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Single-energy partial-wave analysis for pion photoproduction with fixed-t analyticity
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Experimental data for pion photoproduction including differential cross sections and various polarization
observables from four reaction channels, γ p → π0 p, γ p → π+n, γ n → π− p, and γ n → π 0n, from threshold
up to W = 2.2 GeV were used in order to perform a single-energy partial-wave analysis with minimal model
dependence by imposing constraints from unitarity and fixed-t analyticity in an iterative procedure. Reaction
models were only used as a starting point in the very first iteration. We demonstrate that with this procedure
partial-wave amplitudes can be obtained which show only a minimal dependence on the initial model assump-
tions. The analysis was obtained in full isospin, and the Watson theorem is enforced for energies below W = 1.3
GeV but is even fulfilled up to W ≈ 1.6 GeV in many partial waves. Electromagnetic multipoles E�± and M�±
are presented and discussed for S, P, D, and F waves.

DOI: 10.1103/PhysRevC.104.034605

I. INTRODUCTION

Meson-nucleon scattering and meson photoproduction
have been extensively studied during the last decades in a
comprehensive joint program between experiment and theory.
The objective of this effort is the exploration and determina-
tion of all relevant characteristics of light baryon resonances
N∗ and �∗, i.e., pole positions, decay widths, and branching
ratios. The pion is the lightest meson and couples strongly to
many of these excited states. Therefore, pion scattering and
photoproduction of pions are of central importance for all
analyses which aim to identify and characterize the excited
states of nucleons. A reliable description and understanding
of pion photoproduction is a prerequisite also for the analysis
and interpretation of other final states.

Experimentally, major progress was made due to the avail-
ability of high intensity polarized beams and polarized targets
in combination with 4π detector systems. In experiments at
ELSA, GRAAL, JLab, and MAMI the spin dependence of
pion production has been explored with unprecedented quality
and quantity.

On theory side, single- or multichannel models were de-
veloped and used to interpret the data in terms of resonance
parameters. These approaches are called energy-dependent
(ED) analyses because the energy dependence of amplitudes
is parameterized in terms of resonant and non-resonant contri-
butions. Resonance properties can be related to the parameters
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of such models and are estimated by fits to the data. In
practical calculations compromises are necessary between the
compliance of fundamental constraints like analyticity, uni-
tarity and crossing symmetry on the one side, and computing
power necessary for important systematic studies on the other
side. In general, the extracted resonance parameters vary from
model to model. A recent comparison of the prominent ED
models (Bonn-Gatchina (BnGa) [1], Jülich-Bonn (JüBo) [2],
George Washington University (GW-SAID) [3], and Mainz
(MAID) [4]) and the impact of new polarization data has been
published in Ref. [5].

In so-called energy-independent or single-energy (SE)
analyses a truncated partial wave or multipole expansion is
fitted to the measured angular distributions independently at
each individual energy bin without using a reaction model.
The interpretation of the obtained multipole amplitudes, how-
ever, is hampered by phase ambiguities which cannot be
resolved by high-quality experimental data alone [6–8]. For
each bin in energy and angle one overall phase remains unde-
termined. In Ref. [9] it was demonstrated that a unique SE
multipole analysis is not possible without some theoretical
phase constraints.

In Refs. [10,11] we developed a method to impose analyt-
icity of the reaction amplitudes in the Mandelstam variable
s at a fixed value of the variable t in an iterative procedure.
A reaction model is only necessary as a starting point in
the very first iteration. We applied this method to the γ p →
ηp and γ p → π0 p reactions and demonstrated that indeed
single-energy multipole amplitudes with meaningful energy
dependence can be obtained. Remaining ambiguities were
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FIG. 1. Iterative minimization scheme which achieves point-to-
point continuity in energy using fixed-t analyticity as a constraint.
(IA: invariant amplitudes; FT AA: fixed-t amplitude analysis; SE
PWA: single-energy partial-wave analysis).

traced back to limitations in the experimental database and
different overall phases of the initial reaction models. In the
case of pion production, however, a complete partial wave
analysis necessitates the isospin decomposition of each multi-
pole amplitude because excitations with both isospin I = 1/2
(N∗) and I = 3/2 (�∗) can contribute. Such an analysis is the
objective of the present paper. It requires the simultaneous
analysis of at least three of the four possible reactions, γ p →
π0 p, γ p → π+n, γ n → π− p, and γ n → π0n. At low ener-
gies, unitarity in the form of Watson’s theorem [12] relates the
phases of isospin multipoles to the corresponding phases in
πN scattering, which provides powerful constraints to resolve
the phase ambiguity in a model-independent way. This is an
advantage compared to our previous study in Ref. [11].

The paper is organized as follows. In Sec. II we briefly
describe the formalism. In Sec. III we comment on the ex-
perimental data that were used in our analysis and present
the single-energy multipoles for different starting solutions.
We compare our results with experimental data and with
partial wave analyses from other groups: Bonn-Gatchina,

GWU/SAID, and MAID. Finally, in the Appendices we give
basic formula for kinematics, polarization observables, and
partial wave amplitudes in different isospin representations.

II. FORMALISM

In this paper, we apply the fixed-t analyticity constraining
method for single-energy partial wave analysis (SE PWA) in
pion photoproduction. The method was developed previously
and applied in η photoproduction on the proton [10]. Later on,
the method was applied in SE PWA of π0 photoproduction
on the proton, considering π0 as a “light η meson” [11].
All details about the method are given in these two papers.
The isospin in the final state in η photoproduction is 1/2,
while in pion photoproduction it is either 1/2 or 3/2. There-
fore, each of four invariant amplitudes Ai(ν, t ) (for kinematics
see Appendix A) describing photoproduction of pseudoscalar
mesons on nucleons, can be decomposed into three isospin
amplitudes (see Appendix D).

In order to describe all four channels N (γ , π )N
[p(γ , π0)p, p(γ , π+)n, n(γ , π−)p, n(γ , π0)n], one has to
determine twelve instead of only four amplitudes in η

photoproduction, which makes the whole analysis more com-
plicated and numerically much more demanding. From the
other side, much more experimental data are available in pion
photoproduction and allow reliable solutions for electric and
magnetic multipoles.

The method consists of two separate analyses: the fixed-
t amplitude analysis (FT AA) and the single-energy partial
wave analysis (SE PWA). The two analyses are coupled in
such a way that the results from FT AA are used as a constraint
in SE PWA and vice versa in an iterative procedure. It has not
been proven, but it was extensively tested in πN elastic, fixed-
t constrained SE PWA [13], and since then recommended for
other processes.

