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A new formula to evaluate the nonresonant background for binary breakup is proposed by extending the
Migdal-Watson (MW) formula, which was originally developed for s-wave breakup in charge neutral systems.
The strength of the direct breakup, which is assumed by a one step transition from the initial bound state, is
simulated by the complex scaling method (CSM) in binary cluster systems. The extended MW formula is applied
to the direct breakup of 20Ne → α + 16O, and we have found that the formula nicely reproduces the strength
of the direct breakup evaluated by CSM. We have demonstrated that new parameters introduced in the extended
MW formula have a close connection to the spatial size of the initial wave packet, which is given by the product
of the initial wave function and the external field. The application of the new formula to the direct breakup of
12Be into α + 8He is also discussed.
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I. INTRODUCTION

One of characteristic features in nuclear systems is a wide
variety of nuclear structures in excited states. The properties
of the ground state in the nuclei can be described by the
mean-field structures [1] except for a few examples, hence
the collective motion generated by the coherent single-particle
excitation inside of the mean field appears in the excited
states [1]. Furthermore, the so-called cluster structure induced
by the decomposition of the nucleus into several subunits also
exists in the excited states of the nucleus. The typical example
of such a subunit is the α particle, and the nuclear structure
based on the α particle is called the α cluster structure [2].
The α cluster model is well known to explain various features
in lighter nuclei [2].

In the lighter mass systems, the difference in the mean-field
and cluster structures is known to be prominent in excited
states with lower spins, such as Jπ = 0+ and 1−. In the mass
region of A � 20, for instance, the 0+ and 1− states having
cluster structures are observed as discrete or sharp resonant
states in the lower excited states below the excitation energy
of Ex � 15 MeV [3,4], while such lower spin states based on
the mean-field structure exist in a much higher energy region,
Ex � 20 MeV, with a broad width [1]. The experimental
identification of the spin-parity and the decay width of the
resonant states is essential to investigate the intrinsic structure
of the observed resonances, which would be characterized in
terms of the mean-field structure or the cluster structure.

Inelastic scattering is a useful tool to explore the nuclear
structure in excited states. In particular, the inelastic excitation
of the nucleus to the resonant states embedded in continua
above the particle decay threshold, which is often called the
breakup reaction, is very important because we can pin down

the intrinsic nuclear structure in the resonances by controlling
the detection of the exit channels, which are the combination
of the emitted fragments [5–12]. For example, the nucleon
decay must be the dominant process in the resonant states hav-
ing a large probability of single-particle configurations [5–7],
while the cluster decays, such as the α decays, will strongly
occur in the resonances having a large component of the
α cluster configuration [8–12]. Therefore, we can infer the
features of the intrinsic structure in the resonant states through
the observation of the breakup into the different channels,
such as the cluster channels and the nucleon channels. A typ-
ical example of such a measurement of the different channels
can be found in Ref. [13].

In recent studies, the breakup reactions going to the con-
tinuum states have been extensively advanced in both the
experimental and theoretical fields. For example, the experi-
mental technique to detect multiparticles decays including the
decays of neutrons has been prominently developed [14–16],
and this development allows deep investigation of the reso-
nant states in the few-body continuum systems. In contrast,
the famous example of the theoretical framework to handle
the breakup reaction is known as the coupled discretized-
continuum channel (CDCC) [17]. In recent studies, the CDCC
method is more advanced. Sophisticated analyses have been
done for binary [18] and three-body [19] breakup reactions.
Moreover, it has been applied to complicated systems, in-
cluding the mutual breakup process involving the multicluster
configurations [20,21].

Good examples of the sophisticated analyses of the
breakup reactions linked with the structure problem can be
seen in the 12Be nucleus, which finally decays into the α +
8He and 6He + 6He channels [8–12]. In Ref. [10], a careful
multipole decomposition analysis (MDA) was performed, and
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the MDA analysis elucidates that many resonant states with
an intermediate width of �R � 1 MeV exist in the spins from
Jπ = 0+ to 4+ [10]. The resonances in these channels appear
in a close energy spacing with �E ≈ 0.5 MeV in the lower
excitation-energy region below Ex = 15 MeV. The experi-
mental results were compared with the theoretical model, the
generalized two-center cluster model (GTCM) with the α +
α + 4n configuration [22–26]. The resonance sequence and
the decay width in the theoretical calculation are completely
consistent to the experimental observations [22,23]. Further-
more, the observed decay scheme into different channels, such
as 12Be → α + 8He and 6He + 6He, is also consistent with
the GTCM calculation [24,25].

Excited states having the characteristic intrinsic struc-
tures are usually observed as intermediate resonances with
a width of �R � 1 MeV above a particle decay threshold,
and the determination of their resonance parameters, such
as the resonance energy and the decay width, is essential
in the quantitative analyses of the intrinsic structure of the
intermediate resonances. In determining the resonance param-
eters, the evaluation of the nonresonant background strength,
which has a broad continuum structure, is indispensable.
The background strength is expected to be generated by a
one-step transition from the initial ground state to the final
state, which corresponds to the scattering continuum state
with the effect of the final state interaction (FSI) among the
decaying particles. However, the breakup strength is often
evaluated without FSI [5], and there is no systematic for-
mula to evaluate the nonresonant background strength with a
strong FSI.

In this article, we propose a new formula to evaluate the
background strength for the binary breakup reaction with
FSI by extending the Migdal-Watson (MW) formula [27–29].
This formula was originally valid for the s-wave breakup in
binary systems composed of the charge neutral particles, and
the strength is parametrized in terms of two variables in the
effective range theory: the scattering length and the effec-
tive range [30]. Here we try to generalize the MW formula
by introducing extra parameters to describe the nonresonant
background in the general binary breakup reactions. The
preliminarily result of our extended formula was published
in Ref. [31]. Although the sophisticated calculations for the
breakup reactions have largely progressed [18–21], a simple
formula to evaluate the background contribution is still un-
established. Thus, the development of a simple formula to
describe the background strength is quite constructive for the
pragmatic analyses of experimental data.

