles were classified as the same particle-type S-matrix pole
in Ref. [7], they have different properties and should be clas-
sified as different scattering states.
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APPENDIX A: EQUIVALENCY OF THE K-MATRIX POLES AND EIGENSOLUTIONS
OF THE STRUM-LIOUVILLE THEORY

Within the HF framework, the Lippmann-Schwinger equation is given by

ψ
(+)
0,l j (r; ε) = Fl (kr) +

∫ ∞

0
dr′G(+)

F,l (r, r′; k)Ul j (r
′)ψ (+)

0,l j (r
′; ε) (A1)

with the HF potential Ul j , where ε is the incident energy (ε = h̄2k2

2m ) and GF,l j (r, r′; ε) is the free particle Green’s function defined
by

G(±)
F,l (r, r′; k) ≡ ∓i

2mk

h̄2 [θ (r − r′)Fl (kr′)O(±)
l (kr) + θ (r′ − r)Fl (kr)O(±)

l (kr′)]. (A2)

With the scaled riccati-spherical Bessel functions defined by Fl (kr) = r jl (kr) and O(±)
l (kr) = rh(±)

l (kr) = r jl (kr) ± irnl (kr),
where nl (kr) is the spherical Neumann function.

By introducing the standing wave Green’s function PGF,l defined by

G(±)
F,l (r, r′; k) = PGF,l (r, r′; k) ∓ i

2mk

h̄2 Fl (kr)Fl (kr′), (A3)

Eq. (A1) can be rewritten as

ψ
(+)
0,l j (r; ε) = (

1 − iT (0)
l j (ε)

)
Fl (kr) +

∫ ∞

0
dr′PGF,l (r, r′; k)Ul j (r

′)ψ (+)
0,l j (r

′; ε), (A4)

where T (0)
l j is the T matrix within the HF framework, which can be calculated by

T (0)
l j (ε) = 2mk

h̄2

∫ ∞

0
drFl (kr)Ul j (r)ψ (+)

0,l j (r; ε). (A5)

The K matrix K (0)
l j is expressed by the T matrix T (0)

l j as

K (0)
l j (ε) = T (0)

l j (ε)

1 − iT (0)
l j (ε)

, (A6)

and the standing wave function ψ
(S)
0,l j (r; ε) is defined by

ψ
(S)
0,l j (r; ε) ≡ (

1 + iK (0)
l j (ε)

)
ψ

(+)
0,l j (r; ε) (A7)

≡ 1

1 − iT (0)
l j (ε)

ψ
(+)
0,l j (r; ε). (A8)

Equation (A4) can be rewritten as

ψ
(S)
0,l j (r; ε) = Fl (kr) +

∫ ∞

0
dr′PGF,l (r, r′; k)Ul j (r

′)ψ (S)
0,l j (r

′; ε). (A9)

If there is an energy ε0
n , which is given by

1 − iT (0)
l j (ε0

n ) = 0 (A10)
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or

1/K (0)
l j

(
ε0

n

) = 0, (A11)

then Eq. (A9) can be rewritten as

ψ
(+)
0,l j

(
r; ε0

n

) =
∫ ∞

0
dr′PGF,l

(
r, r′; k0

n

)
Ul j (r

′)ψ (+)
0,l j

(
r′; ε0

n

)
. (A12)

using Eq. (A8), also ε0
n is a pole of the K matrix by Eq. (A6).

The Sturm-Liouville theory [23] is the theory of the second-order differential equations of the form:

∂

∂r

[
p(r)

∂φ̂(r)

∂r

]
+ q(r)φ̂(r) = −νw(r)φ̂(r), (A13)

where p(r), q(r), and w(r) are positive definite coefficient functions. For the HF equation, the coefficient functions are given by

p(r) = h̄2

2m
(A14)

q(r) = ε − h̄2l (l + 1)

2mr2
(A15)

w(r) = −Ul j (r), (A16)

when ε > 0. ν is called the eigenvalue of the Sturm-Liouville equation. According to the Sturm-Liouville theory, there are
an infinite number of real eigenvalues νn, which can be numbered so that ν1 < ν2 < · · · ν∞ (Mercer’s theorem [24]). An
eigenfunction φ̂n,l j (r) has n − 1 nodes inside the potential. Note that the orthogonality of φ̂n,l j is given by∫ ∞

0
drφ̂m,l j (r)w(r)φ̂n,l j (r) = δmn. (A17)