Step 1 Constrained FT AA is performed by minimizing the form

X 2 = χ2
FTdata + χ2

cons + 	conv, (1)

χ2
cons = qcons

3∑
iso=1

4∑
k=1

NE∑
i=1

[
Re Hiso,k (Wi, t )fit − Re Hiso,k (Wi, t )cons

εRe
iso,k,i

]2

+ qcons

3∑
iso=1

4∑
k=1

NE∑
i=1

[
Im Hiso,k (Wi, t )fit − Im Hiso,k (Wi, t )cons

εIm
iso,k,i

]2

. (2)

H cons
iso,k (Wi, t ) are helicity amplitudes from SE PWA in the previous iteration, iso stands for three isospin combinations

(+,−, 0), and k = 1, . . . , 4 for helicity amplitudes in photoproduction of pseudoscalar mesons on the nucleon. In a
first iteration, H cons

iso,k are calculated from the initial PWA solution (BnGa2019, SAID-M19, MAID2007). Hfit
iso,k (Wi, t )

are values of helicity amplitudes Hiso,k calculated from coefficients in Pietarinen’s expansions, which are parameters
of the fit. NE is the number of energies for a given value of t , and qcons is an adjustable weight factor. εRe

iso,k,i and
εIm

iso,k,i are errors of real and imaginary parts of the corresponding helicity amplitudes. In our analysis we take εRe
iso,k,i =

εIm
iso,k,i = 1. 	conv is a Pietarinen’s convergence test function; for details see Ref. [10].

Step 2 Constrained SE PWA is performed by minimizing the form

X 2 = χ2
SEdata + χ2

FT + χ2
unitarity + χ2

Born + 	trunc, (3)
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FIG. 2. Experimental data for the π 0 p channel used in our SE PWA are shown in W -t diagrams. The label in the lower left corner of
each panel is the name of the observable. Different colors for the data points correspond to the collaborations: A2MAMI (red), CB/ELSA
(magenta), CLAS (blue), GRAAL (green). Black points correspond to Refs. [23,27,28,34].

χ2
FT = q

3∑
iso=1

4∑
k=1

NC∑
i=1

[
Re Hiso,k (θi,W )cons − Re Hiso,k (θi,W )fit

εRe
iso,k,i

]2

+ q
3∑

iso=1

4∑
k=1

NC∑
i=1

[
Im Hiso,k (θi,W )cons − Im Hiso,k (θi,W )fit

εIm
iso,k,i

]2

. (4)

NC is the number of angles for a given energy W and the values θi are obtained for a corresponding value of t using
Eq. (A15). H cons

iso,k (θi,W ) are helicity amplitudes from FT AA in the previous iteration and Hfit
iso,k (θi,W ) are values
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FIG. 3. Experimental data for the π+n channel used in our SE PWA. Notations as in Fig. 2. Black points correspond to Refs. [32,38,39,42–
45].
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FIG. 4. Experimental data for the π− p channel used in our SE PWA. Notations as in Fig. 2. Black points correspond to the
Refs. [46,47,50,52,53].

of helicity amplitudes Hiso,k calculated from multipoles, which are parameters of the fit. Multipoles with isospin
I = 1/2, and I = 3/2 are used. q is an adjustable weight factor. As in the first step, εRe

iso,k,i and εIm
iso,k,i are errors of

real and imaginary parts of the corresponding helicity amplitudes. Again, we take εRe
iso,k,i = εIm

iso,k,i = 1. 	trunc makes
a soft cutoff of higher partial waves and is effective at low energies, for details see Ref. [10]. According to unitarity
(Watson’s theorem [14]), phases of multipoles in pion photoproduction are equal to corresponding phases of πN
partial waves up to nπ : (

δI
�±

)
γ ,π

= (
δI
�±

)
πN

+ nπ,

tan
[(

δI
�±

)
γ ,π

] = tan
[(

δI
�±

)
πN + nπ )

] = tan
[(

δI
�±

)
πN

]
,

Im
(
T I

�±
) = Re

(
T I

�±
)

tan
[(

δI
�±

)
πN

]
. (5)

T I
�± and δI

�± stand for electric and magnetic multipoles with angular momentum J = � ± 1
2 and isospin I and their

phases, and (δI
�±)πN denotes the corresponding πN phase. Term χ2

unitarity is introduced to impose unitarity at low
energies. It is defined as follows:

χ2
unitarity = qu

{
Im

(
T I

�±
) − Re

(
T I

l±
)

tan
[(

δI
�±

)
πN

]}2
, (6)

where qu is an adjustable weight factor. Above 1.4 GeV, qu is smoothly truncated to zero at 1.6 GeV.
Especially for pion photoproduction we also added a constraint to the Born terms, that appeared in any previous

model dependent analysis as the most important aspect of pion photoproduction besides the excitation of the �(1232)
resonance. The Born constraint is used up to 1.3 GeV:

χ2
Born = qb

3∑
iso=1

�max∑
�=1

(ReTiso,� − TBorn iso,�)2. (7)

Step 3 Use multipoles obtained in step 2 and calculate helicity amplitudes, which serve as a constraint in step 1.
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FIG. 5. Experimental data for the π 0n channel. Notations as in Fig. 2. Black points correspond to the Ref. [56].
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TABLE I. Experimental data for the π 0 p channel used in our
SE PWA. N is the number of data points with −1.002 < t <

−0.005 GeV2.

Obs. N W (MeV) Reference

σ0 600 1075–1136 A2MAMI-2013 [16]
6451 1136–1894 A2MAMI-2015 [17]
283 1465–2200 CLAS-2007 [18]
216 1581–2200 CBELSA/TAPS-2011 [19]

� 528 1074–1215 A2MAMI-2013 [16]
357 1150–1310 A2MAMI-2006 [20]
296 1384–1910 GRAAL-2005 [21]
214 1622–1998 CBELSA/TAPS-2010 [22]
878 1201–2200 Ref. [23]

T 4410 1078–1291 A2MAMI-2015 [24]
371 1295–1895 A2MAMI-2016 [25]
157 1462–1620 CBELSA/TAPS-2014 [26]
330 1291–2196 Ref. [27]

P 157 1462–1620 CBELSA/TAPS-2014 [26]
532 1201–2200 Ref. [28]

E 413 1141–1870 A2MAMI-2015 [29]
315 1426–2200 CBELSA/TAPS-2014 [30]

F 371 1295–1895 A2MAMI-2016 [25]
Fσ0 4500 1074–1291 A2MAMI-2015 [31]
G 3 1232 A2MAMI-2005 [32]

318 1430–1727 CBELSA/TAPS-2012 [33]
54 1232–2200 Ref. [34]

H 157 1462–1620 CBELSA/TAPS-2014 [26]
50 1822–2200 Ref. [34]

χ2
FTdata and χ2

SEdata are standard χ2 functions calculating
the weighted deviations between theory and experiment. An
iterative minimization scheme which accomplishes point-to-
point continuity in energy is given in Fig. 1.