In the evaluations of the nonresonant background strength
generated by the binary breakup, we employ the complex scal-
ing method (CSM) [32], which is a powerful tool to describe
few-body continuum states. We check the validity of the ex-
tended MW formula by fitting the nonresonant background
strength evaluated from the CSM calculation. In the present
analysis, we consider the breakup of 20Ne into α + 16O be-
cause the 20Ne nucleus is known to be a typical example
of a binary cluster system, and the α + 16O cluster model
nicely reproduces the observed energy spectra in 20Ne [33].
A similar calculation is applied to the breakup of 12Be →
α + 8He [10].

The organization of this article is the following. In Sec. II,
theoretical formulation is explained. The original Migdal-
Watson theory and its extension are explained in Sec. III. In
Sec. IV, the computational results are shown, and the validity
of the extended MW formula is discussed. The final section is
devoted to a summary.

II. THEORETICAL FRAMEWORK

In the present calculation, the complex scaling method
(CSM) is a basic computational procedure of the nonresonant
breakup process going to binary fragments. The details of
the theoretical framework are given in Ref. [32]. We briefly
explain the essence of the present calculation in the following.

A. Complex scaling method

In the complex scaling method (CSM) [32], the transfor-
mation of the complex rotation with the rotation angle θ ,

Û (θ ) f (r) = e
3
2 iθ f (eiθ r) = f θ , (1)

is introduced for the arbitrary function of f (r). Here the rota-
tion on r should be read as the transformation on the radial
part of the coordinate, hence r → reiθ . The Schrödinger
equation transformed by this complex rotation becomes

Ĥ θ�θ = E θ�θ , (2)

where �θ is defined by Eq. (1) and Ĥ θ = Û (θ )ĤÛ (θ )−1.
In the rotated Hamiltonian Ĥ θ , the dynamical coordinates of
r contained in Ĥ are complex rotated: Ĥ θ = Ĥ (eiθ r). The
amplitude of the resonant wave function, which originally
diverges in the asymptotic region, is damped in the large-
distance region by this complex rotation, hence the usual
computation technique for the bound state problem, the ba-
sis expansion method, is applicable. The energy eigenvalues
calculated from CSM plus the basis expansion technique be-
comes the discrete and complex eigenvalue E θ → E θ

ν labeled
by the eigenvalue number ν. According to the ABC (Aguilar,
Combes and Balslev) theorem [32], the energy eigenvalues for
the bound state are invariant, and the eigenvalues for the reso-
nances are clearly separated from the nonresonant continuum
states in the complex energy plane [32].

The CSM is applicable to the calculation of the strength
function, which represents the transition strength of the initial
ground state (�i) induced by the external field Ôλ with the
multipolarity λ [34]. The definition of the strength function
Sλ(E ) is given by

Sλ(E ) =
∑

f

|〈� f |Ôλ|�i〉|2δ(E − E f ), (3)

where � f denotes the final state belonging to the f th eigen-
state excited by the external field Ôλ. By introducing the
complex rotation given by Eq. (1) and the extended complete-
ness relation [32,34], the strength function is rewritten as

Sλ(E ) = − 1

π
Im Rλ(E ) (4)
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with the response function of Rλ(E ) defined by

Rλ(E ) =
∑

ν

〈
�̃θ

i

∣∣(Ô†
λ)θ

∣∣�θ
ν

〉〈
�̃θ

ν

∣∣Ôθ
λ

∣∣�θ
i

〉
E − E θ

ν

. (5)

Here �θ is the solution of CSM, and the tilde in the bra
state means that the complex conjugate is not taken for the
radial part of the wave function [32]. Equations (4) and (5)
are derived in Eqs. (2.1) and (2.8) in Ref. [34].

B. Operators for direct breakup

In the present calculation, we assume that the nonresonant
breakup of the binary system occurs in the one-step tran-
sition, which is often called the direct breakup. The direct
breakup is simulated by the strength and response functions
in CSM, shown in Eqs. (4) and (5). Equation (5) represents
the response function of a nucleus, which describes the decay
process under the external field Ôλ. In the strict meaning, the
response function is different from the transition matrix in
a realistic breakup reaction, in which the nucleus is dissoci-
ated by the nuclear interaction from other nucleus. However,
the transition matrix for the breakup can be reduced to the
response function with a multipole operator proportional to
the spherical harmonics if we assume a one-step transition
for the breakup process under the plane wave approximation
with the zero-range nuclear interaction between the colliding
nuclei, as shown in a series of equations of Sec.14.1.2 in
Ref. [35]. A detailed explanation about the relation of the
response function and the transition matrix is also shown in
Ref. [27].

The resultant operator in the one-step breakup process is
derived in Eq. (14.10) in Ref. [35], and it has the form

Ôλ ∼
∑

i

jλ(Qri )Yλμ(r̂i ), (6)

which is written in terms of the nucleon coordinate ri with
a nucleon number i in the breakup nucleus. Here jλ and Yλμ

represent the spherical Bessel function and the spherical har-
monics, respectively, and the former contains the momentum
transfer Q. The expansion in jλ over Q generates a series
of operators having the functional form of the power of ri

multiplied by Yλμ.
The operator in Eq. (6) is expressed in terms of the

nucleon coordinates ri, but a specific part of the operator
depending on the relative coordinate R between the breakup
fragments can be extracted by introducing coordinate rear-
rangement [3,36,37]. In the final expression, we can obtain
the standard operator with multipolarities of λ = 1 and 2 as
the external field inducing the direct breakup in the binary
system:

Ôλ =
√

4πRλYλ,0(R̂), λ = 1, 2, (7)

where R denotes the relative coordinate of two fragments. The
derivations of these monopole and quadrupole operators can
be confirmed in Eqs. (4) and (6) in Ref. [36], respectively.
In addition, the higher-order operators are also generated
from the momentum expansion in jλ, and we consider such

higher order operators for the monopole and dipole excita-
tions, which are given by

Ôλ=0 =
√

4πR2Y0,0(R̂), (8)

Ôλ=1 =
√

4πR3Y1,0(R̂). (9)

The explicit derivation of the monopole operator is shown in
Eq. (2.15) in Ref. [3], while that of the dipole operator can be
seen in Eq. (12) in Ref. [37]. The importance of the cluster
excitation by these higher order operators has recently been
pointed out in Refs. [3,4,37,38].