Completeness is given by

∞∑
n=1

w(r)φ̂n,l j (r)φ̂n,l j (r
′) =

∞∑
n=1

φ̂n,l j (r)φ̂n,l j (r
′)w(r′) = δ(r − r′). (A18)

The eigensolution φ̂n,l j satisfies

φ̂n,l j (r) =
∫ ∞

0
dr′PGF,l (r, r′; k)νnUl j (r

′)φ̂n,l j (r
′). (A19)

If we suppose that there is an eigenvalue, which satisfies νn(ε = ε0
n ) = 1, it is very easy to notice that Eqs. (A12) and (A19)

are equivalent. Therefore, the K-matrix pole is same with the eigenvalue of the Sturm-Liouville eigenvalue problem.

APPENDIX B: TWO POTENTIAL FORMULA FOR THE HFB JOST FUNCTION AND S AND K MATRICES

By using the two potential formula for the HFB Jost function, the determinant of the HFB Jost function can be expressed as

det
(J (+)

l j (E )
) = (J (+)

l j (E )
)

22

[
J (+)

0,l j (k1(E ))

+ 2m

h̄2

k1(E )

i

∫ ∫ ∞

0
drdr′ϕ(+)

0,l j (r; k1(E ))�(r)GHF,l j (r, r′; k2(E ))�(r′)φ1,l j (r
′; E )

]
, (B1)

where J (+)
0,l j , ϕ

(+)
0,l j , and GHF,l j is the HF Jost function, irregular solution and Green’s function. �(r) is the pairing potential. k1(E )

and k2(E ) are defined by

k1(E ) =
√

2m

h̄2 (λ + E ) (B2)

k2(E ) =
√

2m

h̄2 (λ − E ), (B3)
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respectively. φ1,l j is the upper component of the regular solution of the HFB equation, which is defined by the linear combination
of two kinds of the regular solution ϕ

(r1)
l j (r; E ) and ϕ

(r2)
l j (r; E ) as

φl j (r; E ) =
(

φ1,l j (r; E )
φ2,l j (r; E )

)
= ϕ

(r1)
l j (r; E ) − (J (+)

l j (E ))12

(J (+)
l j (E ))22

ϕ
(r2)
l j (r; E ). (B4)

By applying Eqs. (B1) to (7), we can obtain

S(1)
l j (E ) =

1 + i 2m
h̄2

k1(E )
J (−)

0,l j (k1(E ))
〈ϕ(−)

0,l j |�GHF,l j (k2(E ))�|φ1,l j〉
1 − i 2m

h̄2
k1(E )

J (+)
0,l j (k1(E ))

〈ϕ(+)
0,l j |�GHF,l j (k2(E ))�|φ1,l j〉

, (B5)

where

〈ϕ(±)
0,l j |�GHF,l j (k2(E ))�|φ1,l j〉 ≡

∫ ∫ ∞

0
drdr′ϕ(±)

0,l j (r; k1(E ))�(r)GHF,l j (r, r′; k2(E ))�(r′)φ1,l j (r
′; E ). (B6)

Note that we do not use any approximation to derive Eq. (B5) within the HFB framework.

1. Hole-type quasiparticle resonance

By supposing only one bound hole state in the system, Eq. (B5) is expressed as

S(1)
l j (E ) ≈

E − E0
h − 〈φh,l j |�|φh,l j〉2

E+E0
h

− W (h)∗
l j (E )

E − E0
h − 〈φh,l j |�|φh,l j〉2

E+E0
h

− W (h)
l j (E )

, (B7)

where

W (h)
l j (E ) = F (h)

l j (E ) − i�(h)
l j (E )/2 (B8)

F (h)
l j (E ) = 2m

h̄2

2

π
P

∫ ∞

0
dk′k′2 |〈ψ (+)

0,l j (k
′)|�|φh,l j〉|2

k2
1 (E ) − k′2 , (B9)

�
(h)
l j (E )/2 = 2mk1(E )

h̄2 |〈ψ (+)
0,l j (k1(E ))|�|φh,l j〉|2, (B10)

E0
h = λ − eh(> 0) (B11)

as the weak pairing approximation.
By using Eq. (B7), T (1)

l j and K (1)
l j can be obtained as

T (1)
l j (E ) = �

(h)
l j (E )/2

E − E0
h − 〈φh,l j |�|φh,l j〉2

E+E0
h

− W (h)
l j (E )