III. RESULTS

A. Database for pion photoproduction

For our analysis, we used pion photoproduction data with
W <2200 MeV and −1.00 < t < −0.005 GeV2 in three re-
action channels. The largest data set exists for the γ p →
π0 p reaction. Over the past 70 years, more then 200 ex-
perimental papers for ten independent observables were
published for this reaction; see the SAID database [15].
However, the majority of experimental data were obtained
during the last 20 years by the A2 Collaboration at Mainz
Microtron MAMI (Mainz, Germany), the CBELSA/TAPS
Collaboration at Electron Stretcher and accelerator ELSA
(Bonn, Germany), the GRAAL Collaboration at European
Synchrotron Radiation Facility (Grenoble, France), and the
CLAS Collaboration at Thomas Jefferson National Acceler-
ator Facility (Virginia, USA). We have not included in our fit
the beam-recoil observables Cx an Cz, because of the small
kinematic coverage and large uncertainties. A summary for
the other eight observables—unpolarized differential cross
section (σ0 = dσ/d�), photon asymmetry (�), target asym-
metry (T ), recoil asymmetry (P), photon helicity asymmetry
E , and double beam-target polarization asymmetries (F , G,

TABLE II. Experimental data for the π+n channel used in our
SE PWA. All notations as in Table I.

Obs N W [MeV ] Reference

σ0 129 1178–1313 A2MAMI-2004 [35]
204 1323–1533 A2MAMI-2006 [36]
250 1497–2200 CLAS-2009 [37]
953 1481–2200 Ref. [38]

� 755 1201–2200 Ref. [39]
153 1543–1901 GRAAL-2002 [40]
195 1723–2093 CLAS-2014 [41]

T 597 1201–2200 Ref. [42]
P 237 1201–2200 Ref. [43]
G 85 1217–2097 Ref. [32,44]
H 126 1217–2052 Ref. [45]

H)—is given in Table I and in Fig. 2. For the differential
cross sections we used only the latest high precision data.
Instead of the F asymmetry at low energies, W < 1300 MeV,
we used polarized differential cross section, Fσ0, which was
measured directly in this low-energy region. For the γ p →
π+n reaction we use six measured observables. In this case,
the database is still dominated by older measurements before
the year 2000. More recent data exist only for σ0 and �. We
use the full database in our analysis. A summary is given in
Table II and in Fig. 3. For the γ n → π− p reaction we use four
observables. A summary is given in Table III and in Fig. 4.
As for γ p → π+n reaction, data which were obtained before
the year 2000 dominate and we used the full world database.
Beside direct measurements with deuteron targets (old and
new data), which should be corrected for Fermi motion and
final state interactions, we have also data from the inverse
reaction π− p → γ n (inverse data). It should be noted that
data obtained from the inverse reaction are in good agreement
with the deuteron data.

The data set for the γ n → π0n reaction is smallest in
comparison to other channels. A summary is given in Table IV
and in Fig. 5. We have data only for three observables: σ0,
�, and E . The data for this reaction were obtained from
quasifree scattering of neutrons bound in light nuclear targets
and require corrections for Fermi motion and final state
interactions. This adds additional systematic uncertainties
to data. It should be noted that for the decomposition of

TABLE III. Experimental data for the π− p channel used in our
SE PWA. All notations as in Table I.

Obs. N W (MeV) Reference

σ0 746 1179–1798 Ref. [46]
882 1179–2110 inverse data [47]
126 1203–1318 A2MAMI-2012 [48]
326 1690–2200 CLAS-2012 [49]

� 203 1188–2019 Ref. [50]
99 1516–1894 CLAS-2014 [51]

T 104 1187–2065 Ref. [52]
P 68 1201–1764 Ref. [53]
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TABLE IV. Experimental data for the π 0n channel. All notations
as in Table I.

Obs. N W (MeV) Reference

σ0 497 1195–1533 A2MAMI-2019 [54]
969 1300–1900 A2MAMI-2018 [55]
497 1204–1869 Ref. [56]

� 216 1484–1912 GRAAL-2009 [57]
E 154 1312–1888 A2MAMI-2017 [58]

all isospin multipoles A(3/2), A(1/2)
p , and A(1/2)

n we only
need a subset of three out of the four possible γ N → πN
reactions. Therefore, we did not use the π0n data set in our
fit. Nevertheless, we compare our results also with data in
this channel. In general, there is a hierarchy of precision
depending on the polarization degrees of freedom used
in the experiment. The highest precision was achieved in
measurements of the unpolarized differential cross section of
γ p → π0 p at MAMI [17]. The statistical uncertainties are so
small, that systematic uncertainties due to angular dependent
detection efficiencies had to be taken into account. For all
other observables the uncertainties in the angular distributions
are dominated by statistics. Normalization errors (luminosity,
polarization degree) are below of 5% and are not taken into
account in this analysis. For our single-energy fits we need all
observables at the same values of W = √

s and for the fixed-t
fits at the same values of t . Typically this is not provided
by the experiments directly. The data are given in bins of
W and center of mass angle θcm with bin sizes and central
values varying between different data sets. Therefore some
interpolation between measurements at different energies and
angles is necessary. We have used a spline smoothing method
[59] which was similarly applied in the Karlsruhe-Helsinki
analysis KH80 [13] and in our previous analysis of η

production [10]. The uncertainties of interpolated data points
are taken to be equal to the errors of nearest measured

data points. Our fixed-t amplitude analysis is performed
at 43 t values in the range −1.00 < t < −0.005 GeV2.
Examples of interpolated data points are shown in
Figs. 6 and 7.

B. Fixed-t amplitude analysis

1. Fixed-t experimental data and Pietarinen fits

As starting solutions in our iterative procedure we use three
different energy dependent analyses, which can provide a full
set of three isospin amplitudes for both proton and neutron
channels, SE1: BnGa2019 (Bonn-Gatchina group) [1]; SE2:
SAID-M19 (GWU-SAID group) [54]; and SE3: MAID2007
(MAID group) [4]. Each invariant amplitude is fitted with 30
parameters in Pietarinen’s expansion.