A special treatment is required in the calculation of the
monopole transition using Eq. (8). In the matrix element for
the response function in Eq. (5), the operation of the monopole
operator (Ôλ=0) on the initial wave function (�i) in the ground
state generates the superposition of a series of wave functions,
which contains both the ground and excited states. Thus, the
ground state component must be extracted from the prod-
uct of the monopole operator and the initial wave function,
which is called the initial wave packet [27]. This exclusion
can be achieved by the replacement in the radial operator
R2 → R2 − 〈R2〉, in which 〈R2〉 denotes the expectation value
of R2 with the ground wave function.

C. Interaction potentials and wave functions

In the calculation of the α + 16O system, the computational
setting is basically same as those in Ref. [33]. The interaction
potential V , which is used to calculate the initial and final
wave functions, is composed of the nuclear (VN ) and Coulomb
(VC) potentials, and their explicit form is given by

V (R) = VN (R) + VC (R), (10)

VN (R) = −154 exp(−0.1102R2), (11)

VC (R) = 16
e2

R
erf (0.4805R), (12)

with the definition of the error function being

erf (x) = 2√
π

∫ x

0
exp(−t2)dt . (13)

The energy levels calculated from these potentials can re-
produce the experimental spectra of the ground and excited
rotational bands, which correspond to the parity doublet in the
α + 16O configuration [33].

In the calculation of α + 8He, we construct the nuclear
potential [VN (R)] by the double folding (DF) procedure [39],
which is symbolically written as a function of the α- 8He
relative coordinate, R:

V DF
N (R) =

∫∫
ρα (rα )ρ8(r8) × vDDM3Y

NN (s, ρ)dr1dr2 (14)

with s = |r8 − rα − R|. Here rα (r8) denotes a coordinate
measured from the center of mass in the α particle (8He).

The densities of the α particle (ρα) and 8He (ρ8) as-
suming the lowest shell model configurations [(0s)4 and
(0s)4(0p)4] are constructed to reproduce the charge form
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factor of the electron scattering and the observed nuclear ra-
dius, respectively. In Eq. (14), vDDM3Y

NN represents the effective
nucleon-nucleon (NN) interaction, which acts between a pair
of nucleons contained in α and 8He. In the present calculation,
we adopt the DDM3Y (density-dependent Michigan three-
range Yukawa) interaction [39,40]. The Coulomb potential
(VC) is generated by an error function similar to Eq. (12).

The DF potential with DDM3Y has been successful in var-
ious applications to scattering problems from the low-energy
molecular resonance region [41–43] to the high energy re-
gion [44,45]. The successful applications of DDM3Y mean
that the asymptotic behavior of the wave function for the scat-
tering particles is precisely described by this potential because
the cross section is sensitive to the outer part of the scattering
wave function. Since the response function in Eq. (5) is also
sensitive to the outer parts of the wave function in the initial
bound state (�i), we can consider that the DF potential with
DDM3Y is a realistic nuclear potential for handling the re-
sponse function.

The computational condition to prepare the initial wave
function (�i) and the final one (� f ) for the α- 16O relative
motion is basically the same as that in Ref. [33]. Namely, the
pseudopotential with the harmonic oscillator wave function is
included to exclude the Pauli forbidden states in solving the
Schrödinger equation in addition to the potentials shown in
Eqs. (10), (11), and (12) [33,34].

In the case of α + 8He, the DF potential in Eq. (14) and
the Coulomb potential with the error function are used in
solving the wave functions of the α- 8He relative motion,
and we do not include the pseudopotential. Instead of the
pseudopotential, we consider the Wildermuth condition to
take into account the Pauli exclusion principle between two
He nuclei for simplicity [46]. When we assume the lowest
shell model configurations of (0s)4 and (0s)4(0p)4 for α and
8He, respectively, the total oscillator quanta (N) for the lowest
allowed state is N = 4 for the α + 8He configurations.

III. MIGDAL-WATSON THEORY AND ITS EXTENSION

A. Migdal-Watson theory for the strength function

In the s-wave breakup of a binary system composed of
charge neutral particles, the strength function can be ex-
pressed by a closed formula in the case of the short range
limit of spatial size in the initial wave function. This formula
was originally developed by Migdal and Watson, and it is
called the Migdal-Watson (MW) theory [28,29]. This formula
expresses the strength function in terms of two parameters in
the effective range theory [30]. A detailed explanation of the
MW formula is reported in Ref. [27]. Here we briefly explain
the MW formula in the following.

If the final state wave functions of � f are not the
discrete state but the continuous distorted wave speci-
fied by the asymptotic momentum k with the relation of
the decay energy E (k) = h̄2k2/2m, the completeness re-
lation of

∑
f |� f 〉〈� f | = ∑

f |E f 〉〈E f | = 1 is replaced by∫
dk|k〉〈k| = 1, and the strength function in Eq. (3) for the

direct breakup going to the binary continuum state becomes

Sλ(E )dE ∝ ∣∣〈χ ( f )
k,λ

∣∣Ôλ

∣∣χ (i)
〉∣∣2

k2dk. (15)

In this expression, χ ( f )(R) and χ (i)(R) represent the final and
initial wave functions for the relative motion of the binary
system. When we consider the s-wave state for the initial wave
function [χ (i)(R) = χ (i)(R)], the final wave function has a
definite relative spin, which is the same as the multipolarity
(λ) in the operator Ôλ. In Eq. (15), the distorted wave in the
final state is specified by the magnitude of the momentum
of k, and the angular part of the asymptotic momentum (k̂)
is dropped by the angular integration in the completeness
relation.