, (B12)

K (1)
l j (E ) = �

(h)
l j (E )/2

E − E0
h − 〈φh,l j |�|φh,l j〉2

E+E0
h

− F (h)
l j (E )

. (B13)

Note that F (h)
l j and �

(h)
l j are expected to be zero when ε = E + λ < 0. Therefore, the pole of S(1)

l j , E (1)
R is given by

E (1)
R ≈

⎧⎨
⎩

√(
E0

h

)2 + 〈φh,l j |�|φh,l j〉2 (ε = E + λ � 0)√(
E0

h

)2 + 〈φh,l j |�|φh,l j〉2 + F (h)
l j (E ) − i�(h)

l j (E )/2 (ε = E + λ > 0)
(B14)

and the pole of K (1)
l j , E (1)

n is

E (1)
n ≈

√(
E0

h

)2 + 〈φh,l j |�|φh,l j〉2 + F (h)
l j (E ) (for ε = E + λ > 0) (B15)

approximately by supposing the pairing is weak and the energy dependence of F (h)
l j and �

(h)
l j is small.

If E0
h exists above −λ (E0

h > −λ), E + E0
h > −2λ is satisfied when ε = E + λ > 0. The second term of the denominator of

Eq. (B7) is, therefore, negligible if |λ| is large. Therefore E (1)
R and E (1)

n are given by

E (1)
R ≈ E0

h + F (h)
l j (E ) − i�(h)

l j (E )/2, (B16)

E (1)
n ≈ E0

h + F (h)
l j (E ), (B17)

respectively. These are the same formulas, which were shown in Ref. [17].
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2. Particle-type quasiparticle resonance

By supposing only one bound particle state in the system, Eq. (B5) is expressed as

S(1)
l j (E ) ≈

E − E0
p − 〈φp,l j |�|φp,l j〉2

E+E0
p

− E−E0
p

E+E0
p
W (p)∗

l j (E )

E − E0
p − 〈φp,l j |�|φp,l j〉2

E+E0
p

− E−E0
p

E+E0
p
W (p)

l j (E )
, , (B18)

where

W (p)
l j (E ) = F (p)

l j (E ) − i�(p)
l j (E )/2 (B19)

F (p)
l j (E ) = 2m

h̄2

2

π
P

∫ ∞

0
dk′k′2 |〈ψ (+)

0,l j (k
′)|�|φp,l j〉|2

k2
1 (E ) − k′2 , (B20)

�
(p)
l j (E )/2 = 2mk1(E )

h̄2 |〈ψ (+)
0,l j (k1(E ))|�|φp,l j〉|2, (B21)

E0
p = εp − λ(> 0) (B22)

as the weak pairing approximation.
By using Eq. (B18), T (1)

l j (E ) and K (1)
l j (E ) are given by

T (1)
l j (E ) =

(E−E0
p

E+E0
p

)
�

(p)
l j (E )/2

E − E0
p − 〈φp,l j |�|φp,l j〉2

(E+E0
p ) − (E−E0

p

E+E0
p

)
W (p)

l j (E )
, (B23)

K (1)
l j (E ) =

(E−E0
p

E+E0
p

)
�

(p)
l j (E )/2(

E − E0
p

) − 〈φp,l j |�|φp,l j〉2

(E+E0
p ) − (E−E0

p

E+E0
p

)
F (p)

l j (E )
. (B24)

From Eqs. (B18) and (B24), the S(1)
l j pole E (1)

R and the K (1)
l j pole E (1)

n are given by

E (1)
R ≈

⎧⎨
⎩

√(
E0

p

)2 + 〈φp,l j |�|φp,l j〉2 (ε = E + λ � 0)√(
E0

p

)2 + 〈φp,l j |�|φp,l j〉2 + δEpW
(p)

l j (E ) (ε = E + λ > 0)
(B25)

and

E (1)
n ≈

√(
E0

p

)2 + 〈φp,l j |�|φp,l j〉2 + δEpF (p)
l j (E ) (for ε = E + λ > 0), (B26)

where δEp is defined by

δEp ≡ 1

2

⎛
⎝1 − E0

p√(
E0

p

)2 + 〈φp,l j |�|φp,l j〉2

⎞
⎠. (B27)

Note that δEp is a very small value when the pairing is weak, therefore, the second term of Eqs. (B25) and (B26) can be neglected.
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