Our iterative procedure, graphically described in Fig. 1,
converges very quickly after typically three iterations. In the
following we only show the final solutions after convergence
has been reached. Further details about the iterative proce-
dure can be found in our earlier PWA for η photoproduction,
Ref. [10].

Although our three starting solutions can be very different
in some kinematical regions, all of them lead to good fits to
the data with practically the same χ2 values.

Even though our three different starting solutions converge
to three solutions that are much closer together, we also create
an “averaged” solution SEav by performing an average over
our three SE solutions and taking this solution as input for
the first iteration in the final fitting procedure. Figures 6 and 7
show the final fit to the data at fixed t , using as starting solution
the “averaged” solution.

2. Fixed-t helicity amplitudes

In our iterative procedure (see Fig. 1) we use helicity am-
plitudes as constraints. For the fixed-t fits these are helicity
amplitudes obtained in the previous SE fit at fixed W , while

FIG. 6. Fixed-t fits at t = −0.2 GeV2 for reactions (a) p(γ , π 0)p, (b) p(γ , π+)n, and (c) n(γ , π−)p. Solid lines show the final solutions
after convergence in the iterative procedure.
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FIG. 7. Fixed-t fits at t = −0.5 GeV2 for reactions (a) p(γ , π 0)p, (b) p(γ , π+)n, and (c) n(γ , π−)p. Solid lines show the final solutions
after convergence in the iterative procedure.

for the single-energy fits we need helicity amplitudes obtained
in the previous fixed-t fit.

Figures 8 and 9 show real and imaginary parts of the helic-
ity amplitudes at fixed t as functions of W after convergence
has been reached in our iterative procedure. The blue and
red dots are the real and imaginary parts, obtained from the
final SE fits. Full lines are the helicity amplitudes from final
iteration in fixed-t AA. (For these final solutions we used the
averaged solution as the starting solution.)

C. Constrained single-energy PWA

In the single-energy partial-wave analysis we consider 135
energy bins in the range 1.09 < W < 2.2 GeV. The obtained
electric and magnetic multipoles were finally binned in 45
energy bins.

1. SE experimental data and PWA fits

Figures 11–14 show the final fits to the experimental data
and predictions for other unmeasured observables at four
different energies, W = (1210, 1420, 1630, 1840) MeV. The
observables are presented in four rows for the charged chan-

nels, p(γ , π0)p, p(γ , π+)n, n(γ , π−)p, and n(γ , π0)n, from
top to bottom. Most observables (up to seven) and best statis-
tics is provided by the p(γ , π0)p data, but also the p(γ , π+)n
data have mostly good statistics and could be used with up to
six observables. The n(γ , π−)p has also good statistics, and
could be used with up to four observables. Finally, the neutral
channel, n(γ , π0)n, which was not used in our fits, appears in
up to three observables, dσ/d�,�, E . Even as newer data
also appear with quite good statistics, due to the difficult
separation from the nuclear γ , π0 reaction, their systematical
errors can be much larger and are still under discussion.

Our fits (red solid lines) describe the used data in the first
three channels very well; see also Fig. 10 with the χ2/Ndata

values. The data in the neutral channel are only reasonably
described. A real discrepancy in this channel would be a vi-
olation of isospin symmetry. However, unknown systematical
errors, as mentioned before, are much more likely.

Besides the final solution (red lines), we also show the
three solutions, SE1, SE2, SE3, obtained with the starting so-
lutions of BnGa2019, SAID-M19, MAID2007, as black, blue,
and green lines. For all fitted observables all four solutions
coincide and have the same χ2 values; see Fig. 10.
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FIG. 8. Helicity amplitudes at t = −0.2 GeV2 for isospin combinations (+, −, 0), respectively. The blue and red points show real and
imaginary parts of the final PWA SE solution, and the solid lines are obtained in the final FT AA.
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FIG. 9. Helicity amplitudes at t = −0.5 GeV2 for isospin combinations (+,−, 0), respectively. The blue and red points show real and
imaginary parts of the final PWA SE solution, and the solid lines are obtained in the final FT AA.

Comparing these four solutions for unmeasured observ-
ables gives an interesting insight into the problem of complete
experiments. Starting at the lowest energy, W = 1210 MeV
(Fig. 11), the four solutions fully agree in almost all cases,
telling us that the experiment with only five observables for
π0 p, two for π+n and π− p, is practically complete. Visible
ambiguities are only present for P, G, H of π0n in the bottom
row. The reason for this very positive result is certainly the
very high statistics of the data, but also the unitarity constraint,
Watson’s theorem.

The situation changes a little bit when moving forward
to the next selected energy, W = 1420 MeV (Fig. 12). This
energy is nominally above the ππ threshold; however, as has
been known for a long time, the Watson theorem only breaks
down with the onset of the next inelastic nucleon resonances.
These are N (1440)1/2+, N (1520)3/2−, N (1535)1/2− in the
second resonance region. For this energy we can compare
older and new data on the neutral n(γ , π0)n reaction (d).
While the new data [55] have very high statistics, they do
not overlap with the older data [56] even with much larger
statistical errors. Our analysis, which does not need these
neutral channel data, supports the older data.

Going above these energy limits, Figs. 13 and 14 show the
observables at W = 1630 MeV and W = 1840 MeV. While
the fitted observables still completely overlap, the predictions
move apart for our four solutions, showing clear ambigui-
ties, most pronounced in the two neutron channels. In the

 0
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 5

 6

 7

 1  1.4  1.8  2.2

χ2 /n
da

ta

W [GeV]

π0p
π+n
π-p

FIG. 10. χ 2 values per data points for the three fitted reaction
channels, p(γ , π 0)p (red), p(γ , π+)n (blue), and n(γ , π−)p (green).
The fits were performed in 135 energy bins, the obtained electric and
magnetic multipoles were binned in 45 energy bins.

proton channels, for π0 the solutions are still rather unique,
but already in the π+ channel strong deviations appear and
become stronger with energy. The reason is manyfold: no
Watson constraint, no constraint anymore from Born terms,
and a larger number of partial waves are contributing. Here,
the available polarization observables clearly do not form
anymore a complete or almost complete experiment. But with
additional polarization observables, even without recoil polar-
ization, unique solutions could be obtained [8].