We express the distorted wave in the reduced form

χ
( f )
k,λ

(R) = wk,λ(R)

kR
Yλ(R̂) (16)

and consider the monopole transition, λ = 0, which corre-
sponds to the s-wave scattering state in the final state. In
the k → 0 limit of the s-wave scattering without Coulomb
interaction, we can use the effective range theory [30]. Ac-
cording to this theory, the wave function ωk,λ=0(R) inside of
the nuclear potential is almost independent of both of the
collision energy and the details in the potential shape if the
depth of the nuclear potential is much larger than the collision
energy. In this situation, it is possible to use the approximated
relation wk,0(R) ∼ ξ (R) sin δk with the s-wave phase shift δk

and the fixed radial function of ξ (R). This approximation is
valid inside of the nuclear interaction.

We call the product of the initial wave function and the
operator, such as Ôλ=0χ

(i) in Eq. (15), the initial wave packet.
If the initial wave packet is strongly confined inside of the
nuclear interaction, we can obtain the energy dependence of
sin2 δk in the strength function, such as

S0(E )dE ∝ sin2 δk

k
dE , (17)

by employing the relation wk,0(R) = ξ (R) sin δk in Eqs. (15)
and (16). This expression using sin δk is called the Migdal-
Watson (MW) approximation [28,29]. The details of the MW
approximation are explained in Eq. (73) in Ref. [27]. Further-
more, by using the well known relation

k cot δk ∼ − 1

asc
+ r0

2
k2 (18)

with the scattering length asc and the effective range r0, we
obtain the final expression of

S0(E )dE ∝ k

k2 + (
1

asc
− r0

2 k2
)2 dE

=
√

E

AE2 + BE + C
dE , (19)

where the constants A, B, and C are functions of asc and r0.
The MW formula in Eq. (19) is valid for the breakup from
the initial wave packet strongly localized inside of the nuclear
interaction because we use the relation wk,0(R) = ξ (R) sin δk ,
which holds only in the spatial range of the nuclear interac-
tion, in the whole region of the integration in Eq. (15).

The final expression in Eq. (19) has a peak in the variation
of the energy, which is determined by the quadratic energy
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denominator, and the peak structure depends on the functional
form in the numerator,

√
E , which corresponds to the phase

volume for the decaying particles. Due to these two factors,
the strength function starts from zero at E = 0 (threshold
energy for the binary decay) and goes to zero at E → ∞. The
former behavior is due to the increase of the phase volume,
while the latter is generated by the higher nodal behavior
in the final scattering state, which cancels the integration in
the matrix elements contained in Eq. (15). Thus, a single
and broad peak must appear in the energy distribution of
the strength function as long as there are no special intrinsic
structures in the final and initial wave functions. This is a
general feature in the structureless strength function generated
by the direct (one-step) breakup, and we should keep in mind
this basic feature when extending the MW formula in Eq. (19).

B. Extension of Migdal-Watson theory

The MW formula shown in Eq. (19) is valid for the s-wave
breakup from the initial wave packet localized inside of the
nuclear interaction, which corresponds to the tightly bound
system composed of the charge neutral fragments. Here we
try to extend Eq. (19) to describe the direct breakup reaction
of general binary systems, which have finite charge, finite
spin in the final scattering state (λ 
= 0), and finite size of
the initial wave packet. Since the basic feature of the single
peak structure confirmed in Eq. (19) should be invariant, in the
present extension, it is quite natural to consider the functional
form

Sλ(E ) ∝ fλ(E )

(AE2 + BE + C)
, (20)

where the function fλ(E ) represents the modification function
for

√
E appearing in the original MW formula. We include all

of the finite effects in this modification function.
First, we consider the correction arising from the final dis-

torted wave to take into account the effects of the finite charge
and the finite spin. One naive choice to take into account these
effects is to set fλ(E ) to the penetration factor Pλ(ka) with
the channel radius a, because the penetration factor with the
limit of k → 0 is reduced to the phase volume,

√
E , in the

case where the final scattering states are the charge neutral
and λ = 0 states.

We can justify the introduction of the penetration factor
Pλ(ka) by the plane wave approximation for the final distorted
wave in Eq. (15). The plane wave approximation of Eq. (15)
with the multipolarity λ becomes

Sλ(E )dE ∝ |〈 jλ,kYλ|Ôλ|χ (i)〉|2k dE , (21)

where jλ,k denotes the spherical Bessel function with the rank
λ and the momentum k. If the initial wave packet is strongly
localized inside of the small radius a, we can obtain the
following expression by taking the limit of k → 0:

Sλ(E )dE ∝ (ka)2λ+1|〈Yλ|Ôλ|χ (i)〉|2dE , (22)

where we use the relation of jλ,k → jλ(kR)|R=a ∼ (ka)λ by
replacing the radial coordinate R with the radius a. A factor
of (ka)2λ+1 in Eq. (22) is the same as the penetration factor of

Pλ(ka) for the low energy limit (k → 0) in the decays of the
charge neutral particles.

Second, the effect of the finite size (or the finite binding
energy) for the initial wave packet is considered. If two con-
stituent particles in the ground state are described by the shell
model with the harmonic oscillator (HO) potential, the relative
wave function of the two particles [χ (i)(R) in Eq. (21)] is also
described by the HO wave function (χ (i)

HO). The asymptotic
behavior in the HO relative wave function is determined by
an exponential function, such as χ

(i)
HO(R) ∼ exp(−νR2) with

the parameter of ν = μ/2b2, in which μ and b represent the
reduced mass number of the binary system and the width
parameter of the HO potential, respectively.