2. Helicity amplitudes from SE PWA

Figure 15 shows the helicity amplitudes Hi(W, θ ), i =
1, . . . , 4 that are used as the fixed-t constraint in the single-
energy partial-wave analysis of step 2; see Eqs. (3) and (4).
The figures show the final situation after convergence has been
reached in the iterative procedure. The blue and red points
are the real and imaginary parts of the amplitudes from the
(previous) FT AA and exhibit a mild statistical fluctuation as
each θ value stems form a different fixed-t analysis. At the
highest energies the kinematical limitation becomes visible,
as we reach the kinematical limit with our smallest t value of
−1.00 GeV2 already around 90◦; see the Mandelstam diagram
in Appendix A. The final SE PWA results with reconstructed
helicity amplitudes from partial waves are shown as solid lines
and completely overlap the blue and red points, demonstrating
the perfect convergence of the iteration.

D. Multipoles

The final results of our partial-wave analysis are the electric
and magnetic multipoles E�±, M�± at discrete energy values
W . For better convergence we have performed our PWA up
to �max = 5, but discuss the multipoles only up to F waves
(� = 3). Higher partial waves are dominated by various back-
ground contributions, while nucleon resonances with (� > 3)
show up at larger energies beyond our investigated region.
In full isospin formalism, the multipoles as well as also
other amplitudes can be given in different representations,
depending on the physics issues that are being discussed.
Typically, nucleon resonances have definite isospin and, there-
fore, partial waves are best discussed in representations with
good isospin. However, when nonresonant effects such as
final-state interactions and chiral loop effects at low ener-
gies or Regge models at high energies are discussed, other
representations are more helpful. For example, the MAID
program [4] allows one to study four different representa-
tions; definitions and relations between them are given in
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FIG. 11. Single-energy fit to the experimental data and predictions for polarization observables that are not fitted at W = 1210 MeV.
Predictions from four different single-energy solutions, SE1 (black dot-dot-dashed line), SE2 (blue short-dashed line), SE3 (green dashed-
dotted line), and SEav (solid red line) for polarization observables that are not fitted. In (a), (b), and (c) single-energy fits SEav are shown and
compared to the experimental data (red dots) for p(γ , π0)p, p(γ , π+)n, and n(γ , π−)p reactions and predictions for polarization observables,
respectively. In (d) predictions for polarization observables are shown that are not experimentally measured for the reaction n(γ , π0)n.
Experimental data for n(γ , π 0)n reaction are not fitted in our isospin analysis.
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FIG. 12. Single-energy fit to the experimental data and predictions for polarization observables that are not fitted at W = 1420 MeV. The
new data with high statistics for the neutral channel (d) are from Ref. [55]. Notations as in Fig. 11.

Appendix D. In this section we show figures in three dif-
ferent representations: Figures 16–21 show amplitudes with
isospin 3/2 and isospin 1/2 with proton and neutron targets,

A(3/2), A(1/2)
p , and A(1/2)

n . Figures 22–24 show isovector am-
plitudes A(+), A(−), which are mixtures of isospin 1/2 and
3/2, and isoscalar A(0) amplitudes with isospin 1/2. Finally,
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FIG. 13. Single-energy fit to the experimental data and predictions for polarization observables that are not fitted at W = 1630 MeV.
Notations as in Fig. 11.
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FIG. 14. Single-energy fit to the experimental data and predictions for polarization observables that are not fitted at W = 1840 MeV.
Notations as in Fig. 11.
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FIG. 15. Real and imaginary parts of the helicity amplitudes (blue and red dots) from individual fixed-t AA at different t values in the
final iteration. Full lines are the helicity amplitudes from final iteration in SE PWA. Three columns show results for isospin 3/2, and isospin
1/2 with proton and neutron targets, respectively. From top to bottom, the fixed energy values are W = (1210, 1420, 1630, 1840) MeV and
correspond to preceding Figs. 11–14.

Figs. 25–28 show the amplitudes in the four different charge
channels, which are more closely connected to the measured
observables.

First, we will discuss the isospin amplitudes, which are the
basic results of our fitting procedure, while the other represen-
tations are simply obtained by linear transformations.

1. Isospin multipoles from different initial solutions

Figures 16–18 show intermediate results, where our three
SE1, SE2, and SE3 solutions, that started with BnGa2019,
SAID-M19 and MAID2007, are compared. At low energies
the different and independent solutions are very similar and
coincide very well inside their statistical errors. This is con-
sistent with our observation, when we discussed the SE fits
of the observables in Figs. 11–14. In the energy region from

threshold up to W ≈ 1400 MeV, the experiments are already
almost complete and the partial-wave solutions appear practi-
cally free of ambiguities.

At higher energies, still some partial waves, especially M1+
in the P33 channel, show only very mild variations. But the
bulk part of partial waves appear with larger spreads and larger
statistical uncertainties at energies W > 1600 MeV.

2. Isospin multipoles from averaged solution and comparison
with models

In Figs. Fig. 19–21 our final results (SEav) are shown
and compared to present ED solutions from BnGa, GWU-
SAID, and MAID. From a global view, these figures give a
consistent picture of the partial waves. In most partial waves
and most energy regions the ED solutions appear within the
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statistical uncertainties of our SEav solution. Looking into the
details, nevertheless some remarks should be made. For some
multipoles, such as E (3/2)

0+ , E (3/2)
2− , E (3/2)

3− , MAID2007 (green,

dash-dotted) differs significantly from our new solution. This
is not a surprise as, first of all, MAID2007 is the oldest
solution compared here, and furthermore it was only fitted
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up to W = 1.7 GeV. This rather old PWA is still often used,
especially as it also provides extensions into the virtual photon
region.

But also the newer BnGa2019 (black, dot-dot-dashed) and
new SAID-M19 (blue, dotted) solutions differ significantly
for some multipoles. For example, BnGa solution differs
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FIG. 20. Electric and magnetic S, P, D, F multipoles for isospin 1/2 with a proton target, A(1/2)
p . Notation as in Fig. 19.

mostly in Im E (3/2)
2+ , Im pM (1/2)

1+ , and Im nM (1/2)
1+ , whereas

the SAID-M19 (newest) solution compares best with our
SE solution.

Furthermore, it is worthwhile to note that our new SE so-
lution exhibits local structures in some multipoles, which are

not present in either of those ED solutions. These are visible
in Im M (3/2)

1− and M (3/2)
2+ . In a forthcoming nucleon resonance

analysis with, e.g., the Laurent-Pietarinen formalism, it can
be investigated whether this structure gives new insights in
the nucleon resonance content.
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FIG. 21. Electric and magnetic S, P, D, F multipoles for isospin 1/2 with a neutron target, A(1/2)
n . Notation as in Fig. 19.
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FIG. 22. Electric and magnetic S, P, D, F isovector multipoles A(+); see definition Eq. (D5), Appendix D. Notation as in Fig. 19.

3. Isovector and isoscalar multipoles (+,−, 0).

Next we calculated the isospin combinations (+,−, 0) for
isovector and isoscalar multipoles from the fitted isospin am-
plitudes (A(3/2), A(1/2)

p , A(1/2)
n ) and made comparison with the

ED solutions of MAID2007 (green, dash-dotted), BnGa2019
(black, dot-dot-dashed), and SAID-M19 (blue, dotted). In this

representation the old MAID2007 solution competes even
better with the newer ones. A remarkable result can be ob-
served in the isovector S-wave amplitude E (+)

0+ between pion
and eta threshold. There, the newest SAID-M19 PWA agrees
well with our SE analysis, whereas both BnGa2019 and
MAID2007 differ substantially, but in quite different ways.
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FIG. 23. Electric and magnetic S, P, D, F isovector multipoles A(−); see definition Eq. (D6), Appendix D. Notation as in Fig. 19.
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FIG. 24. Electric and magnetic S, P, D, F isoscalar multipoles A(0); see definition Eq. (D7), Appendix D. Notation as in Fig. 19.

4. Multipoles for charged channels

For completeness we also recalculated the multipoles for
the four charged channels from the fitted isospin amplitudes
(A(3/2), A(1/2)

p , A(1/2)
n ) and compared with the three ED solu-

tions, which were used as starting solutions for the iterative
procedure; see Figs. 25–28.

In this charge separation, the S-wave multipole for
p(γ , π0)p exhibits a strong deviation at low energies between
the pion and eta thresholds. The effect which was already
visible in the isovector (+) representation becomes more
pronounced.
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FIG. 25. Electric and magnetic S, P, D, F waves for reaction p(γ , π0)p; see definition Eq. (D1), A ppendix D. Notation as in Fig. 19.
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FIG. 26. Electric and magnetic S, P, D, F waves for reaction p(γ , π+)n; see definition Eq. (D1), Appendix D. Notation as in Fig. 19.

E. Phases

Finally, in Fig. 29 we compare the phases of our pho-
toproduction multipoles from the final solution SEav with
the pion-nucleon phases from phase-shift analyses of Karl-
sruhe 1984 [60] and GWU/SAID 2006 [61]. From two-body
unitarity the Watson theorem follows, stating that below two-

pion production threshold the phases of pion photoproduction
multipoles must be the same as the pion-nucleon phases of
the same final states. As we have included the unitarity as
a constraint in our PWA, the Watson theorem is perfectly
fulfilled as can be seen in the figure for energies up to W ≈
1400 MeV. This energy is already about 150 MeV above the
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FIG. 27. Electric and magnetic S, P, D, F waves for reaction n(γ , π−)p; see definition Eq. (D1), Appendix D. Notation as in Fig. 19.
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FIG. 28. Electric and magnetic S, P, D, F waves for reaction n(γ , π0)n; see definition Eq. (D1), Appendix D. Notation as in Fig. 19.

two-pion threshold, but since the opening of inelastic channels
for γ N → ππN is rather weak in this energy region, no
deviation in the phases is visible. Even above this energy,
many partial waves remain practically elastic even up to W ≈
1600 MeV. Certainly, due to strong inelastic contributions
from N (1440)1/2+, N (1520)3/2−, N (1535)1/2− resonances,
the P11, D13, S11 multipoles deviate from the πN phases first.

IV. SUMMARY AND CONCLUSIONS

Using the formalism introduced and explained for η pho-
toproduction in Ref. [10], we have performed a fixed-t
single-energy partial-wave analysis of pion photoproduction
in full isospin on the world collection of data. In an iterative
two-step process the single-energy multipoles are constrained
by fixed-t Pietarinen expansions fitted to experimental data.
This leads to a partial-wave expansion that obeys fixed-t ana-
lyticity with a least model dependence. In the energy range of
W = 1.09–2.20 GeV we have obtained electric and magnetic
multipoles E�±, M�±, up to F waves, � = 3, in 135 energy
bins of about 5–10 MeV width. First, we used randomized
starting solutions from BnGa, SAID, and MAID energy de-
pendent solutions and obtained three different SE solutions,
SE1, SE2, and SE3, in an iterative procedure. These three SE
solutions appeared already much closer together than the three
underlying ED solutions, where we started from. Second,
we generated an “average” SE solution, SEav, again in an
iterative process. All four SE solutions compare very well
with the experimental data, where the “averaged” solution
SEav is obtained in the least model dependent way. Finally,
we compared our four SE solutions in their predictions for
unmeasured polarization observables. At lower energies the
spread of these predictions is rather small, but it becomes

larger at higher energies, where it will help to propose new
measurements in order to get a unique PWA.
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APPENDIX A: KINEMATICS IN PION
PHOTOPRODUCTION

For pion photoproduction on the nucleon, we consider the
reaction

γ (k) + N (pi ) → π (q) + N ′(p f ), (A1)

where the variables in brackets denote the four-momenta of
the participating particles. In the pion-nucleon center-of-mass
(c.m.) system, we define

kμ = (ωγ , k), qμ = (ωπ, q) (A2)

for photon and pion, and

pμ
i = (Ei, pi ), pμ

f = (E f , p f ) (A3)

for incoming and outgoing nucleon, respectively. The familiar
Mandelstam variables are given as

s = W 2 = (pi + k)2, t = (q − k)2, u = (p f − k)2,

(A4)
and the sum of the Mandelstam variables is given by the sum
of the external masses,

s + t + u = 2m2
N + m2

π , (A5)
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FIG. 29. Comparison between the SE multipole phases of pion photoproduction and pion-nucleon phases at low energies. Green points
show the phases of the electric and magnetic multipoles of our final solution. The red and blue lines are pion nucleon phase shifts of KA84
[60] and GWU/SAID [61], respectively, corresponding to the πN final states of the photoproduction multipoles. For example, S11 corresponds
to E0+ (A(1/2)

p and A(1/2)
n ), P33 to E1+ and M1+, (A(3/2)), etc. Note, in the Watson regime below 2π threshold, the phases should be identical, due

to unitarity.

where mN and mπ are masses of nucleon and pion, respec-
tively. In the pion-nucleon center-of-mass system, the energies
and momenta can be related to the Mandelstam variable s by

k = |k| = s − m2
N

2
√

s
, ω = s + m2

π − m2
N

2
√

s
, (A6)

q = |q| =
[(

s − m2
π + m2

N

2
√

s

)
− m2

N

] 1
2

, (A7)

Ei = s − m2
N

2
√

s
, E f = s + m2

N + m2
π

2
√

s
, (A8)

W = √
s is the c.m. energy. Furthermore, we will also refer to

the laboratory energy of the photon, E = (s − m2
N )/(2mN ).