The strength function is reduced to the Fourier transforma-
tion of the initial wave packet in the plane wave approximation
of Eq. (21), hence it corresponds to the Fourier transforma-
tion of the HO wave packet, which is the HO wave function
multiplied by the external operator, Ôλχ

(i)
HO. Since the radial

part in the external field is given by the power of the radial
coordinate, the Fourier component with the momentum k in
the initial HO wave packet must have the functional form
exp(−b2k2/2μ). Therefore, it is valid to include the factor
exp(−βE ) in the energy dependence of the breakup strength,
where the parameter β is sensitive to the spatial size of the
initial wave packet.

After summarizing the above consideration, the most
probable candidate for the analytic function to describe the
background strength due to the direct breakup will be

Sλ(E ) ∝ Pλ(ka)e−βE

AE2 + BE + C
. (23)

Pλ(ka) is a monotonically increasing function in energy, and
its rising position is controlled by the channel radius a, while
the three parameters (A, B,C) in the quadratic energy denom-
inator determine the peak energy and the distribution width.
In contrast, β in the exponential term controls the damping
behavior in the high energy region. Two parameters are newly
introduced, β and a, which are sensitive to the spatial size of
the initial wave packet, but these parameters do not change the
basic feature in the structureless strength function expected
from the original MW formula in Eq. (19).

It is instructive to reconsider the extended formula in
Eq. (23) in connection to the effective range theory. e−βE is
introduced to take into account the finite size of the initial
bound state, while Pλ(ka) and (AE2 + BE + C)−1 reflect the
feature in the final scattering state. Therefore, A, B, C, and a
must have a certain relation to the parameters in the effective
range theory: the scattering length asc and the effective range
r0. A, B, and C are directly connected to (asc, r0) through
Eq. (18), which is valid for the s-wave scattering in a charge
neutral system, but this relation is no longer applicable in
scattering with finite angular momentum and finite Coulomb
potential [47]. On the other hand, the channel radius a, which
appears when extending the phase factor

√
E , was not origi-

nally included in the effective range theory [30,47].
In scattering with finite angular momentum under a finite

Coulomb potential, the relation of the phase shift and (asc, r0)
becomes a nonlinear equation using the Sommerfeld param-
eter as shown in Eq. (21) in Ref. [47]. Furthermore, we need
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to employ the R-matrix formalism for the density of state to
establish the close relation of the channel radius a and the
phase shift as shown in Ref. [48]. Therefore, it is not so easy
to establish the explicit relation of (A, B,C, a) and (asc, r0)
in the case of finite angular momentum and finite Coulomb
potential. In the formulation of Eq. (23), the set of parameters
should be handled as phenomenological parameters, which
are independent of (asc, r0), to determine the low energy part
of the strength function.

IV. RESULTS

In this section, we discuss the applicability of the extended
MW formula in Eq. (23) by comparing with the direct breakup
evaluated by the CSM calculation. First, we calculate the di-
rect breakup of 20Ne → α + 16O, and the breakup strength is
compared with the extended MW formula in Eq. (23). Second,
we demonstrate that newly introduced parameters β and a are
really sensitive to the spatial size of the initial wave packet.
Finally, the extended MW formula is applied to the direct
breakup of 12Be → α + 8He.

A. Analysis of 20Ne → α + 16O

We have solved the complex-scaled Schrödinger equation
in Eq. (2) with the α + 16O model in 20Ne, which is a similar
calculation to the CSM calculation in Ref. [33], and the wave
functions of the initial bound state (�i) and final continuum
states (� f ) are prepared. This binary model reproduces the
binding energy of the α particle (EB ≈ −4.7 MeV), and the
calculated spectra of the ground and excited rotational bands
reproduce the experimental observation.

The CSM strength function for one-step direct breakup is
calculated according to the expression in Eqs. (4) and (5) [34].
The computational results of the CSM strength function and
the fitting by the extended MW formula in Eq. (23) are shown
in the two panels of Fig. 1. The quadrupole and monopole
strengths for 20Ne → α + 16O are shown in the top and
bottom panels, respectively. The CSM strengths shown by
the solid curve with the dots are nicely reproduced by the
extended MW formula plotted by the open circles. In these
strength functions, there are the broad peaks, which is consis-
tent with the basic feature in the structureless strength, hence
the calculated CSM strength fitted by the extended MW for-
mula is considered to appropriately describe the nonresonant
background in a binary breakup reaction.

In both panels, the open square and the error bar represent
the real and imaginary parts of the energy pole, respectively,
giving the zero value in the denominator of the response
function in Eq. (5). Since the final state interaction (FSI) in
the α + 16O scattering state, such as the nuclear + Coulomb
+ centrifugal potentials, is fully taken into account, the energy
pole is generated by FSI in the final scattering state after
the breakup. The strength function evaluated by CSM has a
broad continuum distribution consistent with the feature of the
structureless background, and this enhancement is basically
generated by the competition of the increase of the phase
volume and the decrease of the matrix element as a function
of energy. However, the energy pole created by FSI also

FIG. 1. Comparison of the strength function of 20Ne → α +
16O with fitting results by the extended Migdal-Watson formula in
Eq. (23). The top panel shows the quadrupole [S2(E )] transition,
while the bottom one shows the monopole [S0(E )] transition. The α

threshold energy is set to the zero point in the abscissa. In both pan-
els, the dots connected by the solid curve and open circles represent
the strength function calculated from CSM and fitting results using
Eq. (23), respectively. The open square and the error bar correspond
to the real and imaginary parts of the energy pole appearing in the
response function in Eq. (5), respectively. Similar figures are also
shown in Ref. [31].

contributes to the enhancement in the strength function if the
strong FSI is effective between the scattering particles.