Starting from the s-channel reaction γ + N ⇒ π + N , us-
ing crossing relation, one obtains two other channels:

γ + π ⇒ N + N̄, t channel, (A9)

γ + N̄ ⇒ π + N̄, u channel. (A10)

All three channels defined above are described by a
set of four invariant amplitudes. The singularities of the
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FIG. 30. The Mandelstam plane for pion photoproduction on
the nucleon. The red solid curves are the boundaries of the physi-
cal region from θ = 0 to θ = 1800 and the red dashed line shows
θ = 900. The green tilted vertical lines are the threshold for pion
production at W = 1.073 GeV, and W = 1.9 GeV. The horizontal
lines denote the t values −0.2, −0.5 GeV2, where detailed results
for observables and amplitudes are shown and discussed in the text,
Figs. 6–9. The magenta parts give the part inside the physical region,
whereas the cyan parts indicate nonzero amplitudes in the unphysical
region. The fixed-t lines enter the physical region at W = 1.208 GeV
(t = −0.2 GeV2) and W = 1.369 GeV (t = −0.5 GeV2).

invariant amplitudes are defined by unitarity in s, u, and t
channels:

s-channel cut: (mN + mπ )2 � s < ∞, (A11)

u-channel cut: (mN + mπ )2 � u < ∞, (A12)

and nucleon poles at s = m2
N , u = m2

N . The crossing symmet-
rical variable is

ν = s − u

4mN
. (A13)

The s-channel region is shown in Fig. 30. The upper and
lower boundaries of the physical region are given by the
scattering angles θ = 0 and θ = 180◦, respectively. The c.m.
energy W and the c.m. scattering angle θ can be obtained from
the variables ν and t by

W 2 = mN (mN + 2ν) − 1
2

(
t − m2

π

)
(A14)

and

cos θ = t − m2
π + 2 k ω

2 k q
. (A15)

APPENDIX B: CROSS SECTION AND POLARIZATION
OBSERVABLES

Experiments with three types of polarization can be per-
formed in meson photoproduction: photon beam polarization,

FIG. 31. Kinematics of photoproduction and frames for polariza-
tion. The frame {x, y, z} is used for target polarization {Px, Py, Pz},
whereas the recoil polarization {Px′ , Py′ , Pz′ } is defined in the frame
{x′, y′, z′}, which is rotated around y′ = y by the polar angle θ . The
azimuthal angle ϕ is defined in the {x, y} plane and is zero in the
projection shown in the figure.

polarization of the target nucleon, and recoil nucleon polar-
ization detection. Target polarization will be described in the
frame {x, y, z} in Fig. 31, with the z axis pointing into the
direction of the photon momentum k̂, the y axis perpendicular
to the reaction plane, ŷ = k̂ × q̂/ sin θ , and the x axis given
by x̂ = ŷ × ẑ. For recoil polarization we will use the frame
{x′, y′, z′}, with the z′ axis defined by the momentum vector
of the outgoing meson q̂, the y′ axis as for target polarization,
and the x′ axis given by x̂′ = ŷ′ × ẑ′.

The photon polarization can be linear or circular. For a
linear photon polarization (PT = 1) in the reaction plane x̂ we
get ϕ = 0; perpendicular, in direction ŷ, the polarization angle
is ϕ = π/2. For right-handed circular polarization P� = +1.
We may classify the differential cross sections by the three
classes of double polarization experiments and one class of
triple polarization experiments, which, however, do not give
additional information:

(i) polarized photons and polarized target,

dσ

d�
= σ0{1 − PT � cos 2ϕ

+Px (−PT H sin 2ϕ + P�F )

+Py(T − PT P cos 2ϕ)

+Pz(PT G sin 2ϕ − P�E )}, (B1)

(ii) polarized photons and recoil polarization,

dσ

d�
= σ0{1 − PT � cos 2ϕ

+Px′ (−PT Ox′ sin 2ϕ − P�Cx′ )

+Py′ (P − PT T cos 2ϕ)

+Pz′ (−PT Oz′ sin 2ϕ − P�Cz′ )}, (B2)

(iii) polarized target and recoil polarization,

dσ

d�
= σ0{1 + PyT + Py′P + Px′ (PxTx′ − PzLx′ )

+Py′Py� + Pz′ (PxTz′ + PzLz′ )}. (B3)
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In these equations σ0 denotes the unpolarized differential
cross section, the transverse degree of photon polarization is
denoted by PT , P� is the right-handed circular photon polar-
ization, and ϕ the azimuthal angle of the photon polarization
vector in respect to the reaction plane. Instead of asymmetries,

in the following we will often discuss the product of the
unpolarized cross section with the asymmetries and will use
the notation �̌ = σ0�, Ť = σ0T, . . . . In Appendix C we give
expressions of the observables in terms of Chew-Goldberger-
Low-Nambu (CGLN) and helicity amplitudes.

APPENDIX C: OBSERVABLES EXPRESSED IN CGLN AND HELICITY AMPLITUDES

Spin observables expressed in CGLN amplitudes are given by

σ0 = Re {F ∗
1 F1 + F ∗

2 F2 + sin2 θ (F ∗
3 F3/2 + F ∗

4 F4/2 + F ∗
2 F3 + F ∗

1 F4 + cos θ F ∗
3 F4) − 2 cos θ F ∗

1 F2}ρ, (C1)

�̌ = − sin2 θ Re {(F ∗
3 F3 + F ∗

4 F4)/2 + F ∗
2 F3 + F ∗

1 F4 + cos θ F ∗
3 F4}ρ, (C2)

Ť = sin θ Im {F ∗
1 F3 − F ∗

2 F4 + cos θ (F ∗
1 F4 − F ∗

2 F3) − sin2 θ F ∗
3 F4}ρ, (C3)

P̌ = − sin θ Im {2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4 − cos θ (F ∗

2 F3 − F ∗
1 F4) − sin2 θ F ∗

3 F4}ρ, (C4)

Ě = Re {F ∗
1 F1 + F ∗

2 F2 − 2 cos θ F ∗
1 F2 + sin2 θ (F ∗

2 F3 + F ∗
1 F4)}ρ, (C5)

F̌ = sin θ Re {F ∗
1 F3 − F ∗

2 F4 − cos θ (F ∗
2 F3 − F ∗

1 F4)}ρ, (C6)

Ǧ = sin2 θ Im {F ∗
2 F3 + F ∗

1 F4}ρ, (C7)

Ȟ = sin θ Im {2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4 + cos θ (F ∗

1 F4 − F ∗
2 F3)}ρ, (C8)

Čx′ = sin θ Re {F ∗
1 F1 − F ∗

2 F2 − F ∗
2 F3 + F ∗

1 F4 − cos θ (F ∗
2 F4 − F ∗

1 F3)}ρ, (C9)

Čz′ = Re {2F ∗
1 F2 − cos θ (F ∗

1 F1 + F ∗
2 F2) + sin2 θ (F ∗

1 F3 + F ∗
2 F4)}ρ, (C10)

Ǒx′ = sin θ Im {F ∗
2 F3 − F ∗

1 F4 + cos θ (F ∗
2 F4 − F ∗

1 F3)}ρ, (C11)

Ǒz′ = − sin2 θ Im {F ∗
1 F3 + F ∗

2 F4}ρ, (C12)

Ľx′ = − sin θ Re {F ∗
1 F1 − F ∗

2 F2 − F ∗
2 F3 + F ∗

1 F4 + sin2 θ (F ∗
4 F4 − F ∗

3 F3)/2 + cos θ (F ∗
1 F3 − F ∗

2 F4)}ρ, (C13)

Ľz′ = Re {2F ∗
1 F2 − cos θ (F ∗

1 F1 + F ∗
2 F2) + sin2 θ (F ∗

1 F3 + F ∗
2 F4 + F ∗

3 F4) + cos θ sin2 θ (F ∗
3 F3 + F ∗

4 F4)/2}ρ, (C14)

Ťx′ = − sin2 θ Re {F ∗
1 F3 + F ∗

2 F4 + F ∗
3 F4 + cos θ (F ∗

3 F3 + F ∗
4 F4)/2}ρ, (C15)

Ťz′ = sin θ Re {F ∗
1 F4 − F ∗

2 F3 + cos θ (F ∗
1 F3 − F ∗

2 F4) + sin2 θ (F ∗
4 F4 − F ∗

3 F3)/2}ρ, (C16)

with �̌ = � σ0, etc., and ρ = q/k. (C17)

The 16 polarization observables of pseudoscalar photoproduction fall into four groups: single spin with unpolarized cross
section included, beam-target, beam-recoil, and target-recoil observables. The simplest representation of these observables is
given in terms of helicity amplitudes; see Table V.

APPENDIX D: ISOSPIN DECOMPOSITION OF AMPLITUDES AND MULTIPOLES

Invariant amplitudes in pion photoproduction may be decomposed into the isospin combinations AI
i (I = +,−, 0), where

A(+,−)
i describe absorption of an isovector photon, while A(0)

i describes absorption of an isoscalar one. The physical photopro-
duction amplitudes are obtained as follows:

Aπ+n =
√

2(A(−) + A(0) ),

Aπ− p = −
√

2(A(−) − A(0) ),

Aπ0 p = A(+) + A(0),

Aπ0n = A(+) − A(0). (D1)
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TABLE V. Spin observables expressed by helicity amplitudes in the notation of Barker [62] and Walker [63]. A phase space factor q/k has
been omitted in all expressions. The differential cross section is given by σ0 and the spin observables Ǒi are obtained from the spin asymmetries
Ai by Ǒi = Ai σ0.

Observable Helicity representation Type

σ0
1
2 (|H1|2 + |H2|2 + |H3|2 + |H4|2)

�̌ Re(H1H∗
4 − H2H∗

3 ) S
Ť Im(H1H∗

2 + H3H∗
4 ) (single spin)

P̌ −Im(H1H∗
3 + H2H∗

4 )
Ǧ −Im(H1H∗

4 + H2H∗
3 )

Ȟ −Im(H1H∗
3 − H2H∗

4 ) BT
Ě 1

2 (−|H1|2 + |H2|2 − |H3|2 + |H4|2) (beam–target)
F̌ Re(H1H∗

2 + H3H∗
4 )

Ǒx′ −Im(H1H∗
2 − H3H∗

4 )
Ǒz′ Im(H1H∗

4 − H2H∗
3 ) BR

Čx′ −Re(H1H∗
3 + H2H∗

4 ) (beam–recoil)
Čz′ 1

2 (−|H1|2 − |H2|2 + |H3|2 + |H4|2)
Ťx′ Re(H1H∗

4 + H2H∗
3 )

Ťz′ Re(H1H∗
2 − H3H∗

4 ) T R
Ľx′ −Re(H1H∗

3 − H2H∗
4 ) (target–recoil)

Ľz′ 1
2 (|H1|2 − |H2|2 − |H3|2 + |H4|2)

Amplitudes A(+,−,0)
i are crossing symmetric or crossing antisymmetric:

AI
i (ν, t ) = εIξiA

I
i (−ν, t ), (D2)

ε+ = ε0 = −ε− = 1, ξ1 = ξ2 = −ξ8 = ξ6 = 1.

In SE PWA, when resonances of the πN system are analyzed in terms of definite isospin I = 1/2 or 3/2, one has to use
amplitudes describing the πN system in the final state with isospin 1/2 or 3/2.

A(3/2) = A(+) − A(−), I = 3
2 ,

A(1/2) = A(+) + 2A(−), I = 1
2 , (D3)

A(0), I = 1
2 .

In the isospin I = 1
2 channel it is common to use the combination

A(1/2)
p = A(0) + 1

3 A(1/2), A(1/2)
n = A(0) − 1

3 A(1/2), (D4)

where p (n) denotes proton (neutron) target.
Finally, the isospin combinations (+,−, 0) can be expressed into charge and isospin amplitudes as

A(+) = 1

2
(Aπ0 p + Aπ0n) = 1

2

(
A(1/2)

p + A(1/2)
n

) + 2

3
A(3/2), (D5)

A(−) = 1

2
√

2
(Aπ+n − Aπ− p) = 1

2

(
A(1/2)

p − A(1/2)
n

) − 1

3
A(3/2), (D6)

A(0) = 1

2
(Aπ0 p − Aπ0n) = 1

2
√

2
(Aπ+n + Aπ− p) = 1

2

(
A(1/2)

p − A(1/2)
n

)
. (D7)
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