In the fitting analysis of the quadrupole transition, we use
the parameters for the energy denominator part: A = 0.025,
B = −0.21, C = 0.48, a = 5.5 fm, and β = 0.015 MeV−1

in Eq. (23). In the monopole transition, the parameters used
for the fitting to the monopole transition are A = 0.029, B =
−0.19, C = 0.33, a = 5.0 fm, and β = 0.015 MeV−1.

In order to reproduce the peak structures shown in Fig. 1,
the fitting only by the quadratic energy denominator in
Eq. (23) is insufficient, and some sort of a modification func-
tion fλ(E ) is clearly needed. Here we have tried to reproduce
the strength by considering only a penetration factor like
fλ(E ) = Pλ(ka). The results with and without e−βE are com-
pared in Fig. 2. In this figure, the strength of the quadrupole
transition [S2(E ), shown in the top panel of Fig. 1] is plot-
ted. The deviation of the fitting result by the extended MW
formula with finite β (open circles) from the CSM strength
(solid curve) is small but the fitting with β = 0 (dashed curve)
overestimates the CSM strength in the higher energy region.
The deviation from the CSM result seems not to be large
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FIG. 2. Logarithmic plot of the strength function of quadrupole
transition in α + 16O. The solid curve and open circles represent the
CSM strength and the fitted results by the extended MW formula,
while the dotted curve shows the fitting result without the exponential
damping function, e−βE . The solid curve and the open circles are
the same as the solid curve with the dots and the open circles,
respectively, in the top panel in Fig. 1.

but we have confirmed that this deviation becomes prominent
in strength for higher multipolarity. Thus, the exponential
damping function is important to reproduce the strength in the
higher energy region.

B. Spatial size of initial wave packet and fitting parameters

The extra parameters, such as β and a, are introduced in
the extension of the MW formula. We demonstrate that these
newly introduced parameters have a close relation to the spa-
tial size of the initial wave packet by controlling the binding
energy of the initial wave function. In Fig. 3, the radial part
of the initial wave packets, Ôλ=2(R)χ (i)(R) → R2χ (i)(R), and
the respective strength functions for the quadrupole transition
in 20Ne → α + 16O are shown in the top and bottom panels,
respectively.

In the top panel, the dashed, dotted and solid curves show
wave packets with binding energies of EB = −8.29, −4.64,
and −1.40 MeV, respectively. The initial wave packet is more
extended as the binding energy gets shallower in the top panel.
In the bottom panels, the strength functions corresponding
to the wave packets in the top panel are shown; the curves
labeled by −8.29, −4.64, and −1.40 MeV in the bottom
panel correspond to the dashed, dotted, and solid curves in
the top panel, respectively. As the spatial size of the initial
wave packet is extended, the corresponding strength function
is more shrunken. This behavior basically originates from a
feature of the Fourier transformation involved in the strength
function.

The open circles in the bottom panel show the re-
sults using the extended MW formula in Eq. (23) with
the appropriate values of β. The fitting results by the
extended MW formula nicely reproduce the strength
functions calculated for the various sizes of the initial
wave packets. As the system becomes a weakly bound
state having a spatially extended wave function, the pa-
rameter β becomes large: (EB, β ) = (−8.29, 0.0015) →

FIG. 3. Size and binding energy dependence of initial wave
packets and strength functions in α + 16O system. In the top panel,
the initial wave packets calculated at the binding energies of
EB = −8.29 MeV (dashed curve), −4.64 MeV (dotted curve), and
−1.40 MeV (solid cuve) are shown, while the respective strength
functions are shown in the bottom panel. The binding energies at-
tached to the individual curves in the bottom panel correspond to
the wave packet labeled by the respective binding energies in the top
panel. In the bottom panel, the open circles show the fitting results
by the extended MW formula, and the parameters of β used in the
fitting are attached to the individual sets of open circles.

(−4.64, 0.015) → (−1.40, 0.065). Thus, the parameter β has
a close connection to the spatial size of the initial wave packet.

In order to understand the relation of the spatial size of
the initial wave packet and β more deeply, we calculate sev-
eral strength functions by varying the binding energies and
tried to find the optimal β in Eq. (23). In Fig. 4, several
root-mean-squared radii of the initial wave function (open
circles),

√
〈R2〉 ≡

√
〈χ (i)|R2|χ (i)〉, are plotted as a function

of the fitting parameter β. Here
√

〈R2〉 and β are derived
from the quadrupole transition in 20Ne → α + 16O. In this
figure, we can clearly confirm the positive correlation in the
plot of β −

√
〈R2〉; larger

√
〈R2〉 (weak binding) requires

more enhanced β (shrunken strength function). Therefore, the
parameter β correlates to the spatial size of the initial wave
function or the initial wave packet, which is given by the initial
wave function multiplied by the external operator.

In Fig. 4, the solid curve shows the fitting curve for the
calculated data points (open circles), and its functional form
is given by

√
〈R2〉 = 5.0

√
β + 3.5. We can easily understand

that the root-mean-squared radius
√

〈R2〉 is proportional to
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FIG. 4. Root-mean-squared radii (
√

〈R2〉) of the initial wave
function of χ (i)(R) plotted as a function of the fitting parameter
β in Eq. (23), which is derived from the quadrupole transition in
20Ne → α + 16O. The open circles show the result of the analysis
by Eq. (23), while the solid curve shows the fitting function of the
open circles, which is given by

√
〈R2〉 = 5.0

√
β + 3.5.

√
β by employing the HO model. If we assume the initial

wave function to be the pure HO wave function, we can obtain
the following relation from the Virial theorem:

√
〈R2〉 =

√
h̄2

μm

(
N + 3

2

)√
β, (24)

where μ and m represent the reduced mass number of the
binary channel and the nucleon mass, respectively. In the pure
HO model, β is given by m(b/h̄)2. N in the parentheses means
the total oscillator quantum number, which has the relation
N = 2n + L with the number of the radial node n and the
relative spin L of the initial wave function in the binary sys-
tem. If we evaluate Eq. (24) for the α + 16O system with the
lowest allowed quanta, N = 4, we obtain

√
〈R2〉 = 11.1

√
β,

which deviates considerably from the fitting result of
√

〈R2〉 ∼
5.0

√
β. Although the fitting result of the channel radius a is

not shown, we have found a similar positive correlation in
the plot of a −

√
〈R2〉 because the channel radius a also has

a direct relation to the spatial size of the initial wave packet as
shown in the plane wave approximation of Eqs. (21) and (22).

C. Application to 12Be → α + 8He

Finally, we apply the extended MW formula to the breakup
of 12Be into α + 8He, in which prominent resonances are
observed in experiments [8–12]. Here we calculate the direct
breakup from the bound state to the scattering continuum in
the α + 8Heg.s. system.

In the two panels of Fig. 5, the calculated strength functions
are compared with the fitting analysis by the extended MW
formula in Eq. (23). The top and bottom panels represent the
quadrupole [S2(E )] and monopole [S0(E )] strengths, respec-
tively. The strength function rapidly increases in the lower
energy region of E < 1 MeV because of the weakness of
the Coulomb potential in comparison to that in the α + 16O
system. The calculated strength functions (dots connected by

FIG. 5. Strength functions for direct breakup of 12Be → α +
8He. The top and bottom panels show the quadrupole [S2(E )] and
monopole [S0(E )] transitions, respectively. The calculated strength
functions are plotted by the solid curve with the dots, while the
results of the fitting functions in Eq. (23) are drawn by the open
circles. α threshold energy is set to zero in the abscissa.

solid curves) with the single peak structure are nicely repro-
duced by the fitting function (open circles).

Similar calculations for the dipole excitations are shown
in Fig. 6. In the top panel, the result for the normal dipole
excitation induced by the operator of RY1,0(R̂) is shown, while
the result of a higher order dipole operator, R3Y1,0(R̂), is
plotted in the bottom panel. The calculated strength function
(solid curve with dots) has a single peak structure, and it is
almost the same as the fitting result (open circles) using the
extended MW formula.

We have checked the strength function with higher multi-
polarity, such as the octupole [R3Y3,0(R̂)] and hexadecapole
[R4Y4,0(R̂)] transitions, and found that the proposed formula
in Eq. (23) reproduces the calculated strength function fairly
well. All of the reproductions shown in Figs. 5 and 6 are
achieved only by the combination of the penetration factor
Pλ(ka) and the exponential term e−βE in Eq. (23), and the
restricted fit without the exponential term overestimates the
strength in the higher energy region.

V. SUMMARY

In summary, we have developed a simple formula to de-
scribe the non-resonant background strength generated by
direct breakup in binary systems, in which the final state
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FIG. 6. Same as Fig. 5 except for the normal and higher dipole
operators. The top and bottom panels show the transition by the
operator RY1,0(R̂) and the dipole operator R3Y1,0(R̂), respectively.

interaction between the decaying particles is taken into ac-
count. The direct breakup process is assumed to be a one-step
transition from the binary bound state to its scattering state.
The transition strength of the direct breakup can be reduced
to the response function of a single nucleus, and the direct
breakup is considered to be the main component of the nonres-
onant background strength in a realistic breakup experiment.
The evaluation of the background strength is very important
in deriving the resonance parameters from the total strength
observed in experiments.

In order to describe the background strength in a simple
manner, we have considered an analytic function by extending
the Migdal-Watson (MW) formula [28–30], which has re-
cently been discussed in connection with the s-wave breakup
of a dineutron system [27]. In the original MW formula, a
simple function in energy, such as

√
E/(AE2 + BE + C), is

derived by employing the effective range theory [30]. This
formula is valid for the s-wave binary breakup of a charge
neutral system, and the initial wave function is assumed to be
strongly confined inside the short range nuclear interaction.

We have extended the MW formula to include the effects
of the finite spins, the finite charge, and the finite size of the
initial wave packet. First, the numerator of

√
E is replaced by

the penetration factor Pλ(ka) depending on the channel radius
a to take into account the effects of the finite spin (λ) and the
finite charge. This replacement can be justified by the plane
wave approximation for the final scattering state. Second,
we have introduced the exponential damping factor, e−βE , in

which β originates from the tunneling tail of the initial wave
packet outside of the nuclear interaction approximated by the
harmonic oscillator potential. Thus, two parameters are newly
introduced in the extended MW formula: the channel radius
a and the width of the energy damping β. Both parameters
originate from the finite size of the initial wave function.

We have tested the extended MW formula by fitting the
background strength evaluated by the theoretical calculation
of the direct breakup. Here we have calculated the background
strength by the direct breakup on the basis of the formulation
of the complex scaling method (CSM) [32], in which the
final state interaction after the breakup is fully taken into
account. The CSM calculation and the fitting analysis by the
extended MW formula are applied to the direct breakup in
20Ne → α + 16O [33]. In this application, we have confirmed
that the CSM strength functions are nicely reproduced by
the extended MW formula. If we switch off the exponential
damping part e−βE in the fitting, the strength in the higher
energy region is overestimated. Thus, both the penetration
factor and the exponential damping factor are important to
reproduce the background strength over a wide region of the
excitation energy.

The sensitivity of β, which is one of new parameters, to the
spatial size of the initial wave function is checked by varying
the binding energy of the initial state. The longer range wave
packet requires large β, which gives rapid damping to the
strength function, and there is a positive correlation of β and
the root-mean-squared radius of the initial wave function,√

〈R2〉. Although we do not show the results, the channel
radius a, which is another new parameter, is also sensitive
to the spatial size of the initial wave function. We should
be careful that the value of

√
〈R2〉 correlating β and a does

not correspond to the normal nuclear radius, which is usually
derived from the reaction cross section. The nuclear radius
is given by the average of

√
〈R2〉 for the various channel

components contained in the ground state.
√

〈R2〉 associated
with β and a corresponds to the spatial size of the specific
channel component in the ground state.

Finally, the extended MW formula is applied to the direct
breakup of 12Be → α + 8He, in which prominent resonances
are observed in experiments [8–12]. The strengths for the
monopole, dipole, and quadrupole breakups evaluated by the
CSM calculation are nicely reproduced by the extended MW
formula. Since the CSM calculation reproduces the single
peak structure, which is expected in the structureless back-
ground strength, it appropriately simulates the nonresonant
background strength in the binary breakup. Therefore, the
extended MW formula reproducing the CSM result is con-
sidered to be a realistic formula to evaluate the nonresonant
background strength.

A strict extension of the MW formula must rely on the
formal theory of the corrected effective range, which includes
the effects of the finite Coulomb potential and the finite an-
gular momentum [47]. However, such an exact extension of
the MW formula is quite difficult because of the nonlinear
Coulomb effect appearing in the effective range relation [47].
Instead, we have extended the MW formula in an intuitive
manner, which finally leads to the simple multiplication of
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the quadratic energy denominator and the penetration and
damping factors. Since we have demonstrated the availability
of the extended MW formula, its application to various binary
breakup reactions is strongly desired. Furthermore, it is im-
portant to extend the formula to more complicated systems,
such as three-body breakup, because experimental data mea-
suring multiparticle decays have been accumulated [7,14–16].
The extension to the three-body breakup is now in progress.
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(1998).
[35] G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford,

1983), p. 577.
[36] H. Sagawa, N. Takigawa, and N. van Giai, Nucl. Phys. A 543,

575 (1992).
[37] Y. Chiba, M. Kimura, and Y. Taniguchi, Phys. Rev. C 93,

034319 (2016).
[38] Y. Chiba, Y. Taniguchi, and M. Kimura, Phys. Rev. C 95,

044328 (2017).
[39] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183

(1979).
[40] A. M. Kobos et al., Nucl. Phys. A 384, 65 (1982); A. M. Kobos,

B. A. Brown, R. Lindsay, and G. R. Satchler, ibid. 425, 205
(1984).

[41] M. Ito, Y. Hirabayashi, and Y. Sakuragi, Phys. Rev. C 66,
034307 (2002), and references therein.

[42] Y. Hirabayashi, Y. Sakuragi, and Y. Abe, Phys. Rev. Lett. 75,
3779 (1995).

[43] M. Nakao, H. Umehara, S. Sonoda, S. Ebata, and M. Ito, EPJ
Web Conf. 163, 00040 (2017).

[44] F. M. El-Azab and G. R. Satchler, Nucl. Phys. A 438, 525
(1985).

[45] M. E. Brandan and G. R. Satchler, Nucl. Phys. A 487, 477
(1988).

[46] H. Friedrich, Phys. Rep. 74, 209 (1981).
[47] J. Hamilton, I. Øverbö, and B. Tromborg, Nucl. Phys. B 60, 443

(1973).
[48] F. C. Barker and P. B. Treacy, Nucl. Phys. 38, 33 (1962).

034602-10

https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1143/PTP.120.1139
https://doi.org/10.1103/PhysRevC.85.034315
https://doi.org/10.1016/0370-2693(94)91055-3
https://doi.org/10.1103/PhysRevLett.96.252502
https://doi.org/10.1103/PhysRevLett.124.212503
https://doi.org/10.1016/0370-2693(94)01435-F
https://doi.org/10.1103/PhysRevLett.82.1383
https://doi.org/10.1103/PhysRevC.63.034301
https://doi.org/10.1142/S0217732310000496
https://doi.org/10.1103/PhysRevC.76.064313
https://doi.org/10.1103/PhysRevLett.112.162501
https://doi.org/10.1209/epl/i1996-00407-y
https://doi.org/10.1103/PhysRevLett.121.262502
https://doi.org/10.1103/PhysRevLett.125.252501
https://doi.org/10.1103/PhysRevLett.116.102503
https://doi.org/10.1143/PTPS.89.1
https://doi.org/10.1103/PhysRevC.103.L031601
https://doi.org/10.1103/PhysRevC.102.021602
https://doi.org/10.1103/PhysRevC.97.064607
https://doi.org/10.1103/PhysRevC.101.064611
https://doi.org/10.1103/PhysRevLett.100.182502
https://doi.org/10.1103/PhysRevC.85.044308
https://doi.org/10.1103/PhysRevC.78.011602
https://doi.org/10.1103/PhysRevC.84.014608
https://doi.org/10.1088/0034-4885/77/9/096301
https://doi.org/10.1140/epjp/i2018-12343-0
https://doi.org/10.1103/PhysRev.88.1163
https://doi.org/10.1016/0029-5582(58)90249-9
https://doi.org/10.1143/PTP.116.1
https://doi.org/10.1143/ptp/84.6.1145
https://doi.org/10.1143/PTP.99.801
https://doi.org/10.1016/0375-9474(92)90280-W
https://doi.org/10.1103/PhysRevC.93.034319
https://doi.org/10.1103/PhysRevC.95.044328
https://doi.org/10.1016/0370-1573(79)90081-4
https://doi.org/10.1016/0375-9474(82)90305-0
https://doi.org/10.1016/0375-9474(84)90073-3
https://doi.org/10.1103/PhysRevC.66.034307
https://doi.org/10.1103/PhysRevLett.75.3779
https://doi.org/10.1051/epjconf/201716300040
https://doi.org/10.1016/0375-9474(85)90391-4
https://doi.org/10.1016/0375-9474(88)90625-2
https://doi.org/10.1016/0370-1573(81)90131-9
https://doi.org/10.1016/0550-3213(73)90193-4
https://doi.org/10.1016/0029-5582(62)91014-